Formal Methods (VIMIMAOQ7) Year 2019/2020, Semester |1 24. March 2019.

ME1B First Mid-term exam, Group B 1. 2. 3. 4, 5. Total

Please start each task on a separate page!

Please indicate your name and Neptun code

7 points 5 points 5 points 6 points { 12 points 35 points
on each page!

1. Theoretical questions (7 points)

1.1. For each of the statements below, indicate whether they are true, false, or not decidable! |3 points

A. In Labeled transition systems (LTS), a transition can be labeled with an arbitrary
number of action labels.

B. We can never find a counterexample for invariant properties with bounded model
checking because that requires an infinite number of iterations.

C. A logical function must always be transformed into negation normal form (NNF)
before creating its ROBDD form.

1.2. Give a sequence of labeled states for which temporal properties F P and XX(P U Q) 3 points
hold, but the property X(P v X P) does not hold, using as few states as possible! P
1.3. Give an example temporal logic expression that is a syntactically valid CTL* expression, 1 boi
: : point
but not a valid CTL expression.

1.1

A: False. In case of LTS, a transition can be labeled with only one action.

B: False. Bounded model checking can be used to find counterexample for invariant properties.

C: False. The transformation into negation normal form is not necessary.
1.2:

{P} {Q}
(no P) (no P)

1.3:

There are plenty of potential good examples.
E.g., in CTL, path formulas cannot be directly nested (these shall be directly preceded by path
quantifiers E or A), while in CTL* these can be directly nested.

1/5

2. Modeling (5 points)

The following figures present two timed automata (modeled in UPPAAL) that describe the states of the
controller of a devaporizer (ldle, Devaporizing), and the states of the devaporizer itself (Idle, Empty, Half,
Full). The automata use two logical variables (bool devaporized, bool finished) and two channels (chan
empty, chan devaporize). The logical variables are initially false. Note that guards use “= =" whereas

9

assignments use “="".

2.1. Construct the Kripke structure corresponding to the whole system, i.e., reachable
combinations of the states of the controller and states of the devaporizer, and the

transitions among the combined states. Label each combined state with the names of the S points
states that it represents (you can use the initial letters of states for abbreviation)!
Idle Empty
empty! devaporize! ® empty?
devaporize! devapoqzed__ true devaporize?
(:) devaporized = false,
Idle Devaporizing finished = true

B devaporize?
finished == true Full devaporized = true Halr
finished = false

devaporize?

Solution:

Idle_lIdle Idle_Empty Devaporizing_Half

O© O O

D izi Full
L —~ evaporizing_Fu
N

Devaporizing_ldle

()

_/

2/5

3. Binary decision diagrams (5 points) @ @ @.

A Kripke structure is given on the right, where states are encoded
with three bits using variables X, y, z in this order. (For example,
the initial state encoded as 111 corresponds to x=1, y=1, z=1.) @ @
3.1. Give the characteristic function for the initial state of the Kripke structure and the 5 boints
characteristic function for the path 111 — 110— 010 starting from the initial state! P
3.2. Draw the ROBDD representing the set of states of the Kripke structure using the variable :
3 points
order x, y, 2!
Solution:
3.1:
Ci11=x ANy Az
Ci115110-010 = X AY AZ) A(xX" Ay A =z)A(=x" A y" A =z'")
3.2:

The ROBDD is the following (it can be constructed by drawing first the binary decision tree of the
function and then merging identical sub-trees and reducing redundant nodes):

3/5

4. CTL model checking (6 points) {a}

Consider the Kripke structure on the right with initial
state S and the given labeling.

D)ip.al

4.1. Check whether the following CTL expression holds from the initial state using the
iterative labeling algorithm presented in the lectures: E ((AX p) U Q).
For each iteration step give the expression that is currently used for labeling and
enumerate the states that are labeled in that step.

6 points

Solution:

1. step: S, A, C, D states are labeled by AX p (all direct successor states are labeled by p).
2. step: A, D states are labeled by E ((AX p) U q) (since these states are already labeled by q).

3. step: C state is labeled by E ((AX p) U q) (this state is labeled by AX p and there exists a direct
successor state that is already labeled by E ((AX p) U q)).

4. step: S state is labeled by E ((AX p) U q) (this state is labeled by AX p and there exists a direct
successor state that is already labeled by E ((AX p) U q)). End of the iteration.

The expression holds from the initial state because S is labeled by E ((AX p) U q).

4/5

5. LTL requirement formalization and model checking (12 points)

In a city either all cars can enter, or only electric cars, or none of them (the strictness of the restriction
increases in this order). The air pollution in the city can be low or high and there may be a related alert.
We record all these facts on a daily basis.

Formalize the following requirements using LTL operators and the given atomic propositions (denoted
above by words in italic), which must always (continuously) apply to the behavior of the city!

5.1. If no cars are allowed to enter, but the air pollution is low and there is no alert, then on

the next day we allow electric cars, and on the day afterwards we allow all cars. 2 points

5.2. If there is an alert and all cars can enter or only electric cars can enter, then we
eventually introduce a stricter rule (from all cars to electric only or none, or from| 2 points
electric only to none, respectively).

5.3. Thereis an alert as long as air pollution is high. 2 points

5.4. Use the tableau method to check if the requirement —~(a U b) holds for the Kripke
structure below (where the initial state is s1)! If the requirement does not hold, give a| 6 points
counterexample based on the tableau!

A
{a} e {a}
.'

5.1: G ((none A low A —alert) — (X electric A XX all))

Megoldas:

5.2: G (((alert A all) — F(electric v none)) A ((alert A electric) — F none))

5.3: G (alert U (=high))

5.4: The tableau belonging to a U b shall be constructed from state s;. Counterexample on the satisfying
branch: sy, S3, S2

[sil-a, s - X(@Ub)]
Contradicting s;l-aUb
branch :
/
[sskb | [s:las;|-X@Ub) |
Contradicting i |
branch i S3 |— aU b ‘ SZ |_ aUb ‘
Existing tableau ‘ Sy |-b ‘ I S2|-a, s3] X(a Ub) ‘
node, @ 0 |
loop back with P only Satisfying branch s;|-FaUb ———————————————

Existing tableau
node,
loop back with P only

5/5

