
Version 2.7.0 1 / 10

User Guide and Tutorial for the
Gamma Statechart Composition Framework

1. Installation
Gamma is tested to work with Eclipse 2022-06. Start with a new Eclipse IDE for Java and DSL Developers

package. Install VIATRA (version 2.7.0) and the Yakindu Statechart Tools (version 3.5.13). Exit Eclipse

and extract the Gamma zip file into the root folder of eclipse. Ideally this will create the plugins

directory in the dropins folder of the root folder of eclipse, containing the JAR files of Gamma. (If not,

make sure you copy all the JAR files contained in the Gamma zip file in the plugins directory of the

dropins folder of the root folder of eclipse.) When starting Eclipse for the first time, you might need to

start it with the -clean flag. Check if the plugin installed successfully in Help > About Eclipse and by

clicking Installation Details. On the Plug-ins tab, sort the entries by Plugin-in Id and look for entries

starting with hu.bme.mit.gamma.

Tip: It is advised to turn on automatic refreshing for the workspace. The other option is to refresh it

manually with F5 after every Gamma command.

For formal verification, download and extract UPPAAL. In order to let Gamma find the UPPAAL

executables, add the bin-Win32 or bin-Linux folder to the path environment variable (depending on

the operating system being used).

2. Presenting the Models
In this tutorial, we will design the controller of traffic lights in a crossroad. In each direction, the traffic

lights are the standard 3-phase lights looping through the red-green-yellow-red sequence. As an extra,

there is an interrupted mode that may be triggered by the police – in this state, the traffic lights will

be blinking in yellow.

Import the skeleton of the crossroad model from hu.bme.mit.gamma.tutorial.start.zip as an existing

project (browse the archive file then click Finish). You will see a number of existing artifacts, including

a JUnit test file in the /test folder and various models in subfolders of /model. At this point, the project

should contain errors, but we will fix them during the tutorial.

https://www.eclipse.org/downloads/packages/release/2022-06/r/eclipse-ide-java-and-dsl-developers
https://marketplace.eclipse.org/content/viatra
http://updates.yakindu.com/statecharts/releases/3.5.13
http://www.uppaal.org/

Version 2.7.0 2 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

To reduce the complexity of the models, we divide the controller into submodules. For each road, the

lights will be controlled by an instance of the traffic light controller statechart

(/model/TrafficLight/TrafficLightCtrl.sct), while a separate crossroad controller

(/model/Controller/Controller.sct) will be responsible for the coordination of the flow of traffic.

The models of the controllers should be easy to read. The traffic light controllers start from the Red

state and will advance to the next state upon receiving a toggle signal. In this example, we assume that

timing comes from the crossroad controller – in the form of such toggle signals. The crossroad

controller will react to the passing of time, so that it can decide which traffic light(s) to toggle in the

given step. This strategy separates the responsibility of handling the lights (through the

LightCommands interface) and coordinating the flow of traffic.

As mentioned before, the police may interrupt the behavior of the crossroad at any time, switching all

the lights to a blinking yellow state. This signal is sent through the crossroad controller, which will

forward it to the traffic light controllers (as the blinking yellow behavior is implemented there).

There is also a monitor component (/model/Monitor/Monitor.sct) that will be used later.

After examining the traffic light controller and the crossroad controller, you should notice that they

have matching interfaces, but the direction of events is the opposite. This is because Gamma works

with the concept of ports, points of service that can provide or require an interface. An output event

on a provided interface will be an input event on a required one and vice versa, enabling the

connection of the two ports with a channel.

The interfaces used in the Yakindu statecharts of the controllers are defined separately. Ideally, the

definition of the interfaces should be the first step in system design. Gamma supports this idea by

Version 2.7.0 3 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

letting us define the interfaces in an empty Yakindu statechart, then compiling them into the native

modeling language of the tool.

With the interfaces defined and components modeled, the last thing is to describe how the whole

system is built. This is done in the textual syntax of Gamma. Open the composite system description

in /model/Crossroad.gcd (the extension stands for Gamma Composite Definition). You should see the

skeleton of a synchronous composite component, which you will have to fill in.

To interpret the syntax, observe the following figure, which illustrates the schematic structure of the

system. After importing the components, the file declares that we are specifying the Crossroad system,

which will consist of a CrossroadComponent defined as follows.

• First, we define the ports of the system. In this case, we wish to send police interrupt signals

from the environment (we require someone who implements this interface) and observe the

output of the lights of the primary road (we provide the opportunity to observe the lights).

• Then we define the structure of the composite component in three parts:

o we instantiate components with the following syntax:

 component componentID : ComponentType

o define which port of which component should implement the ports of the composite

component with the following syntax:

 bind systemPortID -> componentID.componentPortID

o connect the ports of subcomponents with channels with the following syntax:

 channel [componentID.componentPortID] -o)- [componentID.componentPortID].

Police controller :
Controller

priority :
TrafficLightCtrl

secondary :
TrafficLightCtlr

PoliceControl
Lights

ControlPolice

Lights

Compositional Semantics
In this tutorial the synchronous-reactive semantics is utilized, which means that components are
executed in cycles (just like the default behavior of Yakindu statecharts), all at the same time. In practice,
the order of execution in each cycle is undefined, but this is not a problem, because communication over
channels – the only legal way of communication in Gamma – is delayed by one cycle. This way, the causal
relationship between the components is well-defined.
It is also important to note that Gamma considers the pieces of information passed through channels as
signals (or events). In contrast to messages, these signals are synchronous, not queued, not buffered,
they have to be processed in the cycle they arrive. One of the consequences is the restriction on multiple
source ports for a channel – there is no way in synchronous-reactive semantics to distinguish the source
and the signals will overwrite themselves in an undefined order.
Additionally, Gamma supports cascade (also in the synchronous domain) and asynchronous-reactive
(based on messages and message queues) composition as well, not presented in this tutorial.

Version 2.7.0 4 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

Note: By default, channels are 1-to-1 connections and no port can connect through more than one
channel. The only exception is ports that implement a broadcast interface, an interface which has only
outgoing events, in provided mode. Such ports may be connected to multiple listeners, ports that
implement the broadcast interface in required mode.

3. Compiling the Yakindu Statecharts
Yakindu serves as a frontend to the formal modeling language of Gamma. Therefore, Yakindu

statecharts have to be compiled. To compile a Yakindu statechart, Gamma first needs the definition of

interfaces used in the system.

To generate the interface definitions from the existing empty Yakindu statechart, right-click

/model/Interfaces/Interfaces.sct and select Gamma Commands > Compile Interface. This should

generate a new file called Interfaces.gcd. Press F5 if you do not see the new file or turn on automatic

refreshing of the workspace.

To compile the Yakindu statecharts modeling the two types of controllers, Gamma needs to know how

to interpret the interfaces found in them. To specify this, we will use Gamma generator models (.ggen).

Open /model/Controller/Controller.ggen to see what a Gamma generator model does. You will see

that the file specifies the Yakindu statechart to map (this is the name of the statechart, which is by

default the same as the filename, but can be changed in the properties view), then a series of

mappings. For each interface in the Yakindu model, we have to create a port with an interface matching

the Yakindu interface in the specified mode (provided or required). In this file, there are two pairs of

ports that implement the same interface in the same mode, as well as one that implements the same

but in a different mode.

With the specified information, Gamma can now compile the Yakindu statecharts.

Right-click the .ggen files one by one and select Gamma Commands > Generate Artefacts. This should

create a new file for every statechart with the .gcd extension. This is the textual representation of

statecharts used internally by Gamma.

4. Creating the Composite Model
Finish the CrossroadComponent model in file Crossroad.gcd in accordance with the descriptions and

figure presented above. Content assist can be used while editing the model by pressing Ctrl + Space on

the keyboard.

By this time, none of the files in the /model folder should have any error markers.

5. Code Generation
Gamma can generate source code for the composite system specified so far. It will reuse the code

generated by Yakindu, so let us first generate the implementation of the Yakindu statecharts.

The project already contains the Yakindu generator models (.sgen) necessary to generate code from

Yakindu statecharts. Editing and saving the statecharts will automatically regenerate the code, but we

can also invoke code generation by right-clicking the .sgen files and selecting Generate Code Artifacts.

Version 2.7.0 5 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

When Yakindu has finished code generation, let us generate the implementation of the composite

system. Right-click on /model/Crossroad.gcd and select Gamma Commands > Generate Source Code >

Generate Java Code.

Note: C/C++ code generation is currently under development and therefore it is not yet supported.

After building the workspace, the last errors should vanish and the implementation of the crossroad

should be in the /src-gen folder in various packages.

6. Testing
To demonstrate the API of the generated code, there is a prepared test file in the /test folder.

The file contains an embedded class (CommandListener) which implements a version of the

LightCommands interface. Expand the imports to see exactly what is implemented:

hu.bme.mit.gamma.impl.interfaces.LightCommandsInterface.Listener.Provided

This Java interface is a listener for the output events of the LightCommands interface in provided mode.

Other Java interfaces related to the LightCommands interface are as follows.

• LightCommandsInterface.Listener.Required: a listener for the output events of the interface in

required mode.

• LightCommandsInterface.Provided: contains method to raise input events of the interface in

provided mode.

• LightCommandsInterface.Required: contains method to raise input events of the interface in

required mode.

The CommandListener will be used to cache the output events of the system and check them in

assertions.

The file also contains an initializer method (init), which demonstrates how to instantiate the composite

component. Instantiation also initializes the component, but it can be reinitialized if we need to

register listeners before starting it.

There are two test cases in the file. The first one (greenAtStart) checks if the components initialize

correctly: at first, the priority traffic light controller should emit a displayRed signal, while the crossroad

controller will send it a toggle signal. This signal arrives in the next cycle, when the priority traffic light

controller should raise the displayGreen signal.

Observe the comments to learn what the different methods do. Observe how to reach ports, how to

raise events on them, how to register listeners and how to run the component until no more internal

signals are left to process. There is also a runCycle() function that executes only a single cycle of the

system, but that will leave internal signals in the channels.

Version 2.7.0 6 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

The second test case is somewhat more complex and demonstrates the timed behavior of the

implementation. Notice that we call the reset() method after registering the listener to reinitialize the

component and therefore receive the first entry events as well.

Run the tests by right-clicking the source file and selecting Run As > Junit Test. Both tests should be

green, but the second one will take more than 3 seconds to run. This is due to the waiting in the test

case, which is not scalable to larger tests. The next section will present a way to overcome this problem.

Note: If the second test fails, try to re-run it a few times. As system timing is not always accurate, there

might be more extreme cases when the timers will not trigger when they would normally have to.

7. Model Checking
It is time for a deeper analysis of the crossroad model. Gamma can use model checkers to analyze the

behavior of composite systems. Currently, the timed model checker UPPAAL is supported as a

verification backend.

We have to start by generating the formal model that will be the input of UPPAAL. To do this, right-

click on /model/Crossroad.gcd and select Gamma Commands > Generate Formal Composite Model.

This should create two more files, Crossroad.xml, which contains a model that can be opened with

UPPAAL, and Crossroad.q, which contains a number of queries.

For each state in each statechart component, Gamma generates a query that will check if that state is

active in any reachable configuration of the system. The queries can be checked in UPPAAL, either as

a form of “deep validation”, or to obtain a set of test cases. This functionality is reachable via the

Generate Test Set button of the GUI.

Model checking of requirements, on the other hand, is an automatic formal verification technique used

to exhaustively analyze the possible behaviors of a system and see if a desired behavior is possible to

achieve, or a bad behavior can never be executed. We will use this capability to check if the crossroad

can get into a state where both directions get a green light.

To specify the requirement, we need to use temporal logics. As temporal logic expressions are hard to

read and even harder to write, Gamma provides a more intuitive way of formalizing requirements:

fillable patterns.

Right-click /model/Crossroad.gcd and select Gamma Commands > Open Query Generator to open the

requirement specification window. The top-left part of the window will let you select a template. There

are five types of templates: might eventually, must eventually, might always, must always and leads

to. Upon selecting one, the textbox below will show the corresponding temporal logic operator and an

English sentence describing the requirement. There is also an example requirement that would be

typically formalized this way. The middle part contains one or two textboxes to formalize the condition

mentioned in the patterns. The top-right part helps in assembling the condition formula: select

Version 2.7.0 7 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

something from the drop-down to insert it at the end of the textbox that last had focus. Note that the

textboxes are editable, and the user has to take case of parentheses.

The bottom part contains the Verify button – click it after filling the conditions and UPPAAL will check

if the model satisfies your requirement or not. Be aware that model checking is performance-intensive,

so this operation might take long.

Let us specify the requirement of not having green light in both directions. Using the presented

controls, select the Must always template and specify the condition as “not (green for priority and

green for secondary at the same time)”. The condition should look like on the figure below.

After clicking the verify button, UPPAAL returns with the result that our model fails to satisfy the

requirement, meaning that there is actually a way to reach the undesired state of letting vehicles come

in from every direction. Fortunately, UPPAAL also computes a counterexample (or example in desirable

behaviors), demonstrating how exactly we can reach the bad state.

Note: Gamma supports variable model checking algorithms and parameters, that are reachable via the

Options menu.

8. Analyzing the Counterexample
The counterexample returned by UPPAAL is not human-readable, and also has a lot of technical details

resulting from the generated model, so Gamma will help us decode (back-annotate) it. If you check

the package explorer again, there is now a .get file in folder /trace. This text file contains a more

consumable representation of the counterexample in the following format.

• As the synchronous-reactive semantics is cycle-based, the file contains the states of the

specified component (component componentId after the import of its containing package at

the beginning of the file) in each particular cycle in block step:

o In block act, there are input events that need to be fed to the system ports in order to

trigger the behavior. It can be either an

▪ event raise,

Version 2.7.0 8 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

▪ time elapse (in milliseconds) between the last and the current cycles, or

▪ the scheduling of the component.

o In block assert, the state of the component is specified:

▪ Lines starting with raise list the output events observed on one of the system

ports.

▪ In block state the active state configurations are specified in every

component, including complex states.

Note: In block state variable values can also be specified, but the UPPAAL back-annotator does not take

variable values into consideration.

Based on this the problem is related to the police interrupt signal and is detailed below.

1. The crossroad initializes and the crossroad controller toggles the priority road to enter the

Green state.

2. A police interrupt arrives, gets relayed to the traffic light controllers and switches every light

to a blinking yellow state.

3. Two seconds after initializing, the crossroad controller gets triggered. After sending out the

toggle signals, it now thinks that the priority road has switched to the Yellow state, but it is still

blinking due to the previous police interrupt.

4. Another one second is elapsed. The crossroad controller again sends out the toggle signals and

now thinks that the priority road has red, while the secondary road got green light.

5. The policeman changes his mind and sends another interrupt. The signal is relayed to the

traffic light controllers, returning them into normal operation (priority road green, secondary

road red).

6. Another two second later, the crossroad controller sends a toggle signal to the secondary road

believing that it is now turning yellow, but in reality, the traffic light controllers are not

synchronized anymore, so it gives green light to the secondary road right in the next cycle

when it receives the toggle.

Based on this scenario, we can see that the problem is in the crossroad controller. It should also pause

switching states when a police interrupt is in effect.

To make sure the counterexample is indeed present in our implementation, Gamma has also

generated a test file in /test-gen. Open it to observe the contents.

In addition to what we have seen before in our hand-made test cases, the generated tests use a virtual

timer service to measure time. This timer will not use the system time to trigger transitions, it rather

simulates time flowing in any rate by calling the elapse() method with any amount of time. This is

necessary for two reasons. First, using this timer will not pause the test code, so a simulation of one

minute will not take longer than a simulation of a millisecond. Secondly, timed counterexamples often

represent the corner cases of system behavior, tricky accidents that may happen extremely rarely in

real systems. To simulate these cases, we need to have a way for precise simulation of time, e.g., to

show that the wrong input in the wrong millisecond can cause great problems.

Run the test cases and make sure they are really present in the implementation. Also notice that we

did not have to wait more than a few milliseconds now for the simulation of 5 seconds.

Version 2.7.0 9 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

9. Fixing the Controller
As mentioned before, the problem is in the crossroad controller. As the

last step of this tutorial, let us fix it and re-run the analysis. Extend the

/model/Controller/Controller.sct Yakindu statechart to look like in the

figure on the right.

As soon as you save your changes, the Yakindu code generator runs,

but we still have to regenerate the Gamma models and the composite

implementation, as well as the formal model to re-analyze the system.

Right-click on /models/Controller/Controller.ggen and select Gamma

Commands > Compile Statechart to re-compile the statechart.

Right-click on /model/Crossroad.gcd and select Gamma Commands > Generate Source Code >

Generate Java Code to re-generate the composite implementation. Re-run the generated test case to

make sure the previous counterexample is not executable anymore.

Right-click on /model/Crossroad.gcd and select Gamma Commands > Generate Formal Composite

Model to re-generate the UPPAAL model representing the system. Right-click on the file again and

open the verification window by selecting Gamma Commands > Open Query Generator. Specify the

query again to check if there are maybe other ways to reach the undesired state.

If you have done everything correctly, the requirement should now be satisfied, acknowledged by the

following view.

Version 2.7.0 10 / 10

Gamma Statechart Composition Framework – User Guide & Tutorial

10. Exercises
To practice the use of Gamma, we suggest the following exercises.

1. Check the Yakindu statechart of the monitor component modeled in

/model/Monitor/Monitor.sct. The monitor checks the new requirement of not emitting two

consecutive displayRed or displayGreen signals (e.g., because the hardware does not support

this). Monitors can be used to intervene in case of erroneous behavior (e.g., shut down the

system, or take corrective steps), or to model more complex requirements.

2. Write the Gamma generator model file for the monitor component. Create a new file named

Monitor.ggen and use the Gamma editor to fill it based on the other files present in the project.

You may also rely on content assist.

3. Generate the implementation of the Monitor with Yakindu.

4. Using the .ggen file, compile the Monitor statechart.

5. Edit /model/Crossroad.gcd to include the Monitor component in the composite system.

6. Generate code for the composite system with the monitor.

7. Generate the formal model of the composite system with the monitor.

8. Using the model checking functionality, check if the Monitor can reach the Error state during

normal operation (assuming there is no hardware fault).

9. Advanced: Extend the Monitor component with an additional interface. The Monitor should

send an error signal when it enters the error state. Do not forget to recompile the interfaces

and also the models building on the interface descriptions. Notice the Problems view during the

refactoring.

10. Advanced: Create a new composite system (MonitoredCrossroad.gcd) consisting of a

CrossroadComponent (defined during the tutorial, without the Monitor) and a Monitor

component attached to one of the traffic light outputs and its error port published as a system

port. Generate the implementation and the formal model, then check if the Monitor can reach

the error state, and also if the crossroad controller can reach the SecondaryPrepares state.

