
Formal methods VIMIMA07

Home Assignment (Model checking)

Title: Cache Coherence

Advisor: Ákos Hajdu

Problem Description

The purpose of the cache is to keep a copy of parts of the memory frequently used by the CPU to boost
access speed. In multi-processor systems, the main memory and the caches are connected to a memory
bus, and a CPU can only access the contents of the main memory through its own cache. The task is to
ensure coherence, i.e. that all CPUs see identical memory contents.

The smallest unit handled by caches is called a cache line (e.g. 64 bytes). Due to the small size of caches,
the copies of most cache lines are not in the cache (invalid state). The exact copy of a memory area
found in a CPU’s cache can often occur in other CPU’s caches at the same time (shared state). If the
cache line is in exclusive state, that line should be invalid in the cache of every other CPU. Finally, a
cache line can be in dirty state (which is also exclusive), meaning that it has been modified locally in the
cache, and needs to be written back into the main memory.

If a CPU wants to read from a shared cache line, it can be served locally (without turning to the memory
bus). Writing a dirty or exclusive line can also be served locally (but exclusive states become dirty upon
writing). If a CPU wants to write into a shared cache line, the cache also writes the value to the main
memory and it shifts to exclusive state. All the other caches detect the change and invalidate their
incidental local copies of this line.

If the currently needed line is missing from the cache (invalid) and a CPU wants to read, first it signals
the reading request on the memory bus. This makes every exclusive or dirty copy shared, while writing
the locally modified value into the main memory as well. After that, the line is copied into the initiating
CPU’s cache in shared state. In order to write an invalid cache line it has to be read first (because
writing usually affects only a part of the line), then the writing process is similar to shared writing
described above. Sometimes a cache line is forced out of the cache due to lack of space, when another
invalid line is read or written (thus added to the cache). Then the eliminated line becomes invalid, and if
it was dirty, the main memory is refreshed beforehand.

Requirements to check

Model the local states of one cache line with 4 CPUs. The domain of the cache line can be restricted to a
small domain, e.g., a bounded integer ranging from 0 to 2. When a CPU writes its cache, use a random
value (Select construct). Prove the satisfiability of the requirements below using temporal logic
expressions and model checking (in case of unsatisfiability explain the reasons in detail with a
counterexample)! Show and explain a short example/counterexample where possible!

1. The system has no deadlocks.
2. The cache line can be shared between all the caches at the same time.
3. If the cache line is exclusive or dirty in the first CPU, the other CPUs cannot have a copy.
4. All exclusive and shared copies are identical to the value in the main memory.

