Abstract

As a result of the recent technological advancements in computation, programmable controllers
are now used extensively even in critical domains such as automotive embedded systems.
Moreover, in the era of “intelligent” devices, programs are not centralized anymore — for
example, the embedded controller directly actuating the vehicle is in close relation with the
electronic control unit, which is in turn communicating with services in the cloud. The
complexity of such heterogeneous systems may be very high. Model-driven development is
widely used to handle the complexity because it supports the developer in focusing on the
logical aspects of the problem instead of the technical details.

In this work, we present a modeling tool to answer the following challenges inherent in the
systems characterized above.

1. Component-based architecture: the targeted systems are typically composed of smaller
components — therefore a suitable modeling language shall support hierarchical model-
ing.

2. Communication: components usually communicate by means of logical signals or mes-
sages — communication shall happen through well-defined ports and interfaces.

3. Distributed components: components often do not constitute a single program, but
several pieces of software that run on different pieces of hardware — the resulting het-
erogeneous communication requires different compositional semantics.

4. Quality and correctness: often, these systems (or parts of them) perform critical tasks
where correct operation is fundamental — therefore, their design must be sound and
correct, which can be supported by validation and verification, while the quality of the
implementation can be ensured with automatic code generation and testing.

In this work we propose the gamma framework, which is a modeling tool to build hierar-
chical, component-based, reactive systems. Elementary components can be defined in the
built-in formal modeling language as well as in third-party tools integrated with gamma (e.g.,
Yakindu Statechart Tools). The framework supports three types of semantics for compo-
sition: asynchronous-reactive semantics for the proper abstraction of distributed communi-
cation, synchronous-reactive for components of a single program or for highly synchronous
communication, and cascade for the logical decomposition of a single function. The modeling
process is supported by live validation both on the component and system level. Model check-
ers (such as UPPAAL), integrated into the framework and hidden from the user, can be used
to ensure the correctness of models. The implementation of the design can be automatically
generated from the models, where the quality of the generated code is validated by a set of
automatically generated tests.

The extensive functionality and the possibilities provided by the gamma framework are also
demonstrated through a railway-themed case study.



	Abstract

