
Abstract

We are surrounded by a large number of safety critical systems such as railway,
cars and aircrafts. The incorrect behavior of such systems may have serious con-
sequences, even to the extent of threatening human lives, so we need techniques
supporting the design and development of correct systems. The application of
model-driven paradigms is getting more and more important as the complexity
of such systems have increased rapidly which could not be managed by tradi-
tional development methods. The main advantage of model-driven approaches
is that not only do they document the components of the system, but imple-
mentation can be derived automatically using code generation. Several tools
and languages are available supporting the design of systems with models. The
internal behavior of reactive systems are usually represented by state-based
models, starting from the component-level and using composition to build the
system-level model. Unfortunately, many of the tools that support composition
fail to define the precise semantics, making automatic code generation infeasi-
ble. Precise validation and formal verification of the design models are rarely
supported for the same reason.

Proving correctness is an important requirement when designing safety critical
systems. In addition to testing, formal methods can be applied to verify the
correctness of the system design in an early phase. A common approach to
state-based behavior analysis is model checking. Unfortunately, most of the
modeling formalisms tailored for engineers are not suitable for direct analysis,
therefore formal models usually have to be created manually by an expert team.

The goal of this work is to develop a framework that supports the design and
analysis of state-based behavioral models. Based on an intermediate statechart
language, a new language is defined to facilitate the composition of statechart
models with precise semantics. The framework includes a code generator that
produces the implementation of the composed system, assuming the implemen-
tation of the statechart models are given (as most tools support code genera-
tion for a single statechart) and following the semantics of the compositional
language. To support the modeling process, validation rules have been defined
for the intermediate statechart language to find design flaws as soon as possible.
Furthermore, the automatic transformation of individual statecharts as well as
their composition to formal models has been developed to support the formal
analysis of the design models.

The framework currently builds on Yakindu, an open-source state-based mod-
eling tool. Transformation from Yakindu statechart models to intermediate

1



formal models, as well as from intermediate formal models to UPPAAL formal
automata is implemented by model transformations. The validation rules have
been developed by using graph pattern matching languages and algorithms. One
of the main advantages of the framework is that it is extensible with arbitrary
state-based engineering and formal modeling languages, so it can be integrated
with other design and analysis tools. The application and the merits of the
framework are demonstrated in a project of the Fault Tolerant Research Group
which includes the design and analysis of a distributed railway interlocking sys-
tem.

2


