
 1/5

Formal Methods (VIMIMA07) Year 2019/2020, Semester II 7. April 2020.

RME1 Repetition of the First Midterm Exam 1. 2. 3. 4. 5. Total

Please provide each task on a separate page!

Please indicate your name and Neptun code on

each page!
7 points 5 points 5 points 6 points 12 points 35 points

1. Theoretical questions (7 points)

A. In Kripke transition systems (KTS), transitions can have guards and a transition can

only be taken if its guard is true.

B. The tableau method can only find counterexamples in the model that correspond to

non-cyclical behavior.

C. The binary decision tree of a logical function always contains more nodes than its

ROBDD representation.

Solution:

1.1

A: False. In KTS, transitions do not have guards.

B: False. The tableau method may find counterexamples that correspond to cyclical behavior (e.g.,

in case of the U operator).

C: False. It is possible that the binary decision tree and the ROBDD have the same number of

nodes (e.g., in case of function f(x)=x, or function f(x,y) = x ↔ y).

1.2:

1.3:

There are plenty of potential good examples.

E.g., the syntactically valid CTL expressions including one of the EX, EF, EG, EU temporal

operators, or the syntactically valid CTL expressions that contain more than one CTL temporal

operator.

1.1. For each of the statements below, indicate whether they are true, false, or not decidable! 3 points

1.2. Give a sequence of labeled states for which temporal properties P U Q and X F(P Q)

hold, but the property X Q does not hold, using as few states as possible!
3 points

1.3. Give an example temporal logic expression that is syntactically a valid CTL expression,

but not a valid expression in PLTL extended with path quantifier A.
1 point

{P} {P,Q}

(no Q)

{P} {P,Q}

(no Q)

{Q}

or

 2/5

2. Modeling (5 point)

The following figures present two timed automata (modeled in UPPAAL) that describe the states of the

controller of a digital stopwatch (Idle, Operating, Display), and the states of the related counter (Idle,

Started, Stopped, Error). The automata use a single logical variable (bool timeout), and two channels

(chan start, chan stop). The logical variable is initially false. Note that guards use “= =” whereas

assignments use “=”.

2.1. Construct the Kripke structure corresponding to the whole system, i.e., reachable

combinations of the states of the controller and states of the counter, and the transitions

among the combined states. Label each combined state with the names of the states that

it represents (you can use the initial letters of states for abbreviation)!

5 points

Solution:

 3/5

3. Binary decision diagrams (5 points)

A Kripke structure is given on the right, where states are encoded with

three bits using variables x, y, z in this order. (For example, the initial

state encoded as 000 corresponds to x=0, y=0, z=0.)

3.1. Give the characteristic function for the initial state of the Kripke structure and the

characteristic function for the path 000 001 111 starting from the initial state!
2 points

3.2. Draw the ROBDD representing the set of states of the Kripke structure using the variable

order x, y, z!
3 points

Solution:

3.1:

 𝐶000 = ¬𝑥 ∧ ¬y ∧ ¬z
 𝐶000→001→111 = (¬𝑥 ∧ ¬y ∧ ¬z) ∧ (¬𝑥′ ∧ ¬𝑦′ ∧ 𝑧′) ∧ (𝑥′′ ∧ 𝑦′′ ∧ 𝑧′′)

3.2:

The ROBDD is the following (it can be constructed by drawing first the binary decision tree of the

function and then merging identical sub-trees and reducing redundant nodes):

 4/5

4. CTL model checking (6 points)

Consider the Kripke structure on the right with

initial state S and the given labeling.

4.1. Check whether the following CTL expression holds from the initial state using the

iterative labeling algorithm presented in the lectures: A ((EX p) U q).

For each iteration step give the expression that is currently used for labeling and

enumerate the states that are labeled in that step.

6 points

Solution:

1. step: S, A, D states are labelled by EX p (there exists a direct successor state that is labeled by p).

2. step: A, B, C, E states are labelled by A ((EX p) U q) (these states are already labeled by q).

3. step: D state is labelled by A ((EX p) U q) (this state is labeled by EX p and all direct successor

states are already labeled by A ((EX p) U q)).

4. step: S state is labelled by A ((EX p) U q) (this state is labeled by EX p and all direct successor

states are already labeled by A ((EX p) U q)). End of the iteration.

The expression holds from the initial state because S is labeled by A ((EX p) U q).

 5/5

5. LTL requirement formalization and model checking (12 points)

In a chat application we can follow a conversation as an observer, as a participant, or we can be away.

During the conversation we can write and read messages, and we can receive alerts. We record these

facts in each time unit.

Formalize the following requirements using LTL operators and the given atomic propositions (denoted

above by words in italic), which must always (continuously) apply to the behavior of the system!

5.1. If we are a participant in a conversation and we receive an alert, then we write a

response in at most two time units.
2 points

5.2. We cannot write messages and cannot receive alerts until we follow the conversation as

a participant.
2 points

5.3. An observer will eventually be away from the conversation. 2 points

5.4. Use the tableau method to check if the requirement ¬(p U q) holds for the Kripke

structure below (where the initial state is s1)! If the requirement does not hold, give a

counterexample based on the tableau!

6 points

Solution:

5.1: G ((participant alert) (X write XX write))

5.2: G ((write alert) U participant)

5.3: G (observer → F away)

5.4: The tableau belonging to p U q shall be constructed from state s1. Counterexample on the satisfying

branch: s1, s3 or s1, s2, s3.

s1 |- p U q

s1 |- p, s1 |- X(p U q)s1 |- q

s2 |- p U q

s2 |- q s2 |- p, s2 |- X(p U q)

Contradicting
branch

Existing tableau node,
loop back with p only

s1 |- p U q s3 |- p U q

s3 |- q s3 |- p, s3 |- X(p U q)

Satisfying
branch

s3 |- p U q

Existing tableau node,
(not a loop back)

Contradicting
branch

Contradicting
branch

