
lllllllll

___un :...: ::: |||||||||||| ||||
MUEGYETE 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Mixed-Semantics Composition of
Statecharts for the Model-Driven Design
of Reactive Systems

MASTER’S THESIS

Author Adwvisor
Bence Graics Vince Molnar

December 7, 2018

Contents

Kivonat
Abstract

1 Introduction
1.1 Project Timeline

1.2 Overview e

2 Background

2.1 Modeling

2.1.1 Model-Driven Software Development

2.1.2 Modeling Languages o
2.2 State Machine Formalism,
2.3 Formal Verification and Model Checking
2.4 Composite Reactive Modeling
2.5 Related Work

3 The Gamma Framework Features

3.1 Overview
3.2 Integrating Engineering Models oL
3.3 Validation
3.4 Code Generation
3.5 Verification

3.5.1 Formal Verification oL

3.5.2 Test Generation

4 The Gamma Modeling Languages

4.1 Running Example: Railway Safety System
4.2 Packages. e e
4.3 The Constraint Language
4.4 The Interface Language oL

iii

10

13
13
13
14
15
15
15
16

4.4.1 Endpoint Elements o oo 23

4.5 The Statechart Language 24
4.6 The Composition Language 27
4.6.1 Communication Elements 27
4.6.2 Components e 29
4.6.3 Synchronous Components 30
4.6.4 Asynchronous Components 31
4.6.5 SUMMATYo 34
4.7 Formal Semantics of the Composition Language 37
471 Events L 37
4.7.2 Event Vectors 38
4.7.3 Synchronous Component 38
4.7.4 Synchronous Composite Component 39
4.7.5 Cascade Composite Component 40
4.7.6 Event Sequences 41
4.7.7 Asynchronous Component 42
4.7.8 Asynchronous Adapter 42
4.7.9 Asynchronous Composite Component 44
4.7.10 External Component, 44
4.7.11 Messages and Execution Traces 45
4.8 Gamma Test Language 46
Implementation 49
5.1 Technologies e 49
5.1.1 Eclipse Environment oL 49
5.1.2 Xtext Framework L o 50
5.1.3 VIATRA framework 50
5.2 Architecture 51
5.3 Integrated Modeling Languages 51
5.3.1 Integrated Engineering Language: Yakindu 52
5.3.2 Integrated Model Checker: UPPAAL 53
5.4 Generated Source Code: Java Lo 55
5.4.1 Interfaces 55
5.4.2 Components 56
Case Study: MoDeS? 67
6.1 Introduction 67
6.2 The Simplified MoDeS? Track Setup 68

6.3 Bisimulation-based Formal Verification

6.3.1 The Events of the New Communication Protocol
6.3.2 The Track Modelso
6.3.3 The New Section Model

6.3.4 Proving the Bisimulation Relations

6.3.5 Formal Verification of the MoDeS? Safety-Logic

6.4 Summary

7 Conclusion

Acknowledgements

Bibliography

91

93

98

HALLGATOI NYILATKOZAT

Alulirott Graics Bence, szigorld hallgaté kijelentem, hogy ezt a diplomatervet meg nem
engedett segitség nélkiil, sajat magam készitettem, csak a megadott forrdsokat (szakiro-
dalom, eszkozok stb.) hasznéltam fel. Minden olyan részt, melyet sz6 szerint, vagy azonos
értelemben, de atfogalmazva mas forrasbol atvettem, egyértelmiien, a forrds megadasdval
megjeloltem.

Hozzajarulok, hogy a jelen munkam alapadatait (szerz6(k), cim, angol és magyar nyelvii
tartalmi kivonat, készités éve, konzulens(ek) neve) a BME VIK nyilvianosan hozzaférhetd
elektronikus formaban, a munka teljes szovegét pedig az egyetem bels6 halozatan keresztiil
(vagy autentikélt felhasznalék szdmara) kozzétegye. Kijelentem, hogy a benyujtott munka
és annak elektronikus verzidja megegyezik. Dékani engedéllyel titkositott diplomatervek
esetén a dolgozat szdvege csak 3 év eltelte utan valik hozzaférhetévé.

Budapest, 2018. december 7.

Graics Bence
hallgaté

Kivonat

Az elmnult évtizedek technolégiai fejlédésének eredményeképp napjainkban rendkiviil széles
koérben alkalmaznak programozhaté vezérldket akéar olyan kritikus tertileteken is, mint pél-
déaul az autéipari bedgyazott rendszerek. A ,intelligens” eszk6zok koraban raadasul tobb
szintre valtak szét az egy feladatot ellaté programok — példaul egy jarmili berendezése-
it kozvetleniil irdanyité beagyazott szamitogépeken futé alkalmazasok szoros kapcsolatban
allnak a kozponti szamitogéppel, az pedig a felhében futd szolgaltatasokkal. Az ilyen he-
terogén rendszerek komplexitdsa nagyon nagy lehet. A komplexitas kezelésének gyakori
moédszere a modellvezérelt fejlesztés, amely lehetévé teszi, hogy a fejleszté a technikai
részletek helyett a probléma logikai aspektusaira koncentraljon.

Jelen dolgozatban egy olyan, modellezést tamogaté eszkézt mutatunk be, amely a
fent korvonalazott rendszerek alabbi sajatossagaira ad valaszt.

1. Komponens alap felépités: A megcélzott rendszerek jellegzetessége, hogy komponen-
sekbdl épiilnek fel — ezért egy hierarchiat tamogaté modellezési nyelvre van sziikség.

2. Kommunikécié: A komponensek jellegzetesen logikai jelekkel vagy tizenetekkel kom-
munikalnak — ennek tamogatasara jol definialt interfészekre és kommunikaciés pon-
tokra van sziikség.

3. Elosztott miikodés: A komponensek nem csak egyetlen szoftvert reprezentilhatnak,
hanem t6bb, kiillonbo6zé fizikai eszk6zon futé programot alkothatnak — ez heterogén
kommunikéciét jelent, amihez tébbféle kompoziciés szemantikara van sziikség.

tikus feladatokat latnak el, ahol a helyes miikodés alapvetd elvardas — ehhez helyes
modellek épitésére van sziikség, ami validaciéval, verifikidcidval, a mindségi imple-
mentacié pedig automatikus kédgenerdlassal és teszteléssel tamogathato.

A jelen dolgozatban bemutatott Gamma Allapotgép Kompoziciés Keretrendszer egy
hierarchikus, komponens-alapi reaktiv rendszerek modellezését tamogaté eszkoz. Az elemi
komponensek viselkedésének leirasahoz az eszkoz sajat formalis nyelvén tul a keretrend-
szerbe illesztheté kiilsé eszkozok (pl. Yakindu Statechart Tools) is haszndlhatok. A kom-
ponensek haromféle szemantika szerint kompondalhatok: az aszinkron-reaktiv szemantika
az elosztott kommunikécié modellezéséhez, a szinkron-reaktiv szemantika az egy progra-
mon beliili vagy nagymértékben szinkron kommunikaciéhoz, a kaszkdd kompozicié pedig
egyetlen funkcié logikai dekompondlasahoz nyijt megfelel6 absztrakciét. A modellezési fo-
lyamatot a keretrendszer validaciés szabalyokkal segiti mind komponens, mind rendszer
szinten. Az elkészitett modellek mindségének biztositasahoz a keretrendszerhez illeszthe-
t6, a felhasznaldk elél elrejtett modellellenérzé eszk6zok (pl. UPPAAL) hasznédlhatok. A
modellek alapjan az implementacié automatikusan szarmaztathatd, amelynek helyessége
a szintén automatikusan generalhaté validacids tesztkészlettel ellendrizheto.

A keretrendszer kiterjedt funkcionalitdsat és az altala nytujtott lehetéségeket egy vas-
uti témaja esettanulmannyal szemléltetjiik.

Abstract

As a result of the recent technological advancements in computation, programmable con-
trollers are now used extensively even in critical domains such as automotive embedded
systems. Moreover, in the era of “intelligent” devices, programs are not centralized any-
more — for example, the embedded controller directly actuating the vehicle is in close
relation with the central control unit, which is in turn communicating with services in the
cloud. The complexity of such heterogeneous systems may be very high. Model-driven
development is widely used to handle the complexity because it supports the developer in
focusing on the logical aspects of the problem instead of the technical details.

This work presents a modeling tool to answer the following challenges inherent in the
systems characterized above.

1. Component-based architecture: the targeted systems are typically composed of
smaller components — therefore a suitable modeling language shall support hier-
archical modeling.

2. Communication: components usually communicate by means of logical signals or
messages — communication shall happen through well-defined ports and interfaces.

3. Distributed components: components often do not constitute a single program, but
several pieces of software that run on different pieces of hardware — the resulting
heterogeneous communication requires different composition semantics.

4. Quality and correctness: often, these systems (or parts of them) perform critical
tasks where correct operation is fundamental — therefore, their design must be sound
and correct, which can be supported by validation and verification, while the quality
of the implementation can be ensured with automatic code generation and testing.

In this work we propose the Gamma Statechart Composition Framework, which is a model-
ing tool to build hierarchical, component-based, reactive systems. Elementary components
can be defined in the built-in formal modeling language as well as in third-party tools in-
tegrated with Gamma (e.g., Yakindu Statechart Tools). The framework supports three
types of semantics for composition: asynchronous-reactive semantics for the proper ab-
straction of distributed communication, synchronous-reactive for components of a single
program or for highly synchronous communication, and cascade for the logical decompo-
sition of a single function. The modeling process is supported by live validation both on
the component and system level. Model checkers (such as UPPAAL), integrated into the
framework and hidden from the user, can be used to ensure the correctness of models.
The implementation of the design can be automatically generated from the models, where
the quality of the generated code is validated by a set of automatically generated tests.

The extensive functionality and the possibilities provided by the Gamma framework are
demonstrated through a railway-themed case study.

iii

Chapter 1

Introduction

Statecharts [1] are an expressive language to model the behavior of reactive systems, which
process events coming from the environment and react to them in accordance with their
internal states. Statecharts offer a powerful formalism to describe dynamic aspects of sys-
tem behavior by introducing complex constructions: composite states for hierarchical state
refinement, parallel regions for describing parallel behavior, history states and variables
for expressing memory, and choices, fork and join transitions to model complex transitions
and actions.

Modeling standards like UML and SysML have adopted the statechart formalism, but,
they did not specify its dynamic semantics either formally or algorithmically [2, 3]. As a
result, design tools, such as Rhapsody!, BridgePoint?, MagicDraw® and Yakindu State-
chart Tools* support slightly different variants of the formalism [4, 5].

System integrators, such as car manufacturers and airframers rely upon refined modeling
and verification tools and use component- or platform-based design techniques to mitigate
the increasing complexity of their systems [6] . In such cases, the system components can
be provided by multiple vendors (subcontractors) that may use different modeling tools
and even different statechart formalisms in their development process. Therefore, the
composition of individual components in a semantically well-founded way is a significant
challenge for system integrators.

In modeling standards the functional decomposition of components is supported on a
rather syntactic level: the Component Diagram of UML and the Internal Block Diagram
of SysML provide support to capture what type of information (data or control) can be
sent between components, but they do not detect behavioral inadequacies in the commu-
nication. This problem is mainly caused by the lack of formal semantics regarding the
behavioral aspects in those languages.

The Gamma Statechart Composition Framework is an integrated modeling tool that aims
to support the semantically well-founded composition of heterogeneous statechart compo-
nents where individual components may use different statechart semantics possibly com-
ing from different modeling tools. The Gamma framework intentionally reuses statechart
models of existing tools and their respective code generators for individual components.
Furthermore, it provides the Gamma Composition Language that supports the intercon-
nection of components in a hierarchical way by mixing various composition semantics

"https://www.ibm. com/us-en/marketplace/rational-rhapsody
nttps://xtuml.org/
3https://wuw.nomagic.com/products/magicdraw
*https://www.itemis.com/en/yakindu/state-machine/

https://www.ibm.com/us-en/marketplace/rational-rhapsody
https://xtuml.org/
https://www.nomagic.com/products/magicdraw
https://www.itemis.com/en/yakindu/state-machine/

(e.g., asynchronous-reactive and synchronous-reactive). Additionally, Gamma provides
automated code generators and test case generators for the interaction between compo-
nents. Gamma also supports system-level formal verification and validation (V&V) by
mapping statechart and composition models into formal models in UPPAAL.

1.1 Project Timeline

This section briefly summarizes the evolution and the planned future of the Gamma project
to put this work in context.

Immediate antecedents The initial research and development goal leading to the de-
sign of the Gamma framework was the desire to formally verify statechart models built in
the open-source Yakindu Statecharts Tools. To achieve this, a two-step model transforma-
tion to UPPAAL has been implemented using the semi-formal statechart representation
of another project of the research group as the intermediate representation. This trans-
formation is still part of the framework’s core.

The first prototype of the Gamma framework The semantical inconsistencies of
Yakindu and the need for integrating code from multiple statechart models (e.g., in the
MoDeS? project®) led to the design of the first version of the Gamma framework. The
goal was to support the composition of communicating statecharts to build composite
systems. A heavy emphasis of the initial research goal — i.e., formal verification of the
models — led to a synchronous compositional semantics that is restrictive enough to make
model checking feasible, while still enabling useful communication patterns between the
components. The design and implementation of the framework was presented in a Scientific
Students’ Association Report in 2016 [7].

Formalization of the synchronous compositional semantics The previously im-
plicitly defined semantics of the composition (defined by means of model transformations)
was formally defined in a conference paper [8].

Hierarchical composition and ports — Gamma 1.0 The next phase included the
introduction of hierarchical composition, i.e., composite systems could be used as compo-
nents in another composite system. Along with this improvement, the concept of ports
and interfaces were introduced to define the “signature” of components and group related
events into well-defined points of service. A part of this work has been presented in the
Bachelor’s Thesis of the author [9], also including the back-annotation of the verification
results both in a textual format and as tests for the generated code (i.e., witness behav-
iors returned by the model-checker were transformed to use the concepts of the original
model, and were used to generate tests). The port system and improvements of the ver-
ification process were presented in a tool paper on the 40th International Conference on
Software Engineering, also marking the public debut of Gamma 1.0 [10]. This version of
the framework was made available along with a tutorial.

Shttps://inf.mit.bme.hu/research/projects/modes3
Shttp://gamma.inf .mit.bme.hu/

https://inf.mit.bme.hu/research/projects/modes3
http://gamma.inf.mit.bme.hu/

Gamma 2.0 In the current phase of the project, our goal is to broaden the modeling
power of the composition language by introducing new composition modes: the cascade
and asynchronous composition semantics. We are now focusing more heavily on function-
ality and expressive power, replying to the various feedbacks given to the first version.
This work addresses the main challenge: the design of the syntax and precise semantics
of the extended composition language. Furthermore, this language serves as the pivot for
a full-fledged implementation of the code generator for the new compositional modes as
well as for their transformation to the formal language of UPPAAL. As the result of this
work, Gamma 2.0 has been finished and released to the public as an open-source project.”

Built-in code generation An ongoing work supporting the current version of the
Gamma framework is the design and implementation of a built-in code generator for stat-
echart models. Currently, the framework relies on external code generators. Completing
this project will enable the direct usage of the statechart formalism of Gamma.

Side projects There are many side projects building on the Gamma framework. They
include code generation to distributed controllers (with network communication based on
the DDS standard®), a simplified, but rigorously validated statechart formalism, and an
extension that enables the specification of contracts for the ports by means of sequence
charts (with validation and runtime monitoring).

Gamma 3.0 In the next version of the framework we plan to develop methods for the
verification of dynamic architectures, e.g., cyber-physical systems, by supporting dynamic,
contract-based definition of components and connections. The verification of such models
could be based on both development-time and runtime verification methods. Furthermore,
we plan to tighten the integration to the upcoming versions of Yakindu. Finally, we plan
to improve usability of the Gamma framework by introducing new modeling formalisms,
verification tools, code generators (e.g., to C/C++) and potential model reductions.

1.2 Overview

The rest of the work is structured as follows. Chapter 2 presents the theoretical concepts
behind the Gamma framework as well as related modeling tools. Chapter 3 describes all
features and functionalities of the Gamma framework, providing an insight to the reader on
how the current work is connected to previous work. The main contribution of the current
work, that is, the extension of the Gamma language family, is presented in Chapter 4.
Chapter 5 presents the architecture of the Gamma framework as well as the employed
technologies and integration of third-party modeling languages and the Java platform via
a code generator. The applicability of the Gamma framework is demonstrated through a
railway-themed case study in Chapter 6. Finally, Chapter 7 provides concluding remarks
and plans for future work.

"https://github.com/FTSRG/gamma
Shttps://www.omg.org/spec/DDS/1.4

https://github.com/FTSRG/gamma
https://www.omg.org/spec/DDS/1.4

Chapter 2

Background

This chapter introduces the concepts and ideas necessary to understand the rest of the
work. As a motivation of the Gamma framework, we start with the introduction of the
model-driven software development paradigm, which is the approach in which the frame-
work has been conceived. Then, we describe the state machine formalism that we use to
represent behavioral models. Next, we introduce the concept of composite reactive mod-
eling, which is the main motivation and basis of this work. Finally, we present existing
composition modeling solutions related to the Gamma framework.

2.1 Modeling

Model is a primary concept in several fields of study. Generally, in software and system
engineering the term model is used in the following sense: a model is a simplified image
of an element of the real or a hypothetical world (the system), that replaces the system
in certain considerations. A model is always based on an original subject (the system)
highlighting some of its features while neglecting some others. This way the model becomes
competent to be used in place of the original element with respect to a certain purpose [11].

Models can be either structural or behavioral. Structural models (class diagram, compo-
nent diagram, etc.) emphasize structural aspects of the system with respect to managed
data or to architecture. On the other hand, behavioral models (activity diagrams, stat-
echarts, etc.) focus on the dynamic behavior of the system by describing how they are
executed.

2.1.1 Model-Driven Software Development

Model-driven software development (MDSD) is a software development methodology that
uses models as the primary artifact and main information source in each phase of the
development process [12]. By putting models in focus, the MDSD approach aims to 1)
enhance productivity via recommendations and best practices in the application domain,
2) simplify the design process by using patterns and early validation with modeling tools
and 3) maximize compatibility and ease communication between teams and individu-
als working together by standardizing terminology and using both general purpose and
domain-specific languages. As a consequence, the MDSD approach should reduce the cost
of development and increase the quality of the designed software [11].

Defining it this way, MDSD is a rather general concept aiming to put models into the
focus in the software development process while heavily relying on modeling technologies.
There are several subsets of MDSD giving more concrete guidelines on the development
of software systems recommending modeling techniques and technologies, such as model-
driven architecture [13] and model-centric software development [14].

2.1.2 Modeling Languages

Creating precise, interpretable models requires an environment that defines the rules of
model creation. This environment is provided by modeling languages.

Definition 1 (Modeling language). A modeling language consists of the following el-
ements:

e Metamodel: a model defining the building blocks of the modeling language as well
as their relationships.

e Concrete syntax: a set of rules defining a graphical or textual notation for the
element and connection types defined in the metamodel.!

o Well-formedness constraints: a set of constraints that models have to meet in order
to be deemed valid in the modeling language.

e Semantics: a set of rules that define the meaning of the element and connection
types defined in the metamodel. Semantics can be classified as follows:

— Operational: operational semantics defines what should happen during execu-
tion.

— Denotational: denotational semantics is given by translating concepts in a mod-
eling language to another modeling language with a well-defined semantics.
Thus, the meaning of the modeling elements are implicitly given.

Regarding the portrayal of models, modeling languages can be graphical (UML, Ptolemy
II) or textual (C#, Verilog)?. There are several modeling languages (Yakindu, BIP) that
employ graphical and textual notations side by side, exploiting both of their advantages.

As for application domains, modeling languages can be partitioned into domain-specific
(AADL, Autosar, MATLAB Stateflow) and general purpose modeling languages (UML,
SysML, Petri nets). Domain-specific modeling languages are tailored to a certain appli-
cation domain, e.g., avionics, automotive, business modeling, whereas general purpose
modeling languages are broadly adaptable across application domains and lack special-
ized features for a particular domain. The line is not always sharp between the two, as a
modeling language might have specialized features for a certain domain but can also be
applicable in other fields.

2.2 State Machine Formalism

The main functionality of the Gamma framework is supporting the composition of sepa-
rately defined statecharts. This section briefly introduces the theory of state machines —
a formalism on which the widely-used statechart formalism is based.

LA single modeling language can have multiple syntaxes.
2Generally, programming languages can be considered as a special type of modeling languages.

State machine is a mathematical model of computation to describe the behavior of a
system, component or object in an event-driven way [15]. Formally, a deterministic, fully
specified finite state machine is a 5-tuple: M = (S, %, I,0,T) where:

o S ={s1,s92, -+ ,5,} is a finite set of states, i.e., stable situations of the state machine.
s¥ € S is the initial state.

e [is a finite set of input events that are stimuli from the environment and O is a
finite set of output events that are stimuli for the environment such that I N O = (.

o T: (IxS)— (SxO0) is the fully defined transition function that represents changes
of states in response to input events and generating output events meanwhile.

The behavior of a state machine can be described with a trace. A trace consists of a
sequence of steps. A step describes a change of state with an output event raising in
the state machine in response to an input event. Formally, a trace of a state machine is
described as follows:

e p=1((i1,51,81,01), ..., (in, Sn, S, 0n)) is a trace, which consists of one or more steps:
neN,1<=n.

o (i, 8i, s;,oi) is a step, consisting of an input event i; € I, a source state s; € 5,
a target state s, € S and an output event o; € O. A step is considered valid if
T(i,8;) = (S0,0).

e A trace p = ((i1, $1,8],01),- -, (in, Sn, S, 0p)) is considered valid if:

— s1 = s, that is, the source state of the first step is the initial state;

— For each step (i, s4, 55, 0i), $i = si_;, that is, the source state of a particular
step is the target state of the previous step.

There are various extensions to the state machine formalism that facilitate the compact
modeling of hierarchical and concurrent systems [16]. The most relevant one to this work
is statecharts [1], which also supports auxiliary variables in addition to supporting concur-
rency and state refinement. Statecharts are generally represented graphically, although
there are modeling languages, such as Gamma, that support their textual description.
The graphical representation of the most important elements of statecharts are depicted
by Figure 2.1.

Active

f) pressButton (ButtonP d)
‘—) S
@ > ButtonReleased uttontresse

releaseButton entry/toggleLight

toggleLight

. e et .
o LightOff < > LightOn

toggleLight

Figure 2.1: The graphical representation of the most important
elements of statecharts.

A statechart contains a single region, called top region. Regions contain a set of states
which are situated on a single hierarchy level. Regions are represented by coherent areas,

whereas states are represented by rounded rectangles. States may execute certain actions
upon entering or leaving the particular state. Composite states can contain one or more
regions that contain additional states. If multiple regions are contained by a particular
state, they are called orthogonal. Each region has a single entry node, which is represented
as a black circle. The initial state of a particular region is denoted by the transition
coming out of the entry node. Transitions are represented as arrows. Events associated
to transitions are represented with their names.

2.3 Formal Verification and Model Checking

Formal verification is a method for proving or disproving the correctness of a system with
mathematical precision, where the correctness is checked with respect to certain properties
or specifications given by the user. Model checking [17] is a formal verification technique,
which explores the behavior of the given model automatically and often exhaustively,
i.e., all relevant behaviors of the model are analyzed, contrary to simulation and testing,
which only sample behaviors. Usually, these models are represented as finite-state sys-
tems. Typically, model checking is used in the design of safety-critical systems, since their
specifications often consists of safety-requirements that have to be met by all means, for
example the absence of deadlocks and the unreachability of error states that may cause a
system malfunction.

To carry out model checking, both the model of the system and the requirements have
to be created in a formal mathematical language (see Figure 2.2). The problem, which
has to be solved by the model-checker, is formulated as a task in mathematical logic,
namely to check whether the given system model satisfies a given logical formula. This
general concept applies to many types of mathematical logics (e.g., linear temporal logic
and computation tree logic) and formalisms (e.g., Kripke-structures, labeled transition
systems).

[Formal model] {Formal requirement]

A 4

Model-checker W

Y Y
[OK] [Counterexample]

Figure 2.2: The schematic description of the model checking pro-
cess.

During the model checking process, the model-checker explores the relevant part of the
state space of the given formal model with regard to the formal requirement. Beside the
result, the model checker may return a witness proving the correctness or incorrectness of
the model.

2.4 Composite Reactive Modeling

Beyond a certain complexity, systems cannot be designed without composition techniques.
However, for a well-defined system behavior, the semantics of composition needs to be
defined precisely by means of a model of computation. A model of computation is a set of
rules defining 1) what constitutes a system component, 2) the government of concurrent
execution of system components and 3) the communication between system components.
A semantic domain is the implementation of a certain model of computation [18].

The rest of the section introduces some models of computation related to the Gamma
framework. Note that some of these models might have potential variants, the descriptions
given here cannot be considered universal.

Dataflow In the dataflow model a system component communicates with its environ-
ment via input and output message queues. Message queues contain tokens that can be
considered as messages of certain types. The behavior of a single component comprises
of a sequence of firings. A single firing is initiated in response to a given combination of
available input tokens, i.e., the arrival of particular data serves as trigger for a component.
A firing consumes the corresponding input tokens and produces a defined combination of
output tokens.

An advantage of the dataflow domain is that it provides opportunity for static analysis
of deadlock-freedom and boundedness. Schedulings of components can also be computed
statically [19]. Dataflow models are convenient for the representation of streaming systems,
where sequences of data flow in definable patterns between system components. For
example, signal processing systems, including video and audio systems are especially good
application domains. The execution semantics is usually defined with Petri nets [20].

Asynchronous-Reactive In the asynchronous-reactive model, system components rep-
resent concurrent processes that communicate with each other using message queues [21].
Writing to the message queues always succeeds instantly, whereas reading from an empty
queue blocks the reader process (nonblocking-write, blocking-read approach). Message
delivery is assumed to be dependable, therefore, the sender does not receive nor expect
any confirmation (send and forget approach). Messages arrive into the target message
queue in the same order they are sent. A single read operation always retrieves a single
message from the queue. Additionally, prioritized queues can be introduced to reorder the
incoming messages and prefer the urgent ones in the read operation.

The asynchronous-reactive model describes concurrent processes whose executions are
not depending on external triggers, but are constantly running. Therefore, there is no
guarantee for the execution time and execution frequency of system components. It can
be considered as a generalization of the dataflow model where system components are
concurrently executing processes rather than components reacting to certain incoming
token combinations [22].

Synchronous-Reactive The synchronous-reactive model has a notion of time and fol-
lows the semantics of synchronous programming languages [23, 24, 25]. In this model
system components communicate with each other using signals, which are transmitted
and received through ports. Furthermore, the execution is driven by a clock which emits
ticks (clock signals). System components are executed in response to the clock signals.
Upon execution, a component reads the signals from its incoming ports and transmits

S &>
o9 %ab o9
& > N
QO QJB b &
& & o 3
\?" ()0 @ :Q \,0 X
> > o P & &
& & & F > Q&O SR
>® & W & o & KL NS
F ¥ E O F L S RS
< & @ & &L & @ N @@3 \\}‘?’y’w
x> O ,{& b X §

Gamma v v o v v v v
SystemC ME v v v v v
AFEmilia v v v v
Ptolemy 11 v v v v e <« v
BIP v v v v v
RSARTE MC v v v v v v

Table 2.1: Features of Gamma and its competitors. v'= full support; ¥= experimental

signals through its outgoing ones. Generally, components can be considered as functions
mapping values from their incoming ports to their outgoing ports depending on their cur-
rent state. The output signals are sustained until the next tick. The input signals are
sampled only upon ticks, changes of signals in between ticks are ignored. Contrary to
dataflow and asynchronous-reactive models, signals can be absent and components are
also able to react to such cases and even to a combination of signals. Since in this model
ticks serve as triggers of execution, a combination of signals can be considered as guard
expressions of certain activities of components.

The synchronous-reactive model can be considered as the generalization of the synchronous
circuit model widely used in the field of digital techniques. It is convenient in situations
with complicated control flow, where a system component might take different actions
depending on whether a signal/message is present or not. This model is able to handle
these situations without possibly nondeterministic communication using synchronization
instead. Therefore, it is excellent for the modeling of Programmable Logic Controller
(PLC) programs. On the other hand, the synchronous-reactive model is considered “less
concurrent” than dataflow or asynchronous-reactive models, as the components are exe-
cuted in a lockstep fashion for every clock signal. Consequently, such models are better
to describe a single-threaded component in a logically decomposed way.

2.5 Related Work

As related work, we cover in detail the tools that simultaneously provide 1) a composition
language for component-based design with 2) precise formal semantics and &) formal
verification support for behavioral properties. As such, we exclude approaches such as
[26, 27, 28, 29, 30, 31] that miss at least one of these aspects. The feature comparison of
the following tools can be found in Table 2.1: a SystemC modeling environment (SystemC
ME) connected to the STATE tool, AEmilia ADL/TwoTowers, BIP, Ptolemy II, and a
model checker tool for RSARTE models (RSARTE MC).

SystemC ME In [32] a modeling environment is introduced that supports the graphical
definition of SystemC [33] models. SystemC is a C++ library offering classes and macros,

10

which provide an event-driven simulation interface suitable for simulating concurrent pro-
cesses. The basic building block of a SystemC model is the module, which represents
computational parts of the design. Modules are composed of processes, ports, events,
channels and variables. Processes are the main computation elements of the module, they
are concurrent and are used to describe functionality. A state machine formalism can
be used to define the behavior of a process. Ports allow communication from inside a
module to the outside. They use interfaces to describe the type of events they are capable
of handling. Ports are connected by channels. The modeling environment supports the
automatic SystemC code generation from the created models. The supported part of the
SystemC language is given a formal semantics by connecting the modeling environment
to the STATE tool [34]. STATE maps the informal SystemC code to a formal timed au-
tomaton formalism, UPPPAL, thus provides formal verification capabilities. Contrary to
Gamma, this modeling environment currently does not support the hierarchical composi-
tion of modules.

AEmilia ADL/TwoTowers AEmilia [35] is an architecture description language
(ADL) based on EMPA,, process algebra, a compositional specification language of alge-
braic nature integrating process algebra theory and stochastic processes. This language
supports the modeling of component-based software systems at the software architecture
level. Designers have to start the modeling process by defining the behavior of the com-
ponent types in the system and their interactions with the other components. Stochastic
aspects, e.g., component interaction time, of the software architecture targeted for func-
tional or extra-functional analysis (security and performance) have to be defined on this
level. Next, instances of component types have to be defined along with their interactions
in order to enable the communication of instances. Finally, based on the received com-
posite models integrated, functional and performance semantic models can be generated
automatically, which can undergo formal analysis executed by the TwoTowers tool. The
biggest difference between the AEmilia ADL and the Gamma Composition Language is
that Gamma puts the focus on statecharts instead of stochastic process algebra.

BIP BIP [36] (Behavior, Interaction, Priority) is a modeling framework supporting the
formal definition of heterogeneous systems. The BIP language supports the layered defi-
nition of hierarchical composite systems, defining three layers. The lowest layer specifies
the behavior of system components, atomic or compound, using a variant of the Petri net
formalism. The intermediate layer consists of a set of connectors linking ports together,
thus defining the interactions between transitions of components. Contrary to Gamma,
these interactions are based on synchronization. The top layer includes a set of dynamic
priority rules between interactions and can be used for the specification of scheduling
policies. BIP defines a clear operational semantics, which describes the behavior of both
atomic and compound components. The behavior of atomic components are based on
a rigorous transition system model, thus, formal verification of invariant properties and
deadlock-freedom is also supported.

Ptolemy IT Ptolemy II [19] is a modeling framework supporting the definition of hi-
erarchical composite systems with diverse component types and interaction semantics.
Modeling components, called actors in Ptolemy II, can be regarded as independent soft-
ware modules. They are able to interact with each other by sending messages through
interconnected ports. Models are created by composing actors, which is supported on mul-
tiple hierarchy levels. The interactions of actors can be executed with different semantic

11

variations, defined by models of computation (MoC). Ptolemy II offers numerous MoCs
that rigorously define the interaction between actors, e.g., process network, synchronous
reactive and synchronous dataflow. The implementation of a MoC is called director. Each
level of hierarchy in a model must have a single director that specifies the MoC. Direc-
tors of various hierarchy levels may have different types. Still, the composition of such
heterogeneous components adheres to a rigorous semantics, which is a very powerful fa-
cility of Ptolemy II. Nevertheless, Ptolemy II offers only experimental formal verification
capabilities [37].

RSARTE MC In [38] a model checking tool is presented that is capable of verifying
UML-RT [39] models, which is an extension of UML supported by the RSARTE? modeling
framework. The basic building block of an UML-RT model is a capsule, whose behavior can
be defined using statecharts. Additionally, UML-RT models contain a structure diagram
for each capsule, which describes relationships with other capsules. A capsule can contain
parts, which are instances of other capsules, thus hierarchical modeling is supported. Cap-
sules and parts communicate through ports. Such UML-RT models are transformed to a
rigorous state machine formalism, called CFFSM [40], which can be formally analyzed by
their model checker against CTL expressions.

34w . ibm. com/support/knowledgecenter/SS5JSH/rsart_family_welcome.html

12

www.ibm.com/support/knowledgecenter/SS5JSH/rsart_family_welcome.html

Chapter 3

The Gamma Framework Features

This chapter introduces the features and functionalities of the Gamma framework that sup-
port the model-based design, implementation, validation and verification of component-
based reactive systems.

3.1 Overview

Figure 3.1 depicts the functionalities of the Gamma framework. Every functionality relies
on the Gamma Statechart Language (introduced in Section 4.5), which provides a common
basis regarding model elements and behavioral semantics. Statecharts created with the
Gamma Statechart Language can be composed using the Gamma Composition Language
(introduced in Chapter 4), whereas tests for such created composite models can be defined
using the Gamma Test Language (presented in Section 4.8). The Gamma framework
supports system design by the integration of high-level engineering modeling languages
as software designers like to work on a high-abstraction level (Section 3.2). Validation is
supported by well-formedness constraints to give feedback to designers on the quality of
their models at design-time (Section 3.3). Furthermore, implementation is facilitated by
automatic source code generation from composition models (Section 3.4). Verification is
supported by the integration of formal modeling languages, thus enabling model checking
facilities. The framework also supports the back-annotation of model checking results and
the generation of test cases (Section 3.5).

3.2 Integrating Engineering Models

The integration of engineering models is realized via model transformations, which map
high-level behavioral models to the statechart language of Gamma. For each supported
engineering language a separate model transformation needs to be defined. This is encum-
bered by the potentially different semantic details of such modeling languages, however,
such transformations enable designers to use the functionalities of the Gamma framework
without the manual mapping of their models. Furthermore, this approach can support
the interaction of various engineering tools with the Gamma language as a base point,
e.g., different statechart implementation can be executed side by side in the same Gamma
composite system. Moreover, formal verification on the mapped models can be executed
without the definition of an additional transformation to a low level analysis language.

13

]
I [Engineering

—

1

Engineering | |
statechart !
/

! statechart
[A 4 y 5 ",.’,'.’ m\ ()
,[Generated ‘4_ Gamma Gamma & & s -
implementation statechart statechart 83 3 o
g \ °E g
S \ 4 v o
o Gamma Test | g 117
b < Gamma Composition Language
o0 Language < c
£ o J \)
- NN o—— . 2R R
v { , - S ©
gl [i[Analysis Analysis E,' (_Query J;
- Test cases : model model | : :
S e H{axrrm)

Analysis language N ‘)

Figure 3.1: The functionalities of the Gamma framework.

During the model transformations, it is very important to create and maintain model
trace files that store the associations between the elements of the source model and the
target model. These model traces enable further functionalities of the Gamma framework
regarding models and their transformations.

Currently, YAKINDU Statechart Tools (SCT) is integrated into the framework as an
engineering tool. All rules of the Yakindu-Gamma transformation can be found in [9].
Moreover, the integration of another engineering tool, called MagicDraw, is in process,
although it is not the work of the author.

3.3 Validation

Validation is a static analysis technique that gives feedback on the quality of created models
in design time. Validation takes place on two levels in the Gamma framework: on the level
of separate statechart models and during the composition of statechart components. The
former is realized by approximately thirty formally defined graph patterns that specify
ill-formedness constraints. Such constraints include unused variables, race-conditions and
enshadowing transitions (transitions of a child and a parent state with the same trigger).
If a statechart model under validation violates any constraints, the designer is notified
design time with the display of the incorrect element. The validation rules can be found
in [9].

The composition of statechart components is also an error-prone process which can be
aided with static analysis techniques. The ill-formedness constraints are specified as graph
patterns on this level as well. Validation rules on this level realize the well-formedness

constraints presented in Chapter 4, that is, the validation of model imports, port bindings,
channel constructions and execution order of components in cascade models.

14

3.4 Code Generation

The Gamma framework supports automatic source code generation from Gamma models.
Currently, the Java programming language is supported, relying on the object-oriented
paradigm (see Section 5.4). Interface definitions are generated from Gamma interfaces,
and composite component implementations are generated from Gamma composite com-
ponents defined in the composition modeling phase. The interfaces are realized by the
corresponding port objects of the generated component implementations. As a result,
users can interact with the generated component objects through the well-defined, famil-
iar interfaces.

Composite component implementations wrap the necessary statechart implementations
and subordinated composite components and construct the required connections (chan-
nels) between them. Thus, wrapped components are able to communicate with each other
by dispatching and receiving event objects. It is essential that the behavior of compos-
ite components conforms to a rigorous semantics of the Gamma Composition Language
introduced in Section 4.7. Furthermore, composite component implementations support
extensibility by the registration of observer objects which can be set to detect certain
events. These observers are notified on the reception of event objects which they can
handle according to their implementations.

It is important to note that the generated composite component implementations are in-
dependent from the necessary statechart implementations and communicate with them
only via a well-defined interface. Thus, the used statechart implementation is exchange-
able, various statechart implementations can be introduced to the framework without the
rework of the code generator. Currently, Yakindu is integrated into the framework and
provides the statechart implementation. Nevertheless, the development of a Gamma stat-
echart code generator with the support of additional programming languages is in process.

3.5 Verification

The Gamma framework provides multiple verification functionalities: 1) formal verifica-
tion by integrating model checkers and 2) testing by generating test suites based on the
model under verification.

3.5.1 Formal Verification

Formal verification in the Gamma framework is realized via the integration of formal
modeling languages capable of model checking. Currently, UPPAAL is integrated into the
framework as a model checking tool. The integration is achieved with the definition of
model transformations that map composite system models to the formal domain. The
transformation rules can be found in [9]. Similarly to the integration of engineering mod-
els, the creation of model traces during model transformations is crucial in this feature
too. Similarly to source code generation, it is important to ensure the generated models
of the formal domain behave according to the semantics of the composite systems. This is
supported by auxiliary model components responsible for the conduction of interactions
among components, e.g., a scheduler automaton controlling the execution of Gamma com-
ponents.

To utilize the model checking facilities, in addition to the formal model, temporal logic
expressions need to be constructed that can be considered as the formalizations of system

15

requirements. As the specification of such expressions is cumbersome, their construction is
supported by a graphical interface with fillable patterns (see Section 5.3.2). Furthermore,
to make the formal verification process even more transparent to the user, the result of
the model checking is back-annotated to the Gamma language. This way, the resulting
execution trace, describing the sequence of states leading to the erroneous state, can be
interpreted in a familiar domain.

Back-annotation

Back-annotation is the process of automatically mapping the results of the formal verifi-
cation of an engineering model back to the engineering domain. It can be considered as
a reverse model transformation, since it derives information regarding the corresponding
source model using the results of the verification carried out on the formal model. These
verification results are typically represented as an execution trace (not to be confused with
the model traces mentioned earlier), i.e., consecutive steps leading to a certain system
state, by model checkers after discovering a proof or counterexample proving/violating a
certain system requirement [41].

Gamma aims to completely hide the underlying formal modeling formalisms from users,
and thus, provides automated support for the back-annotation of UPPAAL traces to the
execution traces of the Gamma models. This way, the execution traces can be analyzed in
a familiar domain, which facilitates the easy correction of flaws. For this purpose, Gamma
is able to parse textual traces generated by UPPAAL. From these traces the subsequent
states and transition firings of the UPPAAL model can be obtained. The previously
mentioned model traces generated during the model transformations are crucial here, as
they provide the necessary information for the mapping of states and transitions of the
UPPAAL model to the Gamma model. The result of the back-annotation is a textual
model (human readable textual file describing the execution trace) conforming to the
semantics of the Gamma Test Language (Section 4.8). It describes the events the Gamma
model receives from the environment, the state of the Gamma model and the events it
produces for the environment in each turn during the execution. This execution trace
model can be

e utilized by the user to analyze the behavior of their model, e.g., in case of a violated
system requirement and,

e as it is a valid test file, it can be passed to the test generator module of Gamma
to produce a test for validating the design workflow of the Gamma framework, or a
manual implementation of the system.

3.5.2 Test Generation

Gamma uses the UPPAAL model checker to generate tests, which can be considered as a
model-based testing technique. The model-based approach of software testing includes the
creation of an abstract model, in this case a Gamma model, which is used to automatically
create test cases. The idea of using model checkers in testing is to interpret proofs or
counterexamples as test cases [42, 43]. The main challenge is to force the model checker to
systematically create sets of such proofs/counterexamples that can be used as a complete
test suite. Gamma generates tests based on the states and transitions of its models.

As mentioned in Section 3.5.1, Gamma uses the Gamma Test Language to represent
execution traces of Gamma models. These execution traces are easily transformable to

16

JUnit classes if the implementation of the model under test is available (3.4). Events
raised on the model by the environment become statements, whereas model states and
events raised by the model are transformed to assertions in the JUnit test cases. To
support the easy differentiation between subsequent execution steps of the model, each
execution step is transformed to a single method. The generated JUnit classes test whether
the component implementation actually assumes the states that the back-annotated trace
describes, i.e., in reaction to the incoming events it assumes the corresponding state and
raises the necessary output events. With this technique the following functionalities of the
Gamma framework can be validated for a particular trace:

e Yakindu to Gamma transformation,

e Gamma to UPPAAL transformation,

automatic Java code generation from composite components,

integrated statechart implementations,

automatic back-annotation of the UPPAAL trace.

As multiple functionalities can be tested using this technique, it can be considered as
the validation of the Gamma workflow, thus, a best-effort means to “verify the verifier
tool”. The Gamma framework builds on model transformations, the correctness of which
is undecidable in general, therefore, formal proof on their correctness cannot be given.
However, by generating and verifying witnesses, the validity of each proof/counterexample
recovered during model checking can be proven, that is, the framework is well-functioning
in certain cases (no assertion error is raised during the execution of the witness) or, in
case a fault is present in the framework (the execution of the witness leads to an assertion
error), disproved. Note that if certain behavior is absent, e.g., a state is not reachable,
the aforementioned technique cannot be utilized.

4

State-coverage

The Gamma framework is able to automatically generate a state-covering test-suite based
on a particular Gamma model. During the model transformation to UPPAAL, temporal
logic expressions are automatically generated based on the state model elements of the
particular Gamma model. Each expression describes a state reachability criterion with
the following UPPAAL query syntax:

E<> component.state.

The UPPAAL model checker can parse these expressions without modification. For each
expression, UPPAAL tries to discover a path (sequence of transitions) for the specified
state. If the specified state is reachable, a proof is generated that can be back-annotated
to the Gamma model and transformed to a JUnit test. If the state is not reachable,
then possibly a fault is discovered, as states are generally created to be assumed (with
the exception of error states). Taking all state reachability criteria, a test suite with full
state-coverage of the Gamma model can be generated.

Transition-coverage

In addition to state-coverage, the Gamma framework is able to generate a transition-
covering test-suite based on a particular Gamma model. During the model transformation

17

to UPPAAL, an integer ID is assigned to each Gamma transition as well as a (single)
integer variable is generated in the UPPAAL model. The integer variable is set to the ID
of the transition if the corresponding transition fires (assignment action of the transition).
A temporal logic expressions can be generated for each transition, all of which describe a
variable value reachability criterion for the integer variable with the following UPPAAL
query syntax:

E<> integer-variable == transition-id.

Similarly to the state-coverage test suite, UPPAAL tries to discover a path, on the end
of which the given variable is set to the ID of the corresponding transition. The specified
variable can be set to the value, only if the corresponding Gamma transition fires. Note
that in the UPPAAL model a single transition is fired at a time, even if they are contained
by orthogonal regions. a In conclusion, taking all variable value criteria, a test suite with
full transition-coverage of the Gamma model can be generated.

18

Chapter 4

The Gamma Modeling Languages

This chapter introduces the modeling languages of Gamma, which serve as the basis of
the framework. The design and formalization of these languages can be considered as
the most important theoretical result of this work, and thus, the most important nov-
elty of Gamma 2.0. The following sections present the modeling languages, that is, the
constraint language, the interface language, the statechart language, the composition lan-
guage (including its formal semantics) and the test language, through a railway-themed
running example. These languages are closely integrated, the dependencies between them
are depicted in Figure 4.1.

Test
Language

Yy

Composition
Language

Constraint o Statechart o Interface
Language Language Language

Figure 4.1: Dependencies between the modeling languages of the
Gamma framework.

4.1 Running Example: Railway Safety System

Concepts of the modeling languages of the Gamma framework are demonstrated on the
safety-logic model of the MoDeS? (Model-based Demonstrator for Smart and Safe Systems)
[44] project.! The project imitates a railway transportation system consisting of track
elements, that is, sections and turnouts, and trains moving on the track. The states of the
turnouts (straight or divergent) and the motion of the trains (forward or backward and
speed) are controlled externally by users.

A great challenge of the project was to design a distributed controller, which implements a
safety-logic (introduced in [9] in detail) that can prevent the collision of trains by ensuring

!Project repository with link to webpage: github.com/FTSRG/BME-MODES3

19

github.com/FTSRG/BME-MODES3

that there is at most one train on every section at any moment. The safety-logic was
designed on the basis of statecharts. Two models were created for the track elements, a
section and a turnout statechart. Both statechart models detect signals of the environment,
that is, the presence and absence of trains, communicate with neighboring track elements,
to implement the safety-protocol, and send signals to the environment indicating dangerous
situations, e.g., trains are close and they must be stopped, or the absence of danger, e.g.,
trains can proceed. The distributed controller is created as the composition of such section
and turnout statechart model instances.

Figure 4.2 depicts the MoDeS? track, which consists of six turnouts and twenty five sec-
tions. The distributed controller runs on six microcontrollers, each supervising a single
turnout and multiple sections. The turnout and the set of sections supervised by a partic-
ular microcontrollers is called a zone. The six microcontrollers have to communicate with
each other, i.e., share information of their zones, to obtain a global view of the railway
and prevent collisions.

4.2 Packages

Packages are the root elements of Gamma models. They support the declaration of con-
stants (Section 4.3) in addition to the definition interfaces (Section 4.4) and Gamma
components (Section 4.6.2). Furthermore, packages can depend on other packages by
importing them. When a particular package is imported, its elements, e.g., statechart def-
initions, composite components and interfaces become visible from the importer package.
Consequently, the imported components and interfaces can be used in the definitions of
the importer package.

An example package is depicted in Figure 4.3. Additionally, an asynchronous adapter
component ZI1Adapter (see Section 4.6.4) is defined in the example.

Note that the imports can be defined by a path relative to the importer file, that is,
the imported package is first searched for in the folder of the importer file, and if it is
not found, it is searched for in the parent folder of the importer file, etc. Also, the ged
extension of the files does not have to be stated explicitly.

Constant QUEUE__CAPACITY could be referred to in any of the component definitions.
If another package imported z1_adapter, then the importer could refer to and reuse all
the elements of this particular package.

Well-formedness constraint: there must not be any circular dependencies between the
packages.

4.3 The Constraint Language

The Gamma Constraint Language serve as the basis of the modeling languages of Gamma,
it does not depend on any other parts. It supports the definition of constraints, which is a
general concept for type definitions, constant, variable, structure and function declarations
and the specification of expressions. The functionality of the constraint language is needed
by the GSL to declare and handle variables in statecharts. Integer, natural, boolean, real
and enumeration types are supported by the language. Furthermore, there are about forty
expression types in the language, including literal, logical, arithmetical and assignment
expressions.

20

- S5 @s4mn

NN T

MmN

817 g Tomsi, N 5235

- 507 gzremn

- §22 s9mm
. 507 gstmm

\\\\ -S04

) N

. S08 geonmm
+ S04z,

%

// - S05 g0

. 8268510

. S04ssarnn 513 g -520%m T3 s

RN NN

. S07 ggsoomm - S79%smm ////////////////////
AN D

.S37 gasosmm

Z

. §0Q 757,

Figure 4.2: The layout of the MoDeS? track.

21

package z1__adapter
// Importing other packages
import "model/Components/Z1"

// Constants can be resued in the definitions

const QUEUE_CAPACITY : integer := 16

// Component definition

async ZlAdapter of Z1 |

. J

Figure 4.3: A package importing composite component Z1 of the
MoDeS? safety-logic model, defining a constant declaration and an
asynchronous adapter component Z1Adapter.

The basics of this language were designed by fellow researchers of the Fault Tolerant
Systems Research Group and we defined only minor additions to it. Table 4.1 summarizes
the relevant operators in the current state of the Gamma framework.

Table 4.1: Brief description of the supported operators of the constraint language

’ Prec. ‘ Name ‘ Operator ‘ Description ‘ Grouping
1 Implication imply implication Right-to-left
2 Disjunction or logical OR N-ary
3 Antivalence xor logical XOR N-ary
4 Conjunction and logical AND N-ary
5 Negation not logical NOT Right-to-left
6 Equality =, /= equality /inequality Right-to-left
7 Relational <, >, <=, >= | comparison operators Left-to-right
8 Addition +, - addition, subtraction Left-to-right
9 Scaling * multiplication, division Left-to-right
10 Modulo mod modulo Left-to-right
11 Euclidian division | div Euclidean division Left-to-right
12 Sign +, - unary plus, unary minus | Left-to-right

4.4 The Interface Language

The Gamma Interface Language (GIL) supports the definition of interfaces, which serve
as contracts between interacting components of Gamma models. These contracts apply
to the ability of dispatching and receiving certain events. Events represent occurrences of
some importance. The direction of an event can be in, out or inout; the latter represents
events that can be used as both in and out events, practically a syntactic sugar. Events
can contain parameter declarations, which provide additional information about the cor-
responding event. Furthermore, an inheritance relationship is defined between interfaces:
an interface inheriting from other interfaces contains each event declared on its parents
and is permitted to contain additional ones. This way, a particular interface might be used
where its ancestor is expected. An example interface definition can be seen in Figure 4.4.

The interfaces used in the safety-logic model of MoDeS? are depicted in Figure 4.5. In-
terface Protocol contains events that are dispatched and received by the models of track

22

-
interface Base {

in event baseEvent(param : integer)
}

interface Descendant extends Base {
inout event descendantEvent
}

Figure 4.4: Example Gamma interfaces.

elements, that is, sections and turnouts, to implement the safety-logic protocol. Section-
Control contains events denoting that a certain section needs to be disabled (no movement
is allowed on the certain section) or enabled (movement is allowed). The events of Turnout-
Control can be used to change the state of a certain turnout. Finally, the events of Train
denote the arrival end departure of a train on a certain section.

Note that in this model we follow the convention of declaring each event as an out event
on the interfaces. However, the actual direction of the events on communicating ports are
going to be defined by the interface realizations (see Section 4.4.1).

interface Protocol {

out event occupied rinterface TurnoutControl {
out event unoccupied out event turnoutStraight
out event go out event turnoutDivergent
out event stop }

}

interface Train {

interface SectionControl { out event occupy
out event enable out event unoccupy
out event disable }

}

-

Figure 4.5: Interfaces in the safety-logic model of MoDeS?.

4.4.1 Endpoint Elements

In addition to interfaces and events, GIL supports the definition of port and interface
realization elements, which facilitate the communication of Gamma components.

Port Ports serve as endpoints of component instances in a composite component model,
through which events can be dispatched or received. Events are either called signals in
case of synchronous components or messages in case of asynchronous components. Each
port realizes a single interface by defining an interface realization. Communication between
component instances, and between the composite component and its environment happens
through ports.

Interface realization Interfaces can be realized in either provided or required mode.
The difference is explained using the interface definition Descendant in Figure 4.4.

e Provided mode: ports dispatch and receive events according to the direction they

have been declared on their parent interfaces. In the current example, the component
owning the realizing port will be able to dispatch event descendantEvent (out or

23

inout events), and receive events baseEvents and descendantEvent (in or inout
events) through this port. Such a port would be defined as:

Lport ProvidePort : provides Descendant j

e Required mode: interfaces are “turned inside out”, that is, events declared with the
direction in will be dispatched, and events declared with the direction out will be
received through such ports. A component owning a port realizing Descendant in
required mode will be able to dispatch events baseFEvents and descendantFvent
(declared in or inout events in the interface), and receive event descendantEvent
(declared out or inout events) through this port. Such a port could be defined as:

Lport RequirePort : requires Descendant j

Note that if two ports realize the same interface, one of them in provided mode, the other
one in required mode, they can be connected since the direction of the events would match.
Therefore, after connection they can exchange events with each other. As the example
demonstrates, the realization mode does not specify a single direction in which events are
transmitted through the particular port — dispatch and reception can be mixed in both
cases.

We say that a port is a broadcast port if 1) the interface realization mode is provided and
2) the realized interface contains only out events. Unlike other ports, a broadcast port
can be connected to multiple ports realizing the same interface in required mode with
signal-based synchronous communication. Thus, required ports are not able to dispatch
events to the broadcast port, so no congestion, and thus, the potential loss of events, will
occur (see the semantics and well-formedness constraints of channels in Section 4.6.1). As
demonstrated in Figure 4.5, we heavily rely on the feature of broadcast interfaces in the
safety-logic model of MoDeS?>.

The concept of ports realizing interfaces in providing or requiring modes may be unusual
to some designers, since ports usually support one-way event transmission in modern
modeling languages. Our goal with this solution is to investigate the possibilities residing
in interface-based communication in the domain of reactive systems. On the other hand,
as presented in Figure 4.5, it is possible to use only out events on every interface — then
provided mode is “output” mode and required mode is “input” mode.

4.5 The Statechart Language

This section introduces the Gamma Statechart Language (GSL), which supports the defini-
tion of statecharts. Generally, this language provides a common basis for all functionalities
of the Gamma framework. It is given a denotational semantics described in [9] by mapping
Gamma model constructions to the elements of a formal timed automaton implementa-
tion. This section presents the most important elements of the language via the simplified
version of the new Section model of the MoDeS? safety-logic (see Figure 4.6).

Variable declaration A variable declaration serves as a symbolic name for a particular
value, where this associated value can be changed during execution. The supported types
of variables are introduced in Section 4.3, where the Gamma Constraint Language is
presented. Furthermore, the variables can be given an initial value using an ezxpression.

24

r

package section
import "model/Interface/Interface"
statechart SectionStatechart |

// Ports, the same was as in the GCL

port ProtocollnCW requires Protocol,

port ProtocolOutCW provides Protocol,

port ProtocollnCCW requires Protocol,

port ProtocolOutCCW provides Protocol ,

port SectionControl provides SectionControl ,
port Train requires Train

{

// Boolean variables

var isDisabled boolean
var isOccupiedCW boolean
var isOccupied boolean

var isOccupiedCCW boolean

// Main region

region main_region {
// Initial
initial Entry
// States
state Stable
state WaitForCW
state WaitForCCW
// Choices, pseudo
choice Choicel
choice Choice2

state , pseudo state

states

}

// Transitions, with (complex)

transition from GlobalState to Choicel
isOccupiedCCW := false

transition from Choicel to GlobalState
raise ProtocolOutCW.go

transition from Choicel to GlobalState
raise SectionControl.disableSection

transition from Choicel to GlobalState

// Logical releation of triggers

transition from GlobalState to Choice2
!(ProtocollnCCW .stop || ProtocollnCW

transition from Choice2 to WaitForCCW
raise ProtocolOutCCW . occupied

transition from Choice2 to GlobalState
raise SectionControl.enableSection;

triggers ,

isDisabled

guards and actions
when ProtocolInCCW .unoccupied /

[not isOccupied and isOccupiedCW] /

[isDisabled] /

[else]

when ProtocollnCW .go &&

.stop)
[isDisabled] /

[else] /

false

Figure 4.6: The simplified Section model in the MoDeS? safety-
logic model presenting the important elements of the GSL.

25

Timeout declaration A timeout declaration can be considered as a timer. Timeout
declarations can be set by assigning a time specification to them. When the specified time
expires, a timeout event is emitted, which can serve as a trigger for transitions.

Region Region is the container element of the structural elements defined in the fol-
lowing paragraphs. A region can either be a top region, contained by a statechart or a
subregion, contained by a composite state. A region must contain a single entry state.

Entry state An entry state can be either an initial state or history state. An initial
state is used for specifying the first active state of a region after the region is entered.
Only one transition can leave it, the target of which defines the first active state of the
particular region. This particular transition must not contain either triggers or guards.
A history state can be either shallow or deep. They are used to remember the last active
state of their parent regions. In case of shallow history states, if the particular region is
entered, the last active state of the particular region will be active again. If the region has
not been entered before, the transition going out of the shallow history node will specify
the active state (same behavior as initial state). Similarly to initial states, the transition
must not contain either triggers or guards. Deep history is similar to shallow history, but
it affects each nested subregion transitively as well.

State A state represents a stable situation of its parent region. It can have entry and exit
events which specify different actions that have to be taken when the state is activated
or deactivated, respectively. Composite states extend simple states with the ability of
containing one ore more regions. If a particular state contains multiple regions, they are
called orthogonal.

Transition Transitions specify state changes in a statechart. A transition has a single
source and a single target. Additionally, a transition can connect state nodes of different
regions, unless these regions are orthogonal. A transition, if not coming out of an entry
state or choice state, must contain a trigger, and can contain a guard and effects (actions).
During execution, a transition can fire if 1) its source state is active, 2) the corresponding
trigger is present, &) its guard (if it has one) evaluates to true and /) no transition is
enabled on a higher hierarchy level?>. Unguarded transitions can fire if the corresponding
event is raised. If multiple transitions are active at a time on the same hierarchy level, one
of them is chosen nondeterministically for firing. A firing transition executes its assigned
actions if it has any. This can be either an update of a variable or the raising of an event.

Choice state Choice states are used for splitting transitions. Each time a choice state
is entered, all guards of its outgoing transitions are evaluated in a non-deterministic order.
If a guard evaluates to true, the corresponding transition fires and its actions are executed.
An outgoing transition of a choice state can be targeted to another choice state. If such
a transition fires, its actions are executed before evaluating the guards of the outgoing
transitions of the target choice state. Therefore, choice states can be used to create
dynamic conditional branches as well as to avoid “code” duplication (trigger and action
specifications). It is important to note, that GSL, for the sake of formal verification, does

2Note that this semantics is different from the semantics of UML statecharts, as in UML statecharts
transitions on the lowest hierarchy level have the highest priority.

26

not support the definition of directed cycles based on choice states, that is, the series of
choices connected by transitions must have a topological ordering.

Triggers Triggers specify events on which certain executions can be initiated, e.g., a
transition can be fired. The GSL supports the definition of simple or complexr triggers.
Furthermore, simple triggers can be classified into any triggers and event triggers. An any
trigger can match any event that has been raised in a particular execution cycle. An event
trigger can refer to one of the following events:

Port event reference is an event indicating the reception of a particular event through
a particular port.

Any port event reference is an event indicating the reception of any kind of event
through a particular port.

Timeout event reference is an event indicating that a certain timeout has expired.

Clock tick reference is an event indicating that a particular clock has emitted a tick.
In the current version of the framework, clock declarations and clock tick references
can be used only in asynchronous adapters (see Section 4.6.4).

Complex triggers consist of simple triggers and describe the relation of multiple triggers
as logical relations. The presence or absence of signals denote the logical value of simple
triggers, that is, if a certain signal is present, the corresponding trigger evaluates to true,
otherwise false. The logical relations with ascending precedence are the following: FEqual,
Imply, Or, Xor and And. Also, Negation is supported, that is, execution can be initiated
on the absence of a certain event. Complex triggers may initiate a particular execution
only if the corresponding logical relation evaluates to true.

4.6 The Composition Language

The Gamma Composition Language (GCL) supports the definition of communicating com-
posite systems built from individual components. By building on the GIL (Section 4.4)
and GSL (Section 4.5), GCL supports the definition of interfaces and associated ports,
which enable individual components to act as communicating endpoints. The communica-
tion between endpoints is supported by channels, responsible for connecting port instances
(Section 4.6.1). Finally, the hierarchical composition of components is supported by var-
ious component types (Section 4.6.2). The following sections introduce the role of the
elements of the GCL in addition to their textual syntax and validation rules.

4.6.1 Communication Elements

This section introduces the instance port reference, port binding and channel elements of
the GCL.

Instance port reference The instance port reference element is responsible for the
identification of a port of a component instance, thus, it refers to a single port and a single
component instance (see Section 4.6.2). An example instance port reference is depicted in
Figure 4.7.

27

[812 . ProtocolOutCCW]

Figure 4.7: Referring to port ProtocolOutCCW of section model
instance S12 in the MoDeS? safety-logic model.

Well-formedness constraint: the referred port must be contained by the type of the referred
component instance.

Port binding The port binding element is responsible for the mapping of the system
ports of a composite component, which can be regarded as “exterior” or “public” ports of
the composite component, and the ports of constituent component instances. Therefore,
it refers to a single system port and a single instance port reference. Owing to this
design, all events received on the particular system port will be transmitted to the port of
the associated component instance, and all the events dispatched through the particular
instance port will be transmitted to the system port. An example port binding is depicted
in Figure 4.8.

[bind S12ProtocolOutCCW —> S12.ProtocolOutCCW j

Figure 4.8: Binding system port S12ProtocolOutCW of composite
component Z1 (defined in Figure 4.12) to port ProtocolOutCW of
contained section model instance S12 in the MoDeS? safety-logic
model.

Well-formedness constraints: 1) a system port of a composite component must be mapped
to a single port of a constituent component instance; 2) a port of a constituent component
instance can be connected to at most one system port; 3) the system port and the port of
the component instance must realize the same interface in the same realization mode.

Channel Channels are responsible for the connection of component instance ports.
Technically, they use instance port references to refer to the endpoints. There are two
types of channels: simple channels and broadcast channels.

e Simple channels support the connection of a single port providing and a single port
requiring the same interface. As explained in Section 4.4.1, this design is valid
and safe as they handle the same events with the appropriate directions. A simple
channel example is depicted in Figure 4.9.

[Channel [S12.ProtocolOutCW] —o)— [Tl.ProtocollnStraight] j

Figure 4.9: A simple channel connecting provided port Proto-
colOutCW and required port ProtocollnStraight of contained sec-
tion model instance S12 and turnout model instance T1, respec-
tively, in composite component Z1 (defined in Figure 4.12) of the
MoDeS? safety-logic model.

Well-formedness constraint: in case of synchronous and cascade composite compo-
nents (see 4.6.3) a non-broadcast port must not be referred to in more than one

28

channel or port binding (to avoid congestion and potential loss of events, since syn-
chronous components do not have message queues).

e Broadcast channels support sending events to multiple target ports. Such chan-
nels refer to 1) a single broadcast port and 2) multiple ports requiring the same
interface as the one the broadcast port provides. In this case the direction of event
transmission is determined: the broadcast port dispatches events and all the other
ports connected to it receive them. A broadcast channel example is depicted in
Figure 4.10.

channel [train.Trainl] —o)—
[lowerLevelModel.Trainl, higherLevelModel. Trainl]

Figure 4.10: A broadcast channel connecting broadcast port
Trainl of component instance train to the required ports Trainl
of component instance lowerLevelModel and higherLevelModel in
the verification model of the MoDeS? safety-logic (see Figure 6.12).

Well-formedness constraint: similarly to simple channels, required ports must not
be referred to in more than one channel or port binding in case of synchronous and
cascade composite components (but provided ports may).

One might ask the question whether two ports can be connected if they do not realize
the same interface, but the realized interfaces contain the same number of events with the
corresponding parameters and directions. The answer is no, as both interfaces and events
are strongly typed, that is, the identity of an event is also defined by the interface it is
declared on. This way, the compatibility of ports can be checked solely on the basis of
interface types.

4.6.2 Components

Components serve as types of component instances in a composite component. They can
be parameterized, that is, they can have parameters that can be referred to in their bodies,
e.g., when specifying the attributes of a message queue. A single component can have any
number of ports. Component is an abstract element; its descendants can be classified into
synchronous and asynchronous components (see later in this section).

Composite component Composite components represent components that comprise
of multiple component instances (synchronous or asynchronous). The integration of such
component instances constitute the behavior of a particular composite component. The
integration of components is supported by the communication elements introduced in
Section 4.6.1.

Component instance Component instances are individual reactive elements with in-
ternal state, capable of receiving and dispatching events through ports. Each component
instance refers to a single component, which serves as its type, that is, the component
determines the ports on which the component instance shall be able to communicate as
well as the internal states it shall be able to assume and the transitions it shall be able to
fire.

29

Component instances can be either atomic or composite. The instance is atomic if the
corresponding component is a statechart definition and composite if it refers to a com-
posite component. This enables the hierarchical composition of systems. Furthermore,
component instances can be either synchronous or asynchronous. Synchronous instances
can refer to only synchronous components as their types, whereas asynchronous instances
must refer to asynchronous components. An example component instance S12 is depicted
in Figure 4.11. Note that whether the component is synchronous or asynchronous is
implicitly defined by the type.

[component S12 : Section]

Figure 4.11: A component instance definition S12 of type Section
in the MoDeS? safety-logic model.

Well-formedness constraint: each parameter of the component type must be bound to a
value with an appropriate type.

4.6.3 Synchronous Components

This section introduces the synchronous components of the GCL, including their informal
behavioral semantics. Synchronous components can be either composite components (syn-
chronous composite component and cascade composite component) or atomic components
(statechart definition introduced in Section 4.5).

Synchronous component Synchronous components represent systems that communi-
cate in a synchronous manner using signals. They are executed in a lockstep fashion. Their
execution is scheduled by a scheduler, which can be a wrapping asynchronous component
or even a custom scheduler implementation. The execution of a synchronous composite
component conforms to a turn-based semantic. A turn is called a cycle. In a cycle syn-
chronous components process incoming signals and produce output signals in accordance
with their internal states. Output signals are present for a single execution period only, i.e.,
another execution might produce different output signals overwriting the output signals of
the previous one. The semantics of synchronous components was designed in accordance
with the synchronous-reactive composition semantics presented in Section 2.4.

Synchronous composite component The execution of a synchronous composite com-
ponent comprises the execution of its contained component instances. When a single com-
ponent instance is executed it may 1) process signals received in the last execution cycle,
2) assume a new state according to the processed signals (new state configuration, new
variable values) and 3) produce signals that can be received by components in the next
cycle (others or itself).

In each cycle all component instances of the particular composite component are executed.
As (being a key feature of synchronous composite components) contained components
cannot affect each other in a single execution cycle, the execution order of contained
components does not matter. The results of an execution cycle is the same regardless of
the execution order of the components.

In Figure 4.12 synchronous composite component Z1 describing Zone No. 1 in the MoDeS?
safety-logic model is depicted in a single listing. Note how the previously introduced end-

30

point and communication elements can be used to establish a strongly-coupled composite
component.

Cascade composite component Cascade composite components are structurally sim-
ilar to synchronous composite components, but their execution semantics is different. The
execution of a cascade composite component also consist of cycles. In a single cycle all
components of the particular composite component are executed in a specific order, which
can be based on either an ezecution list defining the order of the execution of components
(has to be defined explicitly), or the declaration order of the component instances (de-
fault). The execution list can contain a particular component instance one or more times,
that is, a particular component instance can be executed multiple times in a single cycle.
If no execution list is defined, each component instance is executed a single time, in their
declaration order.

When a component is executed, it processes all incoming signals and produces signals in
accordance with its internal state. However, the effect of a signal is observable immediately
in the same execution cycle by other component instances, and not in the next one as in
synchronous composite components. Accordingly, signals sent through feedback connec-
tions, i.e., when a component instance sends a signal to another one that comes earlier
in the execution order, are observable in the next execution cycle. Note that cascade
and synchronous composite components are semantically incompatible, that is, there are
models in both formalisms that cannot be simulated by a model in the other due to the
differences in the signal transfer.

Well-formedness constraints: 1) Two ports of the same cascade composite component
instance cannot be connected, 2) if an execution list is defined, it must contain each
defined component instance at least once.

Figure 4.13 depicts a variant of synchronous composite component Z1 by defining an
execution list. Note that the definition of cascade and synchronous composite components
are the same, apart from the cascade keyword at the beginning of the component definition
and the optional definition of an execution list.

4.6.4 Asynchronous Components

This section introduces the asynchronous components of the GCL, including their infor-
mal behavioral semantics. Asynchronous components can be either atomic components
(asynchronous adapter) or composite components (asynchronous composite component).

Asynchronous component Asynchronous components represent independently run-
ning component instances. There is no guarantee on the running time or the running
frequency of such components. Asynchronous components communicate with each other
via ports using buffered messages.

Asynchronous adapter An asynchronous adapter wraps a single synchronous compo-
nent, turning it into an asynchronous component. Asynchronous adapters implicitly have
all ports of the wrapped synchronous component — additional defined ports may be used
for the reception of control messages.

Furthermore, an asynchronous adapter has one or more message queues, which store
the incoming messages of the component. Message queues have multiple attributes:

31

-
package zl

import "model/Interface/Interface"
import "model/Section/Section"
import "model/Turnout/Turnout"

sync Z1 |
// Ports on the borders of the zone
port T1ProtocollnDivergent : requires Protocol,

port T1ProtocolOutDivergent : provides Protocol,

port S15ProtocollInCW : requires Protocol,

port S15ProtocolOutCW : provides Protocol,

port S12ProtocollnCCW : requires Protocol,

port S12ProtocolOutCCW : provides Protocol,

// Control ports, needed for each contained component
port S15Control : provides SectionControl,

port T1Turnout : requires TurnoutControl,

port S12Control : provides SectionControl ,

// Train ports, needed for each contained component

port S15Train : requires Train,
port T1Train : requires Train,
port S12Train : requires Train

I {

// Section and turnout components

component S15 : SectionStatechart
component T1 : TurnoutStatechart
component S12 : SectionStatechart

// Binding system ports on the border to the elements

bind T1ProtocollnDivergent —> T1.ProtocollnDivergent

bind T1ProtocolOutDivergent —> T1.ProtocolOutDivergent

bind S15ProtocolInCW —> S15.ProtocollnCW

bind S15ProtocolOutCW —> S15.ProtocolOutCW

bind S12ProtocollnCCW —> S12.ProtocollnCCW

bind S12ProtocolOutCCW —> S12.ProtocolOutCCW

// Binding control ports

bind S15Control —> S15.SectionControl

bind T1Turnout —> T1.TurnoutControl

bind S12Control —> S12.SectionControl

// Binding train ports

bind S15Train —> S15.Train

bind T1Train —> T1.Train

bind S12Train —> S12.Train

// Connecting elements of the zone

channel [S15.ProtocolOutCCW | —o)— [T1.ProtocollnTop]
channel | T1.ProtocolOutTop] —o)—[S15.ProtocollnCCW |
channel | S12.ProtocolOutCW | —o)— [T1.ProtocollnStraight |
channel [T1.ProtocolOutStraight] —o)— [S12.ProtocollnCW]

Figure 4.12: The definition of Zone No. 1 in the MoDeS? safety-
logic model.

32

-
package zl

cascade Z1 |
// Ports on the borders of the zone
port T1ProtocollnDivergent : requires Protocol,
port T1ProtocolOutDivergent : provides Protocol,
] A
// Section and turnout components
component S15 : SectionStatechart
component T1 : TurnoutStatechart
component S12 : SectionStatechart
// Execution list defining the execution order of component instances
execute T1, S15, S12, T1, S15, S12
// Binding system ports

// Connecting elements of the zone

Figure 4.13: The cascade composite component variation of Zone
No. 1 in the MoDeS? safety-logic model, in which each component
instance is executed twice in an execution cycle.

e Capacity specifies the maximum number of messages that can be stored in the par-
ticular queue. If a queue is full and an additional message is received, the message
is discarded. Note that the absence of this attribute would imply a queue with a
potentially unlimited size, thus, a model with an infinite state space. Therefore, the
capacity attribute is essential in the verification processes of composite components.

e Priority specifies the order in which the contents of message queues are retrieved
during the execution of the asynchronous component. A message is always retrieved
from a non-empty queue with the highest priority. Priority values can be any inte-
gers, where higher values represent higher priorities.

e Fwvent references specify the types of messages that can be stored in the particular
message queue. If a message arrives to an asynchronous component whose type is not
associated to any of the contained message queues, then the event gets discarded.
Therefore, it is always important to ensure that each incoming message type can
be stored in a message queue. If a particular message could be stored in multiple
message queues, the one declared first will be used, thus hierarchical filters are
enabled.

During execution, messages are retrieved from messages queues one by one. A message is
always taken from the highest priority non-empty queue. If the particular message was
received on a port that is implicitly derived from the wrapped component, the message is
converted to a signal (as synchronous components communicate with signals) and trans-
mitted to the wrapped synchronous component (potentially overwriting previously sent
signals). If it was received on a port explicitly defined on the adapter component, the
message does not get transmitted.

An asynchronous adapter also has one or more control specifications, which specify the
message types that are able to trigger the execution of the particular component. If a
message with a specified type arrives to the adapter component, the wrapped synchronous
component may be executed in one of the following ways:

33

e Run once: the synchronous component executes a single cycle.

e Run to completion: the synchronous component executes as many cycles as needed to
reach a fix point and no additional steps can be taken. Potentially, such an execution
cycle can consist of an infinite number of steps, therefore, the verification of such
models is not supported. Nevertheless, this feature is useful in the implementation
of asynchronous adapters.

e Reset: the synchronous component returns its initial state.

Note that messages are transmitted to the wrapped component before execution, so con-
trol specifications can trigger on any event, including the ones defined by the wrapped
synchronous component.

Finally, synchronous component wrappers can contain zero or more clocks, which emit
tick events at defined timed intervals. Such time intervals can be defined with attribute
rate. Currently, seconds and milliseconds are supported as unit of measurements. Tick
events can be handled in control specifications similarly to regular events received from
ports.

To demonstrate the flexibility of this control specification-based approach, we present two
different execution semantics, with the reuse of the Z1 synchronous composite component
model.

e In Figure 4.14 a single control specification is defined that triggers on the “any
event”. In this case, every time an event is retrieved from a message queue, the
wrapped component gets executed. This behavior is similar to the semantics of
UML statecharts [45].

e In Figure 4.15 a single control specification is defined that triggers on the ticks of a
clock. In this case, the wrapped component gets executed in defined periods of time
and processes the events that arrive in between the actual and the previous clock
tick.

Asynchronous composite component Asynchronous composite components support
the hierarchical definition of asynchronous components. Similarly to synchronous com-
posite components, an asynchronous composite component consists of port bindings and
channels in addition to asynchronous component instances that must refer to an asyn-
chronous component as type. It is important to note that contained composite instances
cannot have synchronous components as types. In such cases, asynchronous adapters can
be used, which assign asynchronous behavior to synchronous components.

In Figure 4.16 the entire MoDeS? safety-logic is defined as an asynchronous composite
component, which contains the wrapped synchronous zone models.

4.6.5 Summary

As a summary, Table 4.2 describes the component types that are supported by the GCL
in terms of synchronousness and compositeness.

Figure 4.17 presents the containment hierarchy of an example composite model. Note that
the synchronous and asynchronous domain can be bridged only by asynchronous adapters.
Furthermore, the leaves, which are the basic building blocks of the behavior of composite

34

package z1__adapter
import "model/Z1/Z1"
const QUEUE_CAPACITY : integer := 16
async ZlAdapter of Z1 |
// No additional ports on the adapter
1A
// Run the wrapped component on any kind of received event
when any / run
// Storing protocol messages in a higher priority queue
queue protocolMessages (priority = 1, capacity = QUEUE_CAPACITY) {
T1ProtocollnDivergent .any, T1ProtocolOutDivergent.any,
S15ProtocollnCW .any, S15ProtocolOutCW .any,
S12ProtocollnCCW .any, S12ProtocolOutCCW .any
}
// Storing other control messages in a lower priority queue
queue controlMessages (priority = 2, capacity = QUEUE_CAPACITY) {
S15Restart.any, S15Control.any, T1Turnout.any, S12Restart.any,
S12Control.any, S15Train.any, T1Train.any, S12Train.any

}

}

\

Figure 4.14: The UML-like asynchronous adaptation of Zone
No. 1 in the MoDeS? safety-logic model.

fpackage z1_adapter
import "model/Z1/7Z1"
async ZlAdapter of Z1 |
// No additional ports on the adapter

1 {
// Clock emitting a tick every millisecond
clock millisecondClock (rate = 1 ms)

// Run the wrapped component on clock events

when millisecondClock / run

// Storing clock messages in a higher priority queue

queue clockMessages (priority = 0, capacity = 8) {
millisecondClock

}

// Storing other messages in lower priority queues

Figure 4.15: The timed asynchronous adaptation of Zone No. 1
in the MoDeS? safety-logic model.

Table 4.2: Component types supported by the Gamma composition language.

H Atomic ‘ Composite

Synchronous composite component

Synchronous Statechart .
y atechat Cascade composite component

Asynchronous || Asynchronous adapter | Asynchronous composite component

35

package modes_ track

import "model/Interface/Interface"
import "model/Z1/Z1Adapter"
import "model/Z6/Z6Adapter"

async ModesTrack |
// Turnout control ports
port T1Turnout requires TurnoutControl,

port T6Turnout
// Train ports
port T1Train

requires TurnoutControl,
requires Train,
port S31Train requires Train,
// Section control ports

port SO01Control provides SectionControl ,

port S31Control: provides SectionControl

] {
// The instances of the wrapped zone models
component Z1 Z1Adapter
component 72 Z2Adapter
component 73 Z3Adapter
component Z4 Z4Adapter
component Z5 Z5Adapter
component Z6 Z6Adapter

// Binding system ports

[Z5.S11ProtocollnCW |

[Z1.T1ProtocollnDivergent |
[Z4.S01ProtocolInCW]

[Z1.S12ProtocollInCCW |

[Z2.S24ProtocolInCCW]
[Z1.S15ProtocollnCW]

[Z3.S30ProtocollnCCW]

[Z2.T2ProtocollnDivergent |
[Z4.S06ProtocollInCCW]
[Z2.S18ProtocollInCW]

.S07ProtocollnCCW |
[Z3.S19ProtocollInCW]

[Z5.S13ProtocollnCCW]
.S20ProtocollnCW |

[Z6.S27ProtocollnCW]

[Z3.S26ProtocollInCCW]

[Z6.S17ProtocollnCCW]

bind T1Turnout —> Z1.T1Turnout

bind T6Turnout —> Z6.T6Turnout

bind T1Train —> Z1.T1Train

bind S31Train —> Z2.S31Train

bind S01Control —> Z4.S01Control

bind S31Control —> Z2.S31Control

// Connecting zones

/) 7

channel [Z1.T1ProtocolOutDivergent | —o)—
channel [Z5.S11ProtocolOutCW] —o)—
channel | Z1.S12ProtocolOutCCW | —o)—
channel [Z4.S01ProtocolOutCW | —o)—
channel [Z1.S15ProtocolOutCW] —o)—
channel | Z2.S24ProtocolOutCCW | —o)—

/] 72

channel [Z2.T2ProtocolOutDivergent] —o)—
channel | Z3.S30ProtocolOutCCW | —o)—
channel | Z2.S18ProtocolOutCW | —o)—
channel [Z4.S06ProtocolOutCCW | —o)—

// 73

channel [Z3.S19ProtocolOutCW | —o)— [Z4
channel [Z4.S07ProtocolOutCCW] —o)—
channel | Z3.S20ProtocolOutCW | —o)—
channel | Z5.S13ProtocolOutCCW | —o)— [Z3
channel [Z3.S26ProtocolOutCCW | —o)—
channel | Z6.S27ProtocolOutCW | —o)—

/] 75

channel [Z5.S10ProtocolOutCW] —o)—
channel | Z6.S17ProtocolOutCCW | —o)— [Z5.S10ProtocolInCW |

Figure 4.16: The high-level MoDeS? safety-logic model.

36

components, are always statechart definitions. Currently, statecharts cannot be directly
wrapped by asynchronous adapters, they must be contained by a synchronous or a cascade
composite component. Note that this is only a syntactical restriction and does not limit
the possible behaviors of the created models.

Asynchronous Composite Component

T~

Asynchronous Adapter Asynchronous Adapter
Cascade Ccimposite Component Synchronous. Composiﬁe Component
e RN
Statechart Definition Cascade Ccimposite‘Component Statechart Definition
AN
Statechart Definition Statechart Definition

Figure 4.17: A composite model hierarchy in Gamma.

4.7 Formal Semantics of the Composition Language

This section presents the formal structures and semantics of the GCL. Subsections include
short discussions about additional practical and theoretical aspects, design decisions and
consequences.

The section starts with the definition of events and related structures (Section 4.7.1), then
the syntactic definition of a synchronous component (Section 4.7.3) and event vectors re-
lated to signals (Section 4.7.2) are introduced. Next, synchronous composite components,
as well as cascade composite components are formalized both syntactically and seman-
tically (Section 4.7.4 and Section 4.7.5). After defining event sequences (Section 4.7.6)
and asynchronous components (Section 4.7.7), asynchronous adapters and their semantics
are presented (Section 4.7.8). The section concludes with the definition of asynchronous
composite components (Section 4.7.9) and their semantics in terms of messages, occur-
rences and execution traces (Section 4.7.11). To help the reader find their way through
the following pages, the Appendix lists the symbols used in the definitions along with a
short description.

4.7.1 FEvents

Definitions of Section 4.7 considers individual events only, since ports and interfaces are
syntactic sugar that facilitate the structuring of syntactic contracts. The event definition
below models a specific event of a specific port on a specific component.

Definition 2. An event is an observable phenomenon that can occur, such as the recep-
tion of a message or the change of situation (state). Given a set of events E, the finite
domain of events is defined by the domain function D : E — {dy,...,d,}. The domain of
an event e € FE is D(e). We say that an event e € E is parameterized if |D(e)| > 1. An
instance of an event is (e, p), i.e., the event with a specific parameter value p € D(e). The

37

set of all event instances for a given event e is denoted by inst(e) = {(e,p) | p € D(e)}. In
case the absence of an event is of interest, inst| (e) is defined as inst(e) U {(e, L)}, where
(e, L) is the “null” instance that denotes the absence of the event. Finally, the set of event
instances for events in a set E is inst(E) = | .cp inst(e) (and inst| () similarly).

Discussion An event represents a declaration only. It does not need memory in and
of itself, but an instance is referred to in event vectors and messages (Sections 4.7.2 and
4.7.11), which do need memory during runtime or verification.

4.7.2 FEvent Vectors

In the synchronous domain, components communicate via signals. The formal structure
describing signals is the event vector. An event vector can be regarded as a set of cells
that can be filled with event instances, at most one instance in every cell. Event vectors
are the inputs and outputs of synchronous components.

Definition 3. Given a set of events E, an event vector vg is a function that assigns a
(possibly “null”) event instance to every event e € E such that vg(e) € inst) (e). The set
of all possible event vectors is denoted by V.

Discussion. As mentioned before, event vectors do need memory to represent them at
runtime. Events vectors can be regarded as “nullable” variables dedicated to each event
holding the occurrence and the parameters of that particular event (if any).

4.7.3 Synchronous Component

The following definition specifies the formal syntactic contract of synchronous components.
A synchronous component should have a set of states, a well-defined initial state, a set
of input and output events (collected from ports of the component) along with their
parameter domains, i.e., data type, and a deterministic transition function® that describes
the behavior of the component, which can be specified arbitrarily.

Definition 4. A synchronous component is a tuple © = (5,5, 1,0,D,T):

e S is the finite set of potential states, with s’ € S being the initial state.

e [is the set of input events and O is the set of output events such that 7N O = (.
The set of all events is denoted by F = 1UO.

e D:E —{dy,...,d,} is the domain function of the events.

e T:5xV;y— S xVp is the transition function, which determines the next state and
the output event vector of the component when executing it in a given state with a
given input event vector. Note that this definition requires the component to have
a deterministic behavior.

3This definition is extensible to nondeterministic components as well. However, this extension would
be relevant only in case of environmental models, which is not in the primary scope of the current work.

38

Discussion. Synchronous components take an event vector as an input and generate an
event vector as an output. Considering that the synchronous component is a statechart,
the definition is closest to the Virtual Finite State Machine formalism introduced in [46].
We chose this formalism because it harmonizes with the synchronous-reactive domain — as
components are executed in a lock-step fashion, there may be a need to react to multiple
events or a combination of events at the same time, which can be hanndled by complex
triggers. Nevertheless, the more widespread Event-Driven Finite State Machine, which
is the basis of most commonly used statechart formalisms, is also suitable to describe a
component by triggering to event vectors with a single “non-null” event instance only and
by ensuring that they are run every time a signal arrives (see the asynchronous adapter
in Section 4.7.8).

4.7.4 Synchronous Composite Component

Recall that a synchronous composite component is defined by instantiating a set of con-
stituent components, exporting input and output ports (events in the formal case) by port
bindings and defining channels (connecting events instead of ports in the formal case).

Definition 5. A synchronous composite component is a tuple ® = (C, I, 0,=):

C={O,,...,Ox} is the set of synchronous components constituting the composite
component, each component being O, = (S, s, I, Ok, Dk, Tk).

e I C] is the set of exported input events, where I= |_]sz1 1.
e O C O is the set of exported output events, where 0= |_|£(:1 Okg.

=:7] \I — O is the channel function that assigns an output as the source of events
to every input, with the restriction that it must not be defined for elements of I,
that is, an input is either linked to an output or is an exported input. We demand
that for each e € I, D(e) = D(=(e)).

Discussion. Note that port binding elements are not present in the definition, instead
exported events are defined. This implies that events bound together in a composite
model are handled as if they were the same, they are not differentiated in any way, as they
represent the same occurrence.

Semantics. To understand the semantics of synchronous composite components, i.e., its
behavior as a synchronous component, recall that output signals produced by a component
are sampled by other components in the next execution cycle only. To describe this
behavior, we extend the combined state space of the constituent components with the last
output event vector of all constituent components. An execution cycle is described by the
emergent transition relation of the composite component.

Definition 6. A synchronous composite component (5) is itself a synchronous component

®)O =(S,5°,1,0,D,T):
o §=51X...x Sg x Vg is the set of potential states, derived as all possible combi-

nations of the potential states of the constituent synchronous components and the
last output event vector of every component.

39

O =(sy,..., 3(}(, LO) is the initial state, where every constituent synchronous com-
ponent is in its initial state and the last output event vector L 5 € V5 assigns L to

every output event (Ve € O : Lple) =1).

e [is the set of exported input events and O is the set of exported output events as
defined in Definition 5 (remember that we denote I LI O by E).

D is implicitly defined by Dy, as D = [|[X_, Dy, and D(e) = D(e) for all e € E.

e The transition function is defined as T'((s1, ..., sk, vy), vr) =
((s1,- -+ 8Kk vp),v0), where:

— For each input event e € I of any constituent component let vi(e) = vr(e) if
e € I or vj(e) = vs(=(e)) otherwise. Note that v; implicitly defines every v,
as well, because v; = LI v,

The next state sgg of every component corresponds to the transition function
T} such that Ty (sg,vr,) = (s}, v0,)-

— vy = LK, vp, is the new vector of last output events.

The output of the composite component for each exported output e € O is

defined by the output of the constituent components: vo(e) = vy, (e).

Discussion. When executing a synchronous composite component, its constituent com-
ponents either react to an external input (in case of exported inputs) or to the output of
a constituent component (including themselves) from the previous execution cycle. This
prevents any interaction between the components during a single execution cycle, allowing
to execute the components in an arbitrary order, essentially performing partial order re-
duction statically. This key feature greatly reduces the size of the state space, making the
synchronous-reactive domain suitable for formal verification. Additionally, the definition
enables to connect a single output to multiple inputs of components, however, an input
can be connected only to a single output.

4.7.5 Cascade Composite Component

The syntactic definition of cascade composite components is the same as that of syn-
chronous composite components, apart from the additional definition of the execution
order of constituent components.

Definition 7. A cascade composite component is a tuple © = (C, X, I,0,=):

e C={Oy,...,Ok} is the set of synchronous components constituting the composite
component, each component being Oy, = (Sk, s, Ir, Ok, Dk, Tk).

e X € C* is a finite ordered sequence (with potential repetitions) of synchronous
components called the ezecution sequence specifying the components to be executed
in an execution cycle.

e I C] is the set of exported input events, where I= |_ij:1 1.

O C O is the set of exported output events, where 0= |_|,If:1 Op.

=:7 \I — O is the channel function that assigns an output as the source of events
to every input, with the restriction that it must not be defined for elements of I,
that is, an input is either linked to an output or is an exported input. We demand
that for each e € I, D(e) = D(=(e)).

40

Semantics. Cascade composite components do not delay the internal signals between
constituent components, therefore the effect of an event is computed in a single run.
Signals sent to components that are not executed anymore in the current execution cycle
are saved for the next cycle, just like in synchronous composite components.

Definition 8. A cascade composite component (C) is itself a synchronous component

©)O =(8,5°1,0,D,T):

e §=051 x...x Sk x Vg is the set of potential states, derived as all possible combi-
nations of the potential states of the constituent synchronous components and the
last output event vector of every component.

o s9=(s9,...,58%, L) is the initial state, where every constituent synchronous com-
ponent is in its initial state and the last output event vector L5 € V5 assigns L to

every output event (Ve € O : Lale) =1).

e [is the set of exported input events and O is the set of exported output events as
defined in Definition 7 (recall that I U O is denoted by E).

e D is implicitly defined by Dy, as D = | |X_, Dy, and D(e) = D(e) for all e € E.

e The transition function is T'((s1,...,sk,v4),vr) = ((s1,- .., 5% V), v0), computed

O
iteratively for every X[i] (1 <i<n,n=|X|):

— Let (s9,..., s(}(,v%) = (81,...,5K,vp) (the source state).

— Assu'me that X[i] = @k..To obtain (si,..., sk, vio), we apply Tk (st ', vr,)
= (s},,v0,) to compute s}, and vo, , where for all e € Iy, vy, (e) = v(e) if e € I,

and vy, (e) = U"OTI(:(e)) ot'herWAise. The state of other components @; € C
(j # k) remains the same (s = s}_l). The last output events vector is updated

with vo,: foralle € O, vié(e) = v, (e) if e € Oy, and vié(e) = vgl(e) otherwise.

— Finally, sj = s} for every @, € C and vp(e) = vg (e) for every e € O.

Discussion. The raison d’etre of the cascade composite semantic variant is twofold.
First, even though it requires the same amount of memory to represent as synchronous
composite components (see the definition of S), the effect of an input event on output
events is computed in a single step, further compressing the state space (assuming that a
composite component is stimulated in hopes of observing an output). Second, it is some-
times desired to “decorate” a component with auxiliary components such as adapters or
monitors (like in the verification models of the MoDeS? case study in Section 6.3.4) with-
out introducing a delay in the observable effect of an event. Furthermore, it is convenient
to think in terms of pipelines, which is best expressed with cascade composite components.

One drawback of using cascade composite components is that the outputs of constituent
components may overwrite each other if a particular component is run multiple times (but
this is still deterministic), and all outputs of all components are emitted in a single event
vector. If the temporal unfolding of the different reactions is relevant, it may be more
beneficial to use a synchronous composite component.

4.7.6 Event Sequences

In the asynchronous-reactive domain, event vectors are substituted by event sequences.

41

Definition 9. An event sequence ¢ = ((e1,p1),.-.,(en,Pn)) is a finite, possibly empty
(denoted by ¢) sequence of event instances. The set of all possible event sequences for
a set of events E with domain function D is denoted by inst(E)*, while |¢| denotes the
length of the sequence. The ith event instance in the sequence is denoted by q[i] = (e;, p;).
Finally, a permutation of a set A is a sequence o(A) and all possible permutations of A is
denoted by S,(A).

4.7.7 Asynchronous Component

Asynchronous components are syntactically very similar to synchronous components. The
only difference is the definition of transitions: it is now not a function but a relation, and
instead of taking and producing an event vector, it takes a single event instance and pro-
duces an event sequence chosen from the potential output sequences nondeterministically.

Definition 10. An asynchronous component is a tuple & = (S,s°,1,0,D, T):

e S is the set of potential states, with s € S being the initial state.

e [is the set of input events and O is the set of output events such that 7N O = (.
The set of all events is denoted by £ =1 U O.

e D:FE —{di,...,d,} is the domain of the events.

o T'C S xinst(I) xS x inst(O)* is the transition relation, which determines the next
state and the sequence of output events of the component (inst(O)*) when executing
it in a given state with a given input event. Note that this definition does not require
the component to have a deterministic behavior.

Discussion. Contrary to synchronous components, the definition of asynchronous com-
ponents is closest to Event-Driven Finite State Machines or the variant of statecharts
defined in UML. Although currently not supported by the Gamma Statechart Language,
asynchronous components could be implemented directly by statecharts. In Gamma, the
current means of defining an asynchronous statechart component is to define a synchronous
composite component containing a statechart, and wrap it in an asynchronous adapter
(these steps may become automated in a future release).

Note that allowing a non-deterministic transition relation is necessary because the order of
output events may not always be specified, e.g., in case of parallel regions. In case of syn-
chronous components, the order of events does not matter as they are collected in an event
vector. The event sequence, however, will be different depending on the internal order of
raising events. This phenomenon poses challenges to both verification and code genera-
tion, and hinders the reproducibility of test cases and counterexamples. Nondeterministic
behavior, however, is inherent in the asynchronous-reactive domain anyway.

4.7.8 Asynchronous Adapter

Recall that an asynchronous adapter wraps a single synchronous component and integrates
it for the asynchronous domain. To do this, the trigger predicate with a set of trigger
specifications have to be defined (see Section 4.6.4). Additional ports may also be defined.
Formally, the opportunity to define multiple additional ports and events on them is only a
syntactic sugar, as all of them are mapped to the control event introduced in the definition

42

below. This formalization does not include the “reset” and “run to completion” options
available in control specifications, which are currently not supported by formal verification.

Definition 11. An asynchronous adapter for a synchronous component is defined as a
tuple © = (O, e, trig):

e O = (8,89 I,,04,Ds, Ty) is the wrapped synchronous component.
e ¢, is the control event.

o trig: I;U{e.} — {T,L} is the trigger predicate that given an input event returns if
the wrapped synchronous component must be executed or not.

Semantics. The semantics of asynchronous adapters is defined in terms of an asyn-
chronous component. Observed from an external component, an adapter processes input
events one-by-one (just like asynchronous components in general), but may not always
produce an output. The role of the adapter is to “collect” messages for the wrapped syn-
chronous component, and when a message triggers execution, that is, trig(e) is T, feed
the collected messages and emit messages created from the resulting output event vector.

Definition 12. An asynchronous adapter (& for a synchronous component is itself an
asynchronous component)& = (5,5, 1,0,D,T):

e S5 = 5, x vy is the set of potential states, each state consisting of a state of the
wrapped synchronous component and a buffer input event vector collecting the in-
coming event instances.

o s = (5% 1), where L is the empty input vector.

o [= I;U{e.} is the set of input events including the input events of the wrapped
synchronous component and the control event. From an input vector v; we can
derive v, as vy (e) = vr(e) for every e € I.

e O = Oy is the set of output events defined in the wrapped synchronous component.

o D=D;U(e. = {T}) is the domain function of the wrapped synchronous component
extended with a mapping that assigns a singleton set to the control event indicating
that it is not parameterized.

e The transition function is defined as T'((ss, vr), (e,p)) = {(s}, v])} x Q, such that:

— If trig(e) = L, then the buffer input event vector is updated such that v}(e) =
(e,p) and v} (e') = vi(e’) for every € € I (e # €'), and s, = s,, while Q = {¢}
(as the set of possible output sequences) is the empty sequence in this case.

— If trig(e) = T, then the buffer input event vector is updated such that v7(e) =
(e,p) and v} (e') = vy(€') for every €' € I (e # €'), and s/, should be such that
T, (s0,0f) = (s 00), and 0 = Lp. © = Sy({{e,p) | vo(e) = p.p # L}) (as the
set of possible output sequences) is every possible permutation of the “non-null”
elements of the output vector.

43

Discussion. The order of messages between two execution-triggering messages is not
relevant as long as they do not overwrite each other, so the adapter may store an event
vector as a buffer instead of a message queue. In practice, the memory allocated for the
input vector of the wrapped component can be reused.

The definition of asynchronous adapters is very flexible. Components like an Event-Driven
Finite State Machine may be implemented by a synchronous component by declaring no
additional control events, but returning T from the trigger predicate for any event (using
the keyword “any”). With the help of the control event, however, it is also possible to
promote the “ticks” of the wrapped synchronous component to its syntactic contract,
which is the preferred way of handling even a single synchronous system in Gamma. The
definition also allows mixed solutions, e.g., a component may be triggered by any external
control event or by any event on one of its ports.

Note that according to the definition, the sequence of output events may be any permu-
tation of the “non-null” events in the output vector of the wrapped component. Although
consistent with the definition of asynchronous components, this is rather an underspecifi-
cation than real nondeterminism — most implementations would raise output events in a
fixed order, e.g., when wrapping a cascade composite component.

4.7.9 Asynchronous Composite Component

The syntactic definition of an asynchronous composite component differs from synchronous
composite components only in the definition of channels. Since asynchronous components
operate with event sequences, it is not a problem anymore if an input event has multiple
sources, so there is no restriction on channels other than parameter compatibility.

Definition 13. An asynchronous composite component is a tuple @ = (C, I, 0, =):

e C={6,,...,6g} is the set of asynchronous components constituting the compos-
ite component, each component being &), = (S, 8%, It, Ok, Dx, Tk)-

e I C] is the set of exported input events, where I= |_]sz1 1.
e O C O is the set of exported output events, where O = |_|§:1 Og.

e = C Ox1 is the set of channels that connects inputs and outputs with no restriction
apart from parameter compatibility. The set of inputs connected to an output e is
denoted by =(e) = {¢’ | (e,€’) € =}. We demand that for each e € [and ¢/ € =(e),
D(e) = D(e'). Note that =(e) used as a function maps from outputs to inputs,
contrary to the notation used in synchronous components, where it mapped from
inputs to outputs.

Discussion. In asynchronous composite components, events are transferred in messages
and processed one-by-one. It is generally assumed that components have a message queue
where sent but unprocessed messages are stored.

4.7.10 External Component

The environment of an asynchronous composite component is modeled with an external
component.

44

Definition 14. Given an asynchronous composite component @ = (C,1,0,=), an ez-
ternal component is a tuple) = (Ef*, EG™"):

e B¢ = O is the input events of the external component that serve as the output
events of the asynchronous composite component.

° ES“ = I is the output events of the external component that serve as the input
events of the asynchronous composite component.

Discussion. The behavior of the external component is considered nondeterministic.
Nevertheless, in future work we plan to restrict its behavior with scenario-based contracts.

4.7.11 Messages and Execution Traces

The semantics of asynchronous composition can be defined in terms of messages and oc-
currences. A message is defined in terms of its source and target events and its parameter.

Definition 15. Given an asynchronous composite component & with its external com-
ponent (€), an asynchronous message is a tuple m = (ep, p, Et):

eeocOU Eg?" is the source output event of the message, possibly coming from the
environment.

e p € D(ep) is the content of the message.

e E;CIU E$* is the set of target input events of the message, possibly targeting the
environment.

o Ifep € E(‘}“ then Ef C I and if E; C Ef””t then ep € O, that is, external messages
may arrive through exported input events, while external targets may be addressed
through exported output events. If ep ¢ E&" and E; € E§* then =(ep) = Ey, that
is, if the message is sent to another component in the same asynchronous composite
component, the corresponding inputs and outputs are connected with a channel.

Let send(m) denote the occurrence of creating the message in response to its source output
event and recv(m, eg,) the occurrence of consuming the message on input event ey € Ey,
thus, raising event e;. The source component of a message is denoted by sre(m) = &, € C
when ep € O, or sre(m) = © if e € EE™.

Furthermore, let t = (s, ey, s’,w) € Ty be a transition of a constituent component &,,. An
occurrence of transition ¢ is a tuple [t] = (my,t, M), where:

e m; = (eo,p, Er) is the message triggering the transition, while e; € Ej.
e t is the triggered transition.

e My is the sequence of raised messages such that |Mp| = |w| and for every 1 < i <
|Mo|, Moli] = (e, P, E7) such that w(i] = (ep,p).

45

Discussion. A message is a runtime object, i.e., it has “object identity”. For example,
in the ModesTrack model (presented in Section 4.6.4) event “Z1.S15ProtocolOutCW.go”
creates a message m with the same source and “Z4.524ProtocollnCCW.go” as the target,
with no parameter (the domain is a singleton set). Raising it again creates another different
message m’ but with the same content. Occurrences, such as message sending, receiving
and firing transitions constitute the observable behavior of an asynchronous system, e.g.,
sending message m is an observable happening at a specific point in time. Occurrences
enable us to define an execution trace, describing the behavior of asynchronous systems.

Definition 16. Given a totally ordered sequence of transition occurrences and message
sending and receiving (that is, an execution trace), let #[t], #send(m) and #recv(m,ey)
denote the position of the corresponding occurrence in the ordering. The execution of
an asynchronous composite component must obey the following rules (defining a partial
order):

1. (causality) #send(m) < #recv(m,ey) for every message m = (ep,p, Er) appearing
in the execution trace and for every ey € Ej.

2. (causality) #recv(mr,er) < #send(mo) for every transition occurrence [t] =
(myp,t, Mp) appearing in the trace where mo € Mop.

3. (message order) If #send(m) < #tsend(m') such that src(m) = sre(m’), then
recv(m,er) < #recv(m/,e}) for every ey and €} belonging to the same component
Ey, (er € Iy and €} € Ij).

4. (message order) For every transition occurrence [t] = (my,t, Mp) and for each 1 <
i, < |Mplif i < j then #send(Mo[i]) < #send(Molj]).

Discussion. The first two rules enforce causality: an occurrence cannot happen before
another occurrence that caused it to happen. The third rule is a constraint on the imple-
mentation of asynchronous systems of the GCL: the communication is demanded to be
reliable not only in terms of losing messages (implicitly forbidden by Rule 1), but also in
terms of the order of messages. The fourth rule, on the other hand, describes the natural
mapping between output event sequences and the generated message sequences. These
requirements are usually not impossible to meet, while the lack of these assumptions would
greatly hinder verifiability.

4.8 Gamma Test Language

The Gamma Test Language (GTL) supports the definition of execution traces regard-
ing the components of the GCL. Such execution traces formally describe the behavior of
Gamma components, that is, what states a particular component assumes (state config-
uration and variable values) and what events it produces in response to certain inputs
(input events, time elapse and the scheduling of the component). Execution traces are
important during

1. model checking, when a counterexample (or proof) is revealed and it must be con-
structed and presented in an intuitive way. In this case, the back-annotator module
of the Gamma framework produces a GTL model;

46

2. testing, when the user wants to test whether the implementation of the designed
component (both from the Gamma framework and 3rd-party modeling tools) actu-
ally behave as expected. In this case, either the test-generator module of the Gamma
framework can produce a test suite with the necessary acts and assertions, or users
can define tests manually.

As presented in Section 4.6.3, synchronous Gamma components conform to a turn-based
semantics, where turns are called cycles. These cycles are represented by steps in an
execution trace. In a particular step acts and assertions can be defined. An act can be
either

e an input event raise, which describes the raising of an event on a system port of the
particular component;

e time elapse describing the elapse of time in milliseconds;
e scheduling, which describes either

— the scheduling of the component in case of a synchronous component, or

— the scheduling of a contained asynchronous instance in case of an asynchronous
component, as asynchronous component instances run individually.

An assertion can refer to either

e an output event raise, which describes the raising of an event on a system port by
the particular component;

e the value of a variable declaration, where the value can be expressed with an arbitrary
expression, or

e a state configuration, where the supposedly active states of a synchronous compo-
nent instance are defined. Note that asynchronous component instances cannot be
referred to in the description of such state configurations, because they do not have
separate states: their states derive from the states of the wrapped synchronous com-
ponents.

Execution traces contain every essential behavioral detail of a Gamma component as these
details collectively define the precise behavior of the component. However, in case of tests
some details may be unimportant, e.g., the user is interested only in the raised events of
the component and not in its state configurations. In such cases, the irrelevant parts of
the execution traces may be removed to allow for more general testing.

Figure 4.18 presents an execution trace of component Z1 of the MoDeS? safety-logic.

47

import "model/Z1/7Z1"
component 71

step {
assert {

// Initial "collective" state of the composite component

states {
// Variable values
S12.isDisabled = false,
S12.isOccupiedCW = false ,
S12.isOccupied = false,
S12.isOccupiedCCW = false ,
S15.isDisabled = false,
S15.isOccupiedCW = false ,
S15.isOccupied = false
S15.isOccupiedCCW = false ,
// States configurations
S12. GlobalState ,
T1.Straight ,
S15. GlobalState

}
}
}
step {
act {
// Raising in—event occupy on port S12Train
raise S12Train.occupy
// 100 millisecond elapse
elapse 100
// Scheduling the composite component
schedule component
}
assert {
// Out event raised by the composite component
raised S12Control.enableSection
states {
// Variable values changed compared to the previos
S12.isDisabled = false,
S12.isOccupiedCW = false ,
S12.isOccupied = true,
S12.isOccupiedCCW = false ,
S15.isDisabled = false,
S15.isOccupiedCW = true,
S15.isOccupied = false,
S15.isOccupiedCCW = false ,
S12. GlobalState ,
T1.Straight ,
S15. GlobalState

step

Figure 4.18: An execution trace regarding Zone No. 1 in the
MoDeS? safety-logic model, describing the consecutive states of the

component if a train arrives to section S12.

48

Chapter 5

Implementation

This section introduces implementation details regarding the development of the Gamma
framework. It starts with the introduction of the tools and frameworks Gamma builds
upon. Next, the architecture of the framework is presented, which is followed by the
introduction of the modeling tools integrated to the framework. Finally, the source code
generator of Gamma is presented.

5.1 Technologies

We have put a considerable amount of effort into finding the appropriate frameworks upon
which the Gamma framework could be implemented. As we prefer open-source technolo-
gies with receptive communities, we chose the Eclipse environment with the Eclipse Mod-
eling Framework (EMF). Moreover, the VIATRA transformation framework was used for
the implementation of the model transformations and the Xtext framework for the devel-
opment of the modeling language. These technologies fit well into the Eclipse environment.

5.1.1 Eclipse Environment

Eclipse! is an open-source, platform-independent integrated development environment
(IDE). It consists of a base workspace (the basis of all Eclipse distributions) and a plug-in
system. The plug-in system supports the customization of the environment for various
purposes, e.g., EMF and Yakindu can be installed to support the modeling of statecharts
and we can install the Gamma framework to support the composition and verification of
reactive systems.

Eclipse Modeling Framework FEclipse Modeling Framework? (EMF) is an Eclipse-
based modeling framework with a strong support for code generation. EMF aims to
facilitate the development of modeling tools and other applications offering a structured
data model called Ecore. Based on the model specification defined in XML Metadata
Interchange® (XMI) format, EMF provides design support and code generator tools to
derive a set of Java classes describing objects of the model. Furthermore, a set of adapter
classes are generated, which support users in the modification and editing of their models.

https://eclipse.org
2http://eclipse.org/modeling/enf/
3https://www.omg.org/spec/XMI/

49

https://eclipse.org
http://eclipse.org/modeling/emf/
https://www.omg.org/spec/XMI/

EMF is considered as a de facto standard in the development of domain-specific modeling
languages, providing an environment to numerous technologies and frameworks, including
server solutions, persistence frameworks, Ul frameworks and transformation frameworks.

5.1.2 Xtext Framework

Xtext? is an open-source Eclipse framework for the development of programming languages
and domain-specific languages. Languages can be specified using a textual grammar.
Xtext is based on the EMF project: metamodels of the defined languages are Ecore models
which can be automatically generated from the grammar, or can be manually given. In
addition, Xtext provides several features to support development in the language: a parser,
a linker, a compiler, as well as a typechecker and editing support for Eclipse (syntax
highlighting, code completion, etc.).

The textual syntax of the Gamma language has been built using the Xtext framework,
but each part of the metamodel of the Gamma language was created manually.

Xtend Xtend® is a general-purpose, high-level, statically typed object-oriented program-
ming language that is built on the Xtext framework. Xtend source code is automatically
compiled to Java code, thus code written in Xtend can be integrated with all existing
Java libraries easily. Also, Xtend has its roots in Java both syntactically and semantically,
but it offers a more compact syntax. Furthermore, Xtend proposes additional function-
ality that is not supported by Java, e.g., type inference, operator overloading, extension
methods and dispatch methods. In addition to object-oriented features, Xtend integrates
traits of functional programing, such as lambda expressions, which also helps to keep the
codebase small.

The model transformation and source code generation rules have been implemented using
the Xtend language. Unique features, such as extension methods, dispatch methods and
lambda expressions have been used extensively during the development of the Gamma
framework. As a result, the codebase has remained relatively small while the source code
itself has remained readable and concise.

5.1.3 VIATRA framework

VIATRAS is an Eclipse project that supports the development of model transformations
with a large variety of tools. The model transformations of the Gamma framework heavily
rely on VIATRA.

Most importantly, VIATRA offers a language that supports the definition of graph patterns
over EMF models in a declarative way [47]. Since EMF models can be regarded as typed
graphs where classes are nodes and their associations are edges, their transformations can
be executed as graph transformations. With the declarative definition of graph patterns,
VIATRA allows users to focus only on the types of elements, associations and the value
of attributes, the retrieval of the corresponding elements is taken care of by VIATRA.

Furthermore, VIATRA supports the definition of model transformations using transfor-
mation rules. Each rule is based on a single graph pattern (declarative approach), which
specifies the elements to be transformed (LHS). The RHS of the rule can be implemented

‘http://eclipse.org/Xtext/
*http://eclipse.org/xtend/
Shttps://www.eclipse.org/viatra/documentation/

50

http://eclipse.org/Xtext/
http://eclipse.org/xtend/
https://www.eclipse.org/viatra/documentation/

in Xtend (imperative approach). Also, the order in which the transformation rules are
executed needs to be specified either with 1) priorities or 2) manual function calls in the
imperative code.

5.2 Architecture

The architecture of Gamma is plug-in-based, which makes the framework modular, cus-
tomizable, and easily extensible. The functionalities introduced in Chapter 3 are imple-
mented as a collection of Eclipse plug-ins based on EMF'. Figure 5.1 depicts the architecture
of the framework, presenting the plug-ins and their dependencies.

Yakindu UPPAAL
Test Generator
Language Language
A = A
: l :
1 A 4 N 1 <
Yakindu - Test ~—- Formal Verifier
Transformer i Language :
: I J I J
| | |
I I I
I | I
| Y . \
I " I
: Composition <«€«—L - Code Generator
: Language
S 4
|
Y
Constraint L Statechart L Interface
Language Language Language

Figure 5.1: The plug-in dependencies of the framework. Plug-
ins that are part of the core framework are depicted with white
rectangles, whereas external dependencies are depicted with gray
rectangles.

Owing to the plug-in based architecture, it is possible to use only a subset of the Gamma
framework functionalities by loading only the necessary plug-ins. This solution enables to
save resources, e.g., reduce memory footprint. Furthermore, the plug-in based architecture
supports the easy extension of the framework. Additional engineering modeling languages
as well as analysis languages can be introduced to the Gamma framework by defining the
necessary model transformations and implementing them as a plug-in.

5.3 Integrated Modeling Languages

Currently, a single engineering and a single formal modeling language is integrated to
the Gamma framework, Yakindu and UPPAAL, respectively. The integration of addi-
tional ones is supported by the plug-in architecture of Gamma, as presented in Section
5.2. Also, the integration of an additional model checking framework called Theta [48] is
under development. This section introduces the features of modeling languages Yakindu

o1

and UPPAAL, which heavily influenced the design and implementation techniques of the
Gamma framework, as well as the principles of the Theta integration.

5.3.1 Integrated Engineering Language: Yakindu

YAKINDU Statechart Tools (SCT)7 is a toolkit for the model-driven development of
reactive embedded systems by supporting the creation of complex hierarchical statecharts.
Yakindu provides a graphical editor where the structural elements can be chosen from a
palette and instantiated in the view. Interfaces, variables, triggers, guards and actions
of transitions can be specified using a textual notation. A Yakindu statechart with basic
model elements is depicted in Figure 5.2. To support users in designing well-formed
statecharts the tool provides basic validation features. Although, these rules are not as
comprehensive as the validation rules of Gamma, live syntactic and semantic checks on
the entire model are included, therefore the users get feedback on their work immediately.

!

MotionSensing

user.on_button [user.brightness < 10]

rl
Y sensor.motion
user.off _button

—_——— Manual
l sensor.motion
Off _ On entry /
entry / entry / | useron_button | yserbrightness += 1
user.brightness = 0 after 30s user.brightness = 1
e

Figure 5.2: The graphical representation of a Yakindu statechart.

Syntactically correct statecharts can be simulated. Declared events can be raised using
a graphical interface and the change of states and variables can be observed in different
views. With this feature, basic testing of statecharts can be done at design time.

Yakindu also supports source code generation from syntactically correct and validated
statecharts. The generated code presents well-defined interfaces, which hide the details of
implementation and provide access only to event raising, variable check and active state
check. Code generation can be customized with configuration files specifying the expected
features of the generated code, e.g., timer services and observer registration.

The Gamma framework utilizes the following Yakindu functionalities:

e Gamma statecharts can be created graphically with the help of the Yakindu editor.
A user can create a Yakindu statechart, which can be transformed to the Gamma
language by means of the Yakindu-Gamma model transformer.

e The Gamma framework reuses the Yakindu source code generators when generating
a composite system implementation. Gamma generates only the source code that is
responsible for the connection of components; the implementation of the wrapped
statecharts are derived by Yakindu.

"https://www.itemis.com/en/yakindu/state-machine/

92

https://www.itemis.com/en/yakindu/state-machine/

5.3.2 Integrated Model Checker: UPPAAL

UPPAALS is a software tool for the modeling, validation, simulation and formal verification
of networks of timed automata. UPPAAL uses the timed automata formalism which is
the extension of the finite automata formalism presented in Section 2.2: it supports data
types and variables as well as the synchronization of concurrent automata through channels
[49, 50]. An UPPPAL automaton with synchronization channels is depicted in Figure 5.3.

EntryLocation0 Gamma
exitChanOfAlpha!
C\ entryChanOfAlpha! O start? /C
entryOfAlpha Alpha exitOfAlpha3

Figure 5.3: The graphical representation of an UPPAAL automa-
ton.

UPPAAL is capable of performing formal verification on the defined timed automaton
network using model checking techniques. Requirements on the systems’ behavior can be
described with temporal logic expressions. The language supported by UPPAAL is the
subset of computation time logic (CTL) [51]. CTL is a branching-time logic which means
its model of time is a tree-like structure. It starts from a root (the initial state) and each
branch represents a possible execution sequence. The nodes of the branches represent the
states the system assumes throughout the execution sequence.

An UPPAAL CTL expressions consists of a path quantifier, a temporal operator and a
state expression [52]. The state expression can be any boolean expression that is valid in
UPPAAL. UPPAAL does not support the combination of temporal operators, but a special
class of expressions is supported by the “leads to” operator. The possible combination of
path quantifiers and temporal operators are as follows.

e A[] ¢: ¢ must hold in all states of all paths of the execution tree.

e A<> ¢: ¢ must hold in at least one state of each path of the execution tree.

e E[] ¢: ¢ must hold in all states of at least one path of the execution tree.

e E<> ¢: ¢ must hold in at least one state of the execution tree.

e ¢ ——> 1 if ¢ occurs in state s, ¢ must hold in at least one state of each path of the

execution tree starting from state s. It is equivalent with the following expression:
A[] (¢ implies A<>).

Figure 5.4 depicts the CTL expressions that are accepted by UPPAAL. The filled circles
represent system states where the state expression ¢ holds.

8http://www.uppaal .org/

93

http://www.uppaal.org/

E< ¢

O—0 O < Ne—0
| ¢
Q/O\O O -o/ 3 @/C Mg S

Figure 5.4: Temporal operators supported by UPPAAL.

Source: [52].

Supporting formal verification with the Gamma framework

As presented in Section 3.5, formal verification, back-annotation of the results and gener-
ation of a state-covering test-suite are supported with a GUI (see Figure 5.5). Thus, users
do not have to deal with the generated formal models, the manual construction of CTL
expressions and the handling of the UPPAAL model checker. Using this window users

can formulate their conditions they want to check with regard to their selected Gamma
models.

|£ | UPPAAL Query Generator
Options

Select the query mode:

"Might eventualiy”

Select an element below to insert into the condition.

| e | State selector:

Example:
The system should be able 1o initialize.

E<>: It is possible to reach a state where the following condition holds.

Variable selector:

Operator selector:

main_region.Global State

isDisabled

AND

Condition:

‘ Verify H Reset || Generate Test Set

UPPAAL query:

Figure 5.5: The window supporting the verification functionalities
of the Gamma framework.

In the upper-left part of the window users can choose the temporal operator that specifies
the states in which the formulated conditions must hold. Each temporal operator sup-
ported by UPPAAL can be selected. Also, these temporal operators are presented with
examples. The selectors in the upper-right part can be used to formulate the desired con-
dition using States, Variables and Operators. Selector States contains the states of

54

the model under verification, whereas selector Variables contains its variables. Selector
Operator contains the operators that are accepted by UPPAAL. It is important to note
that conditions can also be formulated by manually typing in the Condition text field.

Whether the condition holds on the model can be verified by clicking on the Verify
button. Only well-formed conditions can be given to verification, which is checked right
before starting the verification process. In case of ill-formed conditions the user is notified
in the lowermost text field.

If the given condition is well-formed, the verification starts. UPPAAL examines whether
the condition holds or not and can generate an execution trace serving as proof or counter-
example. Such execution traces are automatically back-annotated to the Gamma Test
Language (see Section 4.8), so users can examine them in a familiar domain instead of
the UPPAAL language. In addition to Gamma traces, JUnit test classes based on the
UPPAAL traces are automatically generated during back-annotation.

Button Generate Test Set can be used to generate a state-covering test suite for the
selected Gamma model. The automatic generation of transition-coverage test suite is not
yet supported on the GUL

5.4 Generated Source Code: Java

This section introduces the Java code generator of the Gamma framework in detail, which
supports source code generation for composite models. The code generator is capable
of generating functionally working code from interfaces, synchronous components (syn-
chronous composite components and cascade composite components) and asynchronous
components (asynchronous adapters and asynchronous composite components). However,
code generation from statechart models is not supported, for this purpose, the code gen-
erator of Yakindu is used. Nevertheless, such generated statechart models are integrated
to the Gamma code base using wrapper classes.

5.4.1 Interfaces

Every Gamma interface is transformed to a Java interface, each containing three inner
interfaces: Listener, Provided and Required. Inner interface Provided is realized by Java
classes that represent ports realizing the particular Gamma interface in provided mode.
Similarly, interface Required is realized by classes that represent ports realizing the par-
ticular Gamma interface in required mode. Additionally, Listener contains two interfaces,
also called Provided and Required, which describe contracts for listeners processing output
events on ports implementing the interface in the respective mode. Figure 5.6 describes
the Java interface that is generated from the Gamma interface Train, presented in the
lower right of Figure 4.5.

Inner interface Listener.Provided contains a raising method for each event that can be
sent by a port realizing the particular Gamma interface in provided mode. For example,
Gamma interface Train has two out events, occupy and unoccupy, thus, a port realizing
it in provided mode is able to dispatch occupy and unoccupy events, which is indicated
by raising methods raiseOccupy and raiseUnoccupy. If the Gamma event had parameter
declarations, the corresponding Java method would have the necessary parameters as well.
Similarly, Listener.Required contains a raising method for each event that can be sent by
a port realizing the particular Gamma interface in required mode. In this example, as
Gamma interface Train does not contain any in events, Listener.Required is empty.

95

Fpublic interface TrainInterface {
interface Provided extends Listener.Required {
// Checking out—events
public boolean isRaisedOccupy () ;
public boolean isRaisedUnoccupy () ;
// Handling registered listeners
void registerListener (Listener.Provided listener);
List<Listener.Provided> getRegisteredListeners () ;
}
interface Required extends Listener.Provided {
// The raising methods of Listener.Provided and listener handlers
void registerListener (Listener.Provided listener);
List<Listener .Provided> getRegisteredListeners () ;
}
interface Listener {
interface Provided {
// Raising in—events
void raiseOccupy () ;
void raiseUnoccupy () ;
}
interface Required {
}
}
}

Figure 5.6: Java interfaces generated form interface Train in the
safety-logic model of MoDeS?.

Interface Provided extends Listener.Required. This ensures that each event that can
be sent by a port realizing the particular interface in required mode (indicated by Lis-
tener.Required) can be accepted by any other port realizing it in provided mode (indicated
by Provided). As Listener.Required is empty, Provided does not contain any method that
would indicate event reception. Also, interface Provided contains “is raised” methods
(isRaisedOccupy and isRaisedUnoccupy), which can be used to check whether a certain
event has been dispatched recently: the last cycle in case of synchronous components and
the last cycle of wrapped synchronous components in case of asynchronous components.
Both Provided and Required interfaces contain methods registerListener and getRegis-
teredListeners, which support the registration of listener objects. When a port dispatches
a particular event, the corresponding “raise” methods of the registered listener objects
are called. Interface Required is very similar to Provided; the difference is that it turns
interfaces the other way around as described in Section 4.6, otherwise all its functionalities
are analogous.

Note that if a Java class represents a port realizing a particular interface in provided
mode (that is, it realizes interface Provided), and another Java class represents a port of
the same interface in required mode (realizing interface Required), their instances can be
connected very easily. Both have to be registered to the other one using the registerLis-
tener method, after which they can automatically dispatch events to each other using the
methods described by Listener.Required and Listener. Provided.

5.4.2 Components

Each Gamma component is transformed to a Java class. The generated Java classes are
slightly different depending on their type, i.e., statechart, synchronous composite or asyn-

o6

chronous composite. Moreover, a simple Java interface is generated for each component,
through which the basic functionalities of the component, (initialization/reset, ports and
in case of synchronous components, the initiation of a cycle) are reachable.

Synchronous components

Java classes generated from synchronous components can either represent an atomic com-
ponent, that is, a statechart, or a composite component, that is, a synchronous composite
component or a cascade composite component.

Atomic components Figure 5.7 and 5.8 describe the most important elements of the
Java interface and Java class generated from Gamma statechart Section (presented in
Figure 4.6). A Java class representing an atomic component has the following fields:

e a single statechart object implementing the behavior of the component (generated
by integrated, external code generators or implemented manually),

e port objects representing Gamma ports, and

e a pair of queue implementations responsible for storing incoming events.

The queues are used as buffers of events before they are written into the cells of the
statechart implementation (recall the event vector definition in Section 4.7.2). It is impor-
tant to note that this is the only place where events are buffered, composite components
containing these atomic components merely delegate the dispatch of events in accordance
with the specified port bindings.

Furthermore, the queues are used in accordance with the semantics of the container com-
posite component. If the container is a synchronous composite component, the contained
components cannot affect each other in a single execution cycle, therefore, events under
process (received in the previous cycle) and events received in the current execution cycle
(to be processed in the next cycle) have to be separated and stored in different queues.
Accordingly, the queues have to be swapped at the beginning of each execution cycle to
facilitate the process of events received in the previous cycle and store new incoming events
in the emptied queue. Nevertheless, only one queue is used in case of cascade composite
components as the result of an event dispatch is observable immediately by the recipients
in this case.

The interface of an atomic component provides access to the contained port instances,
enables the reset and the execution of the component.

Composite components Figure 5.9 and 5.10 describe the most important elements
of the Java interface and Java class generated from the Gamma synchronous composite
component Z1 (presented in Figure 4.12).

The fields represent contained component instances as well as ports used for communica-
tion with the environment (similarly to atomic components).

Method initialize is responsible for creating the channels, that is, it registers the cor-
responding ports of components as listeners using the registerListener method of ports.
Furthermore, a getter methods is generated for each port instance. This way the registra-
tion of unique listeners is also supported, thus, users can be notified about the occurrence
of certain events.

o7

fpublic interface SectionStatechartInterface {

// Getting the ports
Protocollnterface.Required getProtocollnCCW () ;
Protocollnterface.Provided getProtocolOutCCW () ;
Protocollnterface.Required getProtocollnCW () ;
Protocollnterface.Provided getProtocolOutCW () ;
SectionControllnterface.Provided getSectionControl();
TrainInterface.Required getTrain ();

// Resetting the component

void reset ();

// Initiating a cycle

void runCycle () ;

Figure 5.7: Java interface generated for statechart definition Sec-
tion in the safety-logic model of MoDeS3.

As mentioned in Section 4.6.3, in case of synchronous composite components, the
contained components cannot affect each other in a single cycle, but they process the
received events at the beginning of the next cycle. This mechanism is supported with a
pair of queues in the atomic component implementation, but the swap of queues have to
be controlled from the synchronous composite component implementation.

The synchronous composite component can be executed by calling either its runCycle or
runFullCycle method. Method runCycle, implementing the run once action, consists of
the following steps.

1. It swaps the event queues of the contained components (changeEventQueues).
2. Calls method runComponent, which has the following effects.

(a) It clears the output cells of contained atomic components indicating transmis-
sion of signals in the previous cycle. (Recall that output events are present for
a single execution cycle only.)

(b) It initiates a single cycle on each contained component.

(c) It notifies any listeners registered to the system ports.

The runCycle method of cascade composite components are very similar. The only
difference is that they do not have a changeEventQueues method as their components
receive the events in the same cycle they have been dispatched. Furthermore, the contained
components are executed (possibly multiple times) in the order as specified in the execution
list.

Method runFullCycle, implementing the run to completion action, is responsible for ex-
ecuting the runCycle method as many times as it is needed to ensure that every gener-
ated event in the contained component gets processed. This is supported by the isEven-
tQueueEmpty method that checks whether any of the contained components has unpro-
cessed events.

Asynchronous adapters
A Java class representing an asynchronous adapter has the following fields:

e a thread on which the adapter is executed,

o8

rpublic class SectionStatechart implements SectionStatechartInterface {
// The wrapped statemachine implementation
private SectionStatemachine sectionStatemachine =

new SectionStatemachine () ;
// Port instances
private ProtocolInCW protocolInCW = new ProtocolInCW () ;
private ProtocollnCCW protocolInCCW = new ProtocollnCCW () ;
private ProtocolOutCCW protocolOutCCW = new ProtocolOutCCW () ;
private ProtocolOutCW protocolOutCW = new ProtocolOutCW () ;
private Train train = new Train();
private SectionControl sectionControl = new SectionControl();
// Event queues for the synchronization of statecharts
private Queue<Event> eventQueuel = new LinkedList<Event>();
private Queue<Event> eventQueue2 = new LinkedList<Event>();

/*% Changes event queues and initiates a cycle run. =/
public void runCycle() {

changeEventQueues () ;

runComponent () ;

}

/x% Initiates a cycle run without changing the event queues. x/
public void runCycle() {
Queue<Event> eventQueue = getProcessQueue () ;
while (!eventQueue.isEmpty()) {
// Such event objects are created when an event on a port is raised
Event event = eventQueue.remove () ;
/* Events are identified by a string ID:
<target —port—name>.<event—name> x/
switch (event.getEvent()) {
// Writing the cells of the contained statechart implementation
case "ProtocollInCW.Go":
sectionStatemachine . getSCIProtocollInCW () .raiseReserve () ;
break ;
case "ProtocollInCW .Stop":
sectionStatemachine . getSCIProtocollnCW () .raiseRelease () ;
break;
// Writing of additional cells

}
}

// Executing the contained statechart implementation
sectionStatemachine.runCycle () ;

}

}

-

Figure 5.8: Generated Java class wrapping statechart model Sec-
tion in the safety-logic model of MoDeS?.

99

fpublic interface ZlInterface {

// Getting the ports

Protocollnterface.Required getS12ProtocollnCCW () ;
Protocollnterface.Provided getS12ProtocolOutCCW () ;
SectionControllnterface.Provided getS12Control();
TrainInterface.Required getS12Train();

// Resetting the component

void reset ();

// Initiating cycles

void runCycle();

void runFullCycle () ;

Figure 5.9: Java interface generated for component Z1 in the
safety-logic model of MoDeS?.

an object representing the wrapped synchronous composite component,

port objects,

timer objects implementing clocks, and

a multiqueue serving as a “bundle” for the separate messages queues.

The multiqueue is a third-party open-source concurrent collection implementation, which
extends the existing Java concurrent collection library.? A multiqueue is a data structure
with one head and multiple tails, allowing readers to block on more than one queue.
It supports the definition of priorities for different sub-queues and provides round-robin
selection of elements among sub-queues with the same priority. Figure 5.11 describes
the important elements of the Java class generated from the timed Gamma asynchronous
adapter Z1Adapter (presented in Figure 4.15).

In the example, a single multiqueue is defined (___asyncQueue) which is instantiated with
subqueue clockMessages (additional subqueues protocolMessages and controlMessages are
not described in this example), representing the Gamma message queue. Note that the
subqueue is instantiated with parameters priority and capacity as defined in the Gamma
model.

As an asynchronous adapter represents an independently running unit, the generated class
implements the Runnable Java interface. The instances of the class can run on separate
threads implementing the following behavior (see method run).

1. An event is retrieved from the multiqueue. The multiqueue either blocks if it is
empty or returns an event from the highest priority non-empty sub-queue.

2. Method isControlEvent is used to check whether the event is a control event, that is,
it can be processed by the wrapped component (not a control event) or not (control
event).

3. If the event is not a control event, it is forwarded to the wrapped component (for-
wardEvent) so the wrapped component can process it when a cycle is initiated.

4. The necessary control actions are performed, that is, method performControlAction
checks whether the given event indicates the initiation of a single step (single cycle),

“https://github.com/mariancbarrios/linked-blocking-multi-queue

60

https://github.com/marianobarrios/linked-blocking-multi-queue

public class Z1 implements ZlInterface {
// Component instances
private SectionStatechart S15 = new SectionStatechart ();
private TurnoutStatechart T1 = new TurnoutStatechart () ;
private SectionStatechart S12 = new SectionStatechart ();
// Port instances
private S12ProtocollnCCW s12ProtocollnCCW = new S12ProtocollnCCW () ;
private S12ProtocolOutCCW s12ProtocolOutCCW = new S12ProtocolOutCCW () ;
private S12Control s12Control = new S12Control();
private S12Train s12Train = new S12Train();
// Additional ports connected to T1 and S15...

/x% Creates the channel mappings between the contained components. x/

private void initialize () {
// Registration of simple channels between T1 and S12
T1l.getProtocollnStraight ().registerListener (S12.getProtocolOutCW ())
T1l.getProtocolOutStraight ().registerListener (S12. getProtocollnCW ());
S12.getProtocollInCW () . registerListener (T1.getProtocolOutStraight ());
S12.getProtocolOutCW () . registerListener (T1.getProtocollnStraight ())
// Channels between T1 and S15

I

I

}

/%% Resets the contained components (recursively). =/
public void reset () {

S15.reset ();

T1l.reset ();

S12.reset () ;

}

/x% Initiates cycle runs until all event queues are empty. x*/
public void runFullCycle() {
do {
runCycle () ;

}

while (!isEventQueueEmpty ());

}

/+* Changes event queues and initiates a cycle run. %/
public void runCycle() {
// Changing the event queues for all synchronous subcomponents
changeEventQueues () ;
// Composite type—dependent behavior
runComponent () ;

}

/%% Initiates a cycle run without changing the event queues. x/
private void runComponent () {

// Starts with the clearing of the previous out—event flags

clearPorts () ;

// Running contained components

S15.runComponent () ;

T1.runComponent () ;

S12.runComponent () ;

// Notifying registered listeners

notifyListeners () ;

Figure 5.10: Java class generated from component Z1 in the
safety-logic model of MoDeS?.

61

rpublic class ZlAdapter implements Runnable, Z1AdapterInterface {

// Thread running this adapter instance

private Thread thread;

// Wrapped synchronous instance

private Z1 zl = new Z1();

// Port instances

private S12ProtocollInCCW s12ProtocollnCCW = new S12ProtocollnCCW () ;
private S12ProtocolOutCCW s12ProtocolOutCCW = new S12ProtocolOutCCW () ;

// Clocks
private ITimer timerService;
private final int millisecondClock = 0;

// Main queue
private LinkedBlockingMultiQueue<String , Event> __ asyncQueue =
new LinkedBlockingMultiQueue<String , Event>();
// Subqueues
private LinkedBlockingMultiQueue<String , Event>.SubQueue clockMessages;

private void init () {
___asyncQueue.addSubQueue (" clockMessages", 0, 8);
clockMessages = __asyncQueue.getSubQueue("clockMessages");

// Creating clock callback for the single timer service
timerService.setTimer (createTimerCallback (), millisecondClock, 1, true);
// Note: the thread has to be started manually

}

@Override
public void run() {
while (!Thread.currentThread ().isInterrupted()) {
Event event = __ asyncQueue. take () ;
if (!isControlEvent (event)) {
// Event is forwarded to the wrapped component
forwardEvent (event) ;
}
performControlActions (event);
}
}

private void performControlActions(Event event) {

/+ Recall the ID structure of events: <target—port—name>.<event—mame>.
Additionally , asynchronous adapters can contain events of clocks,
which are identified by the clock name. x/

String [] eventName = event.getEvent().split("\\.");

// Clock trigger

if (eventName.length = 1 && eventName [0]. equals (" millisecondClock")) {
zl.runCycle () ;
return;

}
}

/x% Starting the execution of the component on a separate thread. x/
public void start () {

thread = new Thread(this);

thread.start () ;

}

Figure 5.11: Java class generated from the asynchronous adapta-
tion of Zone No. 1 Z1Adapter in the safety-logic model of MoDeS?.

62

a full step, or the reset of the wrapped component (see Definition 12). The wrapped
component is handled accordingly.

The execution of the object representing a synchronous component wrapper can be stopped
by sending an interruption signal to its parent thread.

Asynchronous composite components

A class representing an asynchronous composite component has the following fields:

e objects representing contained asynchronous components,
e port objects, and

e channel objects.

The generated Java class is simple, Figure 5.12 describes the important elements of the
Java class generated from the Gamma asynchronous composite component ModesTrack
(presented in Figure 4.16).

The functionality of an asynchronous composite component class is to bundle the con-
tained components and forward incoming events from the system ports, and incoming
events of channels to the corresponding ports of contained components. Note that this
can be considered as flattening the asynchronous hierarchy to the asynchronous adapter
components, as they are the objects that store and handle asynchronous messages. Nev-
ertheless, asynchronous composite components make a very important part in supporting
hierarchy and the separation of concern and useful for the description of multi-threaded
applications.

Contrary to the previously presented component types, classes of asynchronous composite
components connect the ports of contained components using specific channel objects. For
each type of channel (defined by the interface of the connected ports) a simple Java class
is generated, depicted in Figure 5.13. A channel class has a simple and clear interface. Its
main goal is to provide a clear interaction point between asynchronous components (more
specifically between their ports), even if they are not executed in the same process, but,
for example, on different computational nodes. To provide inter-process communication,
e.g., based on a DDS implementation, only these channel interfaces have to be realized
along with the communicating agent, modification in the generated Java classes is not
necessary.

63

-
public class ModesTrack implements ModesTrackInterface {
// Component instances

private
private
private
private
private
private

Z1Adapter
Z2Adapter
Z3Adapter
Z4Adapter
Z5Adapter
Z6Adapter

71
72
73
74
75
76

new
new
new
new
new
new

Z1Adapter
Z2Adapter
Z3Adapter
Z4Adapter
Z5Adapter
Z6Adapter

()
9]
()
()
0
0

I
)

’

’

)

I

// Port
private

instances
T1Turnout

t1Turnout new T1Turnout();

private
private

T6Turnout t6Turnout new T6Turnout () ;
T1Train t1Train = new T1Train();

private
private

S31Train s31Train = new S31Train();
S01Control s01Control = new S01Control();

private S31Control s31Control = new S31Control();

// Channel instances

private ProtocolChannellnterface channelS12ProtocolOutCCWOfZ1;
private ProtocolChannellnterface channelS15ProtocolOutCWOfZ1;
private ProtocolChannellnterface channelT1ProtocolOutDivergentOfZ1 ;

private void init () {

// Creating the channel objects
channelS15ProtocolOutCWOfZ1 =

new ProtocolChannel (Z1.getS15ProtocolOutCW());
channelS15ProtocolOutCWOfZ1.registerPort (Z2. getS24ProtocollInCCW ()) ;
channelS26ProtocolOutCCWOfZ3 =

new ProtocolChannel (Z3.getS26ProtocolOutCCW ()) ;
channelS26ProtocolOutCCWOfZ3 . registerPort (Z6.getS27ProtocolInCW ()) ;
channelS12ProtocolOutCCWOfZ1 =

new ProtocolChannel (Z1.getS12ProtocolOutCCW ()) ;
channelS12ProtocolOutCCWOfZ1 . registerPort (Z4.getSO01ProtocolInCW ());
channelSO1ProtocolOutCWOfZ4 =

new ProtocolChannel (Z4.getS01ProtocolOutCW ());
channelSO01ProtocolOutCWOfZ4 . registerPort (Z1.getS12ProtocollInCCW ()) ;
channelT1ProtocolOutDivergentOfZ1

new ProtocolChannel (Z1.getT1ProtocolOutDivergent());
channelT1ProtocolOutDivergentOfZ1.registerPort (Z5.getS11ProtocollnCW ());

public void start () {
Z1l.start ();

Z6 start () ;
}

Figure 5.12: Java class generated from the asynchronous compos-
ite component ModesTrack in the safety-logic model of MoDeS3.

64

~
public interface ProtocolChannellnterface {

void registerPort (Protocollnterface.Provided providedPort);
void registerPort(Protocollnterface.Required requiredPort);

}

public class ProtocolChannel implements ProtocolChannellnterface {
// Single provided, possibly multiple required ports
private Protocollnterface.Provided providedPort;
private List<Protocollnterface.Required> requiredPorts =
new LinkedList<Protocollnterface.Required >();

public ProtocolChannel(Protocollnterface.Provided providedPort) {
this.providedPort = providedPort;

}

public void registerPort(Protocollnterface.Provided providedPort) {
// Former port is forgotten
this.providedPort = providedPort;
// Registering the listeners
for (Protocollnterface.Required requiredPort : requiredPorts) {
providedPort.registerListener (requiredPort);
requiredPort.registerListener (providedPort);

}
}

public void registerPort(Protocollnterface.Required requiredPort) {
requiredPorts.add(requiredPort);
// Checking whether a provided port is already given
if (providedPort != null) {
providedPort.registerListener (requiredPort);
requiredPort.registerListener (providedPort);

}
}

Figure 5.13: Java class generated from the channels connection
Protocol port in asynchronous composite component ModesTrack
in the safety-logic model of MoDeS?.

65

Chapter 6

Case Study: MoDeS?

This chapter demonstrates the usability of the Gamma framework by presenting a case
study from the critical cyber-physical system domain. The case study is based on the
MoDeS? project, already introduced in 4.1.

6.1 Introduction

The ultimate goal of the case study is to formally verify the correctness of the MoDeS?
safely-logic using the Gamma framework, that is, trains cannot collide due to the erro-
neous design of the safety and communication protocol: “Two separate trains must not be
positioned on the same section.”

Generally, the main challenge for formal verification, and especially model checking is scal-
ability, thus, it is very likely that the direct verification of a real railway system similar to
the asynchronous MoDeS? model introduced in Section 4.6.4 is not (yet) feasible. There-
fore, in this case study the safety-logic is redesigned and optimized in order to make the
formal verification of the safety-logic realizable. During this process the following steps
are taken.

e A simplified version of the MoDeS? track is introduced, which consists of eight section
models forming a circle, with two trains on it.

e An iterative verification approach is executed on the simplified version of the MoDeS?
track based on model decomposition (refinement) and the concept of bisimulation of
models.

A bisimulation is a relation between transition systems. It associates systems that act in
the same way, that is, one system simulates the other and vice versa [53]. In case of Gamma
models it means that two models react to a particular series of external events received
from the environment by transmitting the same series of events to the environment [54].

This case study focuses on the section model and track models built from it. To keep the
case study simple, turnout track elements are not handled (as their large number of ports
and events types would cause the proliferation of communication possibilities and states).

The rest of the chapter is structured as follows. Section 6.2 introduces the simplified
MoDeS? track setup undergoing formal verification. Section 6.3 presents the bisimulation-
based formal verification process. Finally, Section 6.4 summarizes the results of the case-
study.

67

6.2 The Simplified MoDeS? Track Setup

The simplified MoDeS? track setup undergoing formal verification consists of two zones,
each consisting of four track sections, that form a cycle. In the initial state, the setup
contains two trains that are situated on opposite sections of the track, SO1 and S05, that
is, there are three free sections in between them on both sides. The setup is depicted in
Figure 6.1. Sections depicted in green are enabled sections occupied by trains, i.e., trains
are permitted to move on them. Sections depicted in red are next to an occupied section
and form the “aura” of the train. Auras are the means through which the safety protocol
prevents collisions: the design of the logic will detect the collision of auras and stop the
trains before a real collision occurs. The rest of the sections are blue.

——
S01

S08 S02

S07 S03

S06 S04

S05
—

Figure 6.1: The simplified MoDeS? track setup undergoing formal
verification.

6.3 Bisimulation-based Formal Verification

The bisimulation-based formal verification process of the simplified MoDeS? track consists
of the following steps.

1. Interfaces and events supporting communication between track elements are defined.

2. A high-level track model is created, which defines the safety-logic satisfying the
necessary safety-requirement: “Two separate trains must not be positioned on the
same section.” This model serves as the formal specification of the MoDeS? safety-
logic in case of the simplified track.

3. The high-level track model is refined into a model called medium-Ilevel track model
that contains two zone components (the type of which is called medium-Ilevel zone
model), each representing four sections. The medium-level zone model serves as
the formal specification of a zone controller. This refinement is a necessary design
step, as the MoDeS? safety-logic is realized as the emergent behavior of multiple
zone controllers. For the sake of simplicity, the synchronous composition mode is
used between the zone controllers in the medium-level track model (opposed to
the real MoDeS? track model depicted in Figure 4.16, which uses the asynchronous
composition mode). Additionally, to facilitate the communication between the zone
controllers, a new simpler communication protocol is designed.

4. The medium-level zone model created in the previous step is refined into a compos-
ite model containing four statechart models. The resulting model is called low-level
zone model. Recurrently, this refinement step is necessary, as zone controllers consist
of individual section components in the MoDeS? safety-logic. Additionally, a new
section model is designed, which 1) conforms to the new communication protocol,
and 2) is functionally equivalent to the section statechart model presented in [9] to
support the use of the new model in the place of the old one without any possi-
ble compatibility issue. Finally, a low-level track model is created, which contains
two low-level zone model components, thus, it can be considered as the low-level
physically deployable realization of the MoDeS? safety-logic (in case of the simplified
track).

Note that this is a refinement-based system design and verification technique frequently
used during the design of safety-critical systems and supported by development processes,
e.g., by the V-model [55].

The main goals, as depicted in Figure 6.2, are to formally prove that 1) the high-level track
model and the medium-level track model bisimulate each other, as well as, 2) the medium-
level zone model and the low-level zone model bisimulate each other. The existence of
bisimulation relation 7) would mean that the new communication protocol between zone
controllers (medium-level zone components in the medium-level track model) is correct
with respect to the formal specification of the MoDeS? safety-logic (high-level track model).
Additionally, the existence of bisimulation relation 2) would mean that a zone controller
controlling four sections (medium-level zone model) can be correctly defined as the com-
position of four section statechart models (low-level zone model). If both bisimulation
relation hold, then it means that the high-level track model can be correctly defined as the
composition of two low-level zone components (the resulting model is the low-level track
model), thus proving bisimulation relation 3) on Figure 6.2 without ever analyzing the full
low-level track model that is considerably more complex than the other two higher-level
models. In this sense, results of the formal verification carried out on the high-level track

69

3) Bisi ion
follows from 1) and 2)

Low-level
Track Model

Medium-level
Track Model

2) Proving Bisimulation

Low-level
Zone Component

Medium-level
Zone Component

2) Proving Bisimulation

Low-level
Zone Component

Medium-level
Zone Component

Section
Component

Section
Component

Section
Component

Section
Component

Section
Component

Section
Component

Section
Component

Section
Component

Figure 6.2: A schematic figure about the bisimulation-based for-
mal verification process.

model would hold on the low-level track model too. This way, it would be sufficient to
check the safety-requirements only on the simple, easily verifiable high-level track model,
model checking on the complicated low-level track model would not be necessary.

An additional goal is to check whether track models created from the new and the old
section models bisimulate each other. If so, then the verification results hold in case of
the old safety-logic implementation as well.

Some of the models used in this case study, e.g., high-level track model, medium-Ilevel zone
model (Section 6.3.2) and the train and oracle model (Section 6.3.4), are symmetrical
models with many repetitive elements. Therefore, they are not created by hand, but
generated on the basis of templates. These templates define the necessary model elements
from a particular functional point of view, which are instantiated in each analogous part
of the corresponding models during the generation process.

6.3.1 The Events of the New Communication Protocol

The new communication protocol is based on the interfaces and events presented in Fig-
ure 4.5.

Interface Protocol contains events that are used in section-to-section communication. The
semantics of the Protocol events are as follows.

e Occupied: this event is sent to both adjacent sections (neighbors) from a particular
section that just got occupied by a train.

e Unoccupied: this event is sent to both adjacent sections (neighbors) from a particular
section that just got unoccupied by a train.

e Go: this event is the positive answer to a previously sent occupied event. It means
the train can proceed onto the particular section that sent this event.

e Stop: this event is the negative answer to a previously sent occupied event. It means
the train can not proceed onto the particular section that sent this event.

70

Interface Train contains events that are used between section and train models and hold
information about the arrival or the leaving of a train. The semantics of the Train events
are as follows.

e Occupy: this event is sent to a section that just got occupied by a train.

e Unoccupy: this event is sent to a section if a train has unoccupied it.

Interface SectionControl contains events that are used between section and train models
and permit or deny the moving of a train on a certain section. The semantics of the
SectionControl events are as follows.

e Enable: this event is sent to a train by a section if it permits its moving, i.e., there
is no dangerous situation, the train can proceed.

e Disable: this event is sent to a train by a section if it denies its moving, i.e., there
is a dangerous situation, the train can not proceed.

Additionally, a new interface TrainControl is introduced, which is not actually a part of
the real MoDeS? safety-logic, but is used in the verification process for the simulation of
the motion of trains. The semantics of the TrainControl events are as follows.

e MoveForward: this event is sent to a train by the environment (user) if the train has
to move forward.

e MoveBackward: this event is sent to a train by the environment (user) if the train
has to move backward.

6.3.2 The Track Models

All track models have the same number and type of ports (same interface in the point of
view of the environment): Train ports, on which the occupation and unoccupation events
for particular sections are received, and SectionControl ports, on which the moving of
trains are permitted or denied (see Figure 6.3).

... Track |
port Trainl : requires Train,

port Train8 : requires Train,
port SectionControll : provides SectionControl ,

port SectionControl8 : provides SectionControl

I {
_—

Figure 6.3: The ports of high-level, medium-level and low-level
track models present in the MoDeS? verification process.

71

High-level Track Model

The high-level track model, presented in Figure 6.4 is a single statechart, with a single
state, and two boolean variables for each section. One variable denotes whether a partic-
ular section is occupied by a train, whereas the other one denotes whether it is disabled.
The transitions handle the situations when trains move on particular sections and dis-
able/enable the sections when necessary in accordance with the safety-requirement. The
explanation of behavior can be found in Figure 6.4 in the form of comments. Note that
this model is symmetric, the transitions handling the actions of S01, S02, ..., SO8 are
analogous.

Medium-level Track Model

The medium-level track model is a composite model that consists of two statecharts
(medium-level zone components), each controlling four sections. This model refines the
high-level track model by introducing Protocol ports in between the two halves of the track,
that is, between SO8 and SO1, and S04 and S05, on which events of the new communi-
cation protocol are transmitted. Contrary to the high-level track model, communication
between the zones is necessary to learn whether neighboring tracks on the edge of zones
are occupied or not. Similarly to the high-level track model, this model is also symmet-
ric: the endpoints of both medium-Ilevel zone components can be handled analogously.
The medium-level zone model controlling four sections is presented in Figure 6.5, whereas
the medium-level track model composing two such statechart components is depicted in
Figure 6.6.

Low-level Track Model

The low-level track model is a composite model that consists of two low-level zone com-
ponents. This model refines the medium-Ilevel track model by introducing Protocol ports
in between all section components of the track. The low-level zone model composing four
section models is depicted in Figure 6.7, whereas the low-level track model is depicted in
Figure 6.8.

6.3.3 The New Section Model

The old section model, as presented in [9], behaves correctly with respect to the safety
requirements. However, using the Gamma framework, the goal in this case study is to
create a simpler model with the same behavior, in order to facilitate formal verification.
During the redesign process, the most important aspect is to decrease the number of
reachable states of the model. If the same behavior is realizable with a smaller number
of states, the model checker will be able to explore the whole state space with much
less resources. Furthermore, this model has to conform to the redesigned communication
protocol. Figure 4.6 depicts all important transitions as well as static parts of the new
section model, that is, ports, variables and states.

Ports The section model has four ports realizing the Protocol interface, two for both
endpoints; one for transmitting the protocol events and one for receiving them. The
endpoints are called CW and CCW, which stand for clockwise and counter-clockwise,
considering the fact that the sections are connected to form a circle. Moreover, the model

72

has a port realizing the SectionControl interface for permitting/denying the moving of a
train, and another port realizing the Train interface for being able to notice the arrival
and leaving of trains.

Variables The section model has four boolean variables: isDisabled, isOccupiedCW,
isOccupied and isOccupiedCCW. Table 6.1 summarizes the semantics of the variables.

Table 6.1: The semantics of the boolean variables in the new MoDeS? section model.

’ Variable ‘ False True
. The section is enabled. The section is disabled.
isDisabled
It permits the passing of trains. Trains cannot move on it.
isOceunied CW The section connected to the The section connected to the
P CW endpoint is not occupied. CW endpoint is occupied.
isOccupied The section is not occupied. The section is occupied.
isOccupied COW The section connected to the The section connected to the

CCW endpoint is not occupied. | CCW endpoint is occupied.

States The section model has three explicit states: Stable, WaitForCW and WaitFor-
CCW. State Stable represent a stable state in the section model. In this state all variable
values are considered valid, the statechart does not wait for any events from the neighbors
or the environment. However, WaitForCW and WaitForCCW represent temporary states.
In state WaitForCW, either a go or stop event is expected in response to a transmitted
occupied event from the CW neighbor, and in WaitForCCW from the CCW neighbor.

By introducing only three explicit states in the section model and relying on two boolean
variables to store information about the environment of the section we strive to create a
reduced, easily verifiable statechart model with simple communication with its neighbors
that can be easily described as a transition system.

Transitions The transitions of the model are defined in Table 6.2 with the following
attributes: ID, source state, trigger, guard, action and target state. In case of triggers,
guards and actions, the syntax introduced in Section 4.5 is used. In the table the names of
states and ports are abbreviated, only the capital letters of a particular port or state are
used for identification, e.g., ProtocollnCW is abbreviated to PICW. Furthermore, state
WaitForCCW is abbreviated to CCW. For the sake of compactness only the transitions
reacting to the events of the CW neighbor are presented. However, note that this is a
symmetric model. Accordingly, analogous transitions are also defined for the events of the
CCW neighbor.

The explanations with respect to transitions in state Stable are as follows.

e Trigger occupy: a train occupies the section. In every case, the section becomes
occupied and neighbors are notified.

1. If the section and both neighbors are free, the train has just appeared (initial-
ization).
2. If CW neighbor is occupied, the train arrives from there.

3. If CCW neighbor is occupied, the train arrives from there.

73

4. If both neighbors are occupied, there is a dangerous situation so section gets

disabled.
e Trigger occupied: neighbor becomes occupied. In every case, neighbor occupation
is updated.
5. If other neighbor is occupied, auras collide, sending stop.
6. Otherwise good to go, sending go.
e Trigger unoccupied: neighbor becomes unoccupied. In every case, neighbor occupa-
tion is updated.
7. If other neighbor is occupied (and thus, disabled), sending go to enable it.
8. If the section is disabled, it remains disabled, sending disable.
9. Otherwise no further action.
e Trigger stop: neighbor sends stop.

10. Dangerous situation, disabling section.
e Trigger go: neighbor sends go and no neighbors send stop at the same time.

11. If section is disabled, notification about occupation is repeated and state Wait-

ForCCW is assumed.

12. Otherwise confirming that the section is enabled.

The explanations with respect to transitions in state WaitForCCW are as follows.

13. Trigger go: neighbor sends go as response and no neighbors send stop at the same
time. The section is disabled at this time, therefore, it must be enabled.

14. Trigger stop: neighbor sends stop as response. The section is disabled at this time,
no further action.

6.3.4 Proving the Bisimulation Relations

To prove the bisimulation relation between the corresponding models, a train model, an
oracle model and two bisimulation system models have to be created.

The Train Model

A train model is needed in the verification process to simulate the motion of the trains
correctly. In this case study it is worth creating a compound model that is able to

e handle and simulate two trains on the track,

e simulate the motion of a particular train on two separate track instances (e.g., high-
level track model and medium-level track model) at the same time, which is crucial
for the proving of bisimulation, and

e differentiate eight section elements in the underlying track models.

74

Table 6.2: The transitions of the new MoDeS? section model.

l ID [Source [Trigger Guard Action [Target ‘
not isOccupiedCW and isOccupied = true;

1 S T.occupy not isOccupied and raise POCW.occupied; S
not isOccupied CCW raise POCCW.occupied
isOccupiedCW and isOccupied = true;

2 S T.occupy not isOccupied and raise POCW.occupied; S
not isOccupied CCW raise POCCW.occupied

not isOccupiedCW and isOccupied = true;
3 S T.occupy not isOccupied and raise POCW.occupied; S
isOccupiedCCW raise POCCW.occupied
isOccupied = true;
isOccupiedCW and isDisabled = true;
4 S T.occupy not isOccupied and raise SC.disable; S
isOccupiedCCW raise POCW.occupied;
raise POCCW.occupied
. isOccupiedCCW or isOccupiedCW = true;

> S PICW.occupied islgisabled raisepPOCW.stop S
. not (isOccupiedCCW or | isOccupiedCW = true;

6 S PICW.occupied (isDisabled) raise POCW.go S
. isOccupiedCCW and isOccupiedCW = false;

7 S PICW.unoccupied not isOccupied raise POCCW.go S
. e isOccupiedCW = false;

8 S PICW .unoccupied isDisabled raise SC.disable S

not (isDisabled or

9 S PICW .unoccupied isOccupiedCCW and isOccupiedCW = false S

not isOccupied)
isDisabled = true;

10 S PICW.stop true raise SC disable S
PICW.go &&

11 S I(PICCW.stop || isDisabled raise POCCW.occupied | CCW
PICW.stop)
PICW.go &&

12 S I(PICCW.stop || not isDisabled raise SC.enable S
PICW .stop)
PICW.go && L

13 | CCW | 1(PICCW.stop || isDisabled isDisabled = false; S
PICW. stop) raise SC.enable

14 CCW PICW.stop isDisabled No action S

75

Figure 6.9 describes the train simulator model used for verification. This model is also
symmetrical in many ways, as the two trains behave the same way, and a train behaves
analogously on the first, second, etc. sections, when moving forward or backward.

As a physical system is modeled here (motion of the trains on the track), it is important
to keep in mind that the train moves “gradually” onto a section, and also, leaves it “grad-
ually”. For example, if a train is situated on S0I and is moved onto an adjacent section
S02, it is done so in the following steps (let us assume no dangerous situation is present).

1. The train is situated on S01 and receives a moveForward event.

2. The train moves onto S02, but does not leave S01. The trains notifies S02 about its
arrival. At this time, the train is situated on both sections.

3. The train receives another moveForward event.

4. The train moves onto S02 leaving SO1. The trains notifies SO1 about its leaving. At
this time, the train is situated only on section S02.

These steps are defined in Figure 6.9 by the last three transitions. Note that trains can
move only if they are not disabled, that is, their isDisabled variable is not set to true.
Furthermore, it is worth noting how the position of a train is coded. If variable position is
set to a number with a single digit, e.g., 1, it means the train is situated only on a single
section, e.g., SO1. If the position is set to a number with two digits, e.g., 12, it means the
trains is situated on two sections, e.g., SOI and S02 at the same time. A single train can
be situated on at most two sections.

Oracle model

To prove that the high-level, medium-level and low-level MoDeS? track models bisimulate
each other, an oracle statechart model is needed that checks the section control events
(enable or disable, received through HigherLevelSectionControl and LowerLevelSection-
Control ports) of each section model, and compare them. The comparison of events is
realized using complex triggers. In case of a difference, the oracle raises an error event on
port Error and goes to the Error state. The oracle model is depicted in Figure 6.10.

Bisimulation system model

The proof of the corresponding track and zone models bisimulating each other is given by
executing formal verification on two variants of the BisimulationSystem cascade composite
Gamma model, which composes the train model, two track or zone models (a higher- and
a lower-level model in both cases) and an oracle model into a single system (depicted in
Figure 6.11 and defined in Figure 6.12). The train model receives commands from the
environment about moving the trains forward or backward, and based on those events, it
notifies the track/zone models about the occupation and unoccupation of sections. Based
on those events track/zone models permit or deny the moving of trains on certain sections
by sending the necessary enable or disable events. These events are received by both 1)
the train model, which can set the disable flag of the trains based on those events (a single
disable event from either track/zone model is enough to disable the train), and 2) the
oracle model, which compares the received events and raise an error event if inconsistency
between the track models are found.

76

Note that the BisimulationSystem model is a cascade composite component, the charac-
teristics of which is essential to execute all contained components in a specified order,
while enabling their communication in a single turn.

The track-based and zone-based variants of the BisimulationSystem model are almost the
same. The difference is that one compares the high- and medium-level track models (trains
can move around on the track on eight adjacent sections as depicted in Figure 6.1), while
the other one compares the medium- and low-level zone models (trains can move forward
and backward on four adjacent sections as depicted in Figure 6.13).

Verifying the bisimulation relation between the track and zone models

The bisimulation relation between the track and zone models can be proven with model-
checking. Both variants of the BisimulationSystem model have to be transformed to
UPPAAL, and the following query has to be evaluated on them.

A[] I(P_mainRegionOfStatechartOforacle. Error)
This query is the formalization of the following statement:
“In the Bisimulation system, state Error of component oracle is never assumed.”

If state Error of component oracle is never assumed, it is impossible for the two track/zone
models in the bisimulation system to produce inconsistent section control events, since that
inconsistency would trigger the transitions leading to the Error state in the oracle model.
In other words, the bisimulation relation between the models holds.

By following the aforementioned instructions, we have formally proven with the help of
the UPPAAL model-checker that the aforementioned condition holds on both variants of
the bisimulation system model, that is, the presented high- and medium-level track model,
and the medium- and low-level zone models bisimulate each other.

Verifying correspondence between the new and old section models

As section components are not used individually, but in composition with other section
components, it is worth proving the bisimulation relation between track models (one con-
sisting of the new and the other of old section models), and not between individual section
models. Accordingly, a zone model has to be created using the old section model. This
model can be created on the basis of the low-level zone model (Figure 6.7). The differences
are the followings.

e The old section model must be used instead of the new one as the type of the
components.

e The Protocol ports connected in the channels do not have to be changed, but it is
worth noting that they realize a different interface. Note that the two models have
the same ports apart from the Protocol ports.

Recurrently, the bisimulation relation between the track models consisting of the new and
the old section models can be proven with the BisimulationSystem model. Either of the
high-, medium- or low-level track models could be used in pair with the newly created
model as their bisimulation relation has been proven. Nevertheless, to facilitate model
checking, it is worth choosing the high-level track model because it is the simplest. Again,

77

this version of the BisimulationSystem model also has to be transformed to UPPAAL, and
the following query has to be evaluated on it.

A[] I(P_mainRegionOfStatechartOforacle. Error)

By following the aforementioned instructions, we have formally proven that the condition
holds on this variant of the bisimulation system model, that is, track models based on the
new section model and the old section model bisimulate each other.

6.3.5 Formal Verification of the MoDeS? Safety-Logic

As the bisimulation relation between the high- and medium-level track model, and the
medium- and low-level zone models are formally proven, the verification of any property
regarding the section control events is valid for all track models, regardless on which of
them the verification is performed. Naturally, the high-level track model is the simplest,
thus, verification on this level is the fastest. Therefore, it is worth using the high-level
zone model for the verification of the safety-requirement. To achieve this, a new Gamma
model has to be created on which the verification can be carried out. As depicted in
Figure 6.14, the model is the subset of the BisimulationSystem model, keeping the train
and the high-level models while omitting the other track model and the oracle.

Similarly to the bisimulation relation, the standing of the safety-requirement in the
MoDeS? track model, that is, “Two separate trains must not be positioned on the same
section.”, can be proven with model checking. The HighLevelSystem model has to be
transformed to UPPAAL, and a formalized query has to be evaluated on it. In case of this
model, there is no clear erroneous state the reachability of which can be verified. Instead,
the following statement is formalized:

“In the HighLevelSystem system, a state, when two trains occupy the same section, is
never assumed.”

This statement can be formalized as follows, using the variables in the train simulator
model:

A[l !((position1Oftrain == 81 || position1Oftrain == 1 || positionlOftrain == 12) &€
(position20ftrain == 81 || position20ftrain == 1 || position20ftrain == 12)) &€&
!((position1Oftrain == 12 || positionlOftrain == 2 || position1Oftrain == 23) &€ (posi-
tion20ftrain == 12 || position20ftrain == 2 /| position20ftrain == 23)) €&
!((position1Oftrain == 78 || positionlOftrain == 8 || position1Oftrain == 81) &€ (posi-
tion20ftrain == 78 || position20ftrain == 8 [/ position20ftrain == 81))

Recall the mechanism according to which the states of the trains are encoded in the train
simulator model (Section 6.3.4). Note that each section is checked one by one for both
trains.

By following the aforementioned instructions, we have formally proven with the help of the
UPPAAL model-checker that the aforementioned condition holds on the high-level system
model, that is, two trains can never occupy the same section. Due to the results presented
in Section 6.3.4, this condition also holds in the low-level track model and in the track
model based on the old section models.

78

6.4 Summary

In this case study the features of the Gamma framework has been utilized to redesign and
formally verify the MoDeS? safety-logic. During this process

1. a new statechart model and a new communication protocol have been designed for
the section track element,

2. a simplified version of the MoDeS? track model has been introduced as the basis of
the verification,

3. an iterative verification approach has been executed based on model decomposition
and the concept of bisimulation. For this process, additional models have been
introduced.

The verification result have shown that 1) the new section and the old sections bisimulate
each other, and 2) the new communication protocol of the section model satisfies the nec-
essary safety-requirement. As a result of the formal semantics of the Gamma Composition
Language to which both formal verification transformations and code generation conform,
the source code generated from the composition models and deployed on the physical track
model must also work correctly.

79

-
statechart HighLevelTrackModel |
// Train and SectionControl ports

e

// Variables denoting whether a section is occupied by a train

var isOccupiedl : boolean := false
var isOccupied8 : boolean := false
// Variables denoting whether a particular section is disabled
var isDisabledl : boolean := false
var isDisabled8 : boolean := false

// Single state in the main region
region mainRegion {
initial Initial
state Stable
}
transition from Initial to Stable
// A train emerges on S0l
transition from Stable to Stable when Trainl.occupy
[not (isOccupied7 or isOccupied8 or isOccupied2 or isOccupied3)] /
isOccupiedl := true; raise SectionControll.enableSection
transition from Stable to Stable when Trainl.occupy
[isOccupied8 and not (isOccupiedl or isOccupied2 or isOccupied3)] /
isOccupiedl := true; raise SectionControll.enableSection
transition from Stable to Stable when Trainl.occupy
[isOccupied8 and (isOccupiedl or isOccupied2 or isOccupied3)] /
isOccupiedl := true; isDisabledl := true;
raise SectionControll.disableSection
transition from Stable to Stable when Trainl.occupy
[isOccupied2 and not (isOccupiedl or isOccupied8 or isOccupied7)] /
isOccupiedl := true; raise SectionControll.enableSection
transition from Stable to Stable when Trainl.occupy
[isOccupied2 and (isOccupiedl or isOccupied8 or isOccupied7)] /
isOccupiedl := true; isDisabledl := true;
raise SectionControll.disableSection
// A train leaves SO1
transition from Stable to Stable when Trainl.unoccupy
[isDisabled2] /
isOccupiedl := false; isDisabledl := false;
raise SectionControl2.disableSection
transition from Stable to Stable when Trainl.unoccupy
[isDisabled8] /
isOccupiedl := false; isDisabledl := false;
raise SectionControl8.disableSection
// Enable certain sections if they disabled
transition from Stable to Stable when Trainl.unoccupy
[isDisabled3 and not (isDisabled2 or isDisabled8)] /
isOccupiedl := false; isDisabled3 := false;
raise SectionControl3.enableSection
transition from Stable to Stable when Trainl.unoccupy
[isDisabled7 and not (isDisabled2 or isDisabled8)] /
isOccupiedl := false; isDisabled7 := false;
raise SectionControl7.enableSection
// A train simply left SO1
transition from Stable to Stable when Trainl.unoccupy
[not (isDisabled2 or isDisabled3 or isDisabled8 or isDisabled7)] /
isOccupiedl := false

Figure 6.4: The high-level track model in the MoDeS? verification

process.
80

-
statechart MediumLevelZoneModel |
// Train and SectionControl ports

// Protocol ports

port ProtocollnCCW : requires Protocol,
port ProtocollnCW : requires Protocol,
port ProtocolOutCCW : provides Protocol,
port ProtocolOutCW : provides Protocol

] 1

// Variables denoting if section is occupied or disabled

// Variables denoting if next section in an adjacent component is occupied
var isCCWOccupied : boolean := false
var isCWOccupied : boolean := false
region mainRegion {
initial Initial
state Stable
}
transition from Initial to Stable
// A train emerges on S01
transition from Stable to Stable when Trainl.occupy
[not (isCCWOccupied or isOccupiedl or isOccupied2)] /
isOccupiedl := true; isDisabledl := false;
raise SectionControll.enableSection; raise ProtocolOutCCW.occupied
transition from Stable to Stable when Trainl.occupy
[isCCWOccupied and not (isOccupiedl or isOccupied2 or isOccupied3)] /
isOccupiedl := true; raise SectionControll.enableSection;
raise ProtocolOutCCW . occupied
transition from Stable to Stable when Trainl.occupy
[isCCWOccupied and (isOccupiedl or isOccupied2 or isOccupied3)] /
isOccupiedl := true; isDisabledl := true; raise SectionControll.
disableSection; raise ProtocolOutCCW.occupied
transition from Stable to Stable when Trainl.occupy
[isOccupied2 and not (isOccupiedl or isCCWOccupied)] /
isOccupiedl := true; raise ProtocolOutCCW.occupied
// Protocol message from adjacent component
transition from Stable to Stable when ProtocollInCCW.stop /
isDisabledl := true; raise SectionControll.disableSection
// A train leaves S01, keep S02 disabled if it was previously disabled
transition from Stable to Stable when Trainl.unoccupy
[isDisabled2] /
isOccupiedl := false; isDisabledl := false;
raise SectionControl2.disableSection; raise ProtocolOutCCW .unoccupied
// Enable S03 if it is disabled
transition from Stable to Stable when Trainl.unoccupy
[isDisabled3 and not (isDisabled2)] /
isOccupiedl := false; isDisabled3 := false;
raise SectionControl3.enableSection; raise ProtocolOutCCW .unoccupied
// A train simply left S01
transition from Stable to Stable when Trainl.unoccupy
[not (isDisabled3 or isDisabled2)] /
isOccupiedl := false; raise ProtocolOutCCW .unoccupied

Figure 6.5: The medium-level zone model in the MoDeS? verifi-
cation process.

81

~
sync MediumLevelTrackModel |
// Train and SectionControl ports

I {0

// Components

component ccwFourSections : MediumLevelZoneModel
component cwFourSections : MediumLevelZoneModel
// Bindings

bind Trainl —> ccwFourSections. Trainl

bind Train2 —> ccwFourSections. Train2

bind Train7 —> cwFourSections. Train3
bind Train8 —> cwFourSections. Train4
bind SectionControll —> ccwFourSections. SectionControll
bind SectionControl2 —> ccwFourSections.SectionControl2

bind SectionControl7 —> cwFourSections.SectionControl3
bind SectionControl8 —> cwFourSections. SectionControl4
// Channels connecting the two zone components

channel | cwFourSections.ProtocolOutCCW | —o)—
[ccwFourSections.ProtocollnCW]

channel | ccwFourSections.ProtocolOutCCW | —o)—
[cwFourSections.ProtocollnCW |

channel [cwFourSections.ProtocolOutCW] —o)—
[ccwFourSections . ProtocollnCCW |

channel | ccwFourSections.ProtocolOutCW | —o)—

[cwFourSections.ProtocollnCCW]

Figure 6.6: The medium-Ilevel track model in the MoDeS? verifi-
cation process.

82

statechart LowLevelZoneModel |
// Train and SectionControl ports

// Protocol ports
port ProtocollnCCW
port ProtocollnCW

port ProtocolOutCCW

port ProtocolOutCW

I {

requires Protocol,
requires Protocol,
provides Protocol,
provides Protocol

// Four section statecharts
component sectionl
component section?2
component section3
component section4
// Bindings

bind ProtocollnCCW —> sectionl .ProtocollInCCW

SectionStatechart
SectionStatechart
SectionStatechart
SectionStatechart

bind ProtocolOutCW —> section4 .ProtocolOutCW
bind Trainl —> sectionl.Train

bind Train4 —> section4.Train
bind SectionControll —> sectionl.SectionControl

bind SectionControl4d —> section4.SectionControl
// Channels connecting the four statecharts

channel
channel
channel
channel
channel
channel

section?2
sectionl
section3
section?2
section4
section3

.ProtocolOutCCW | —o)— [sectionl.ProtocolInCW]
.ProtocolOutCW] —o)— [section2.ProtocollnCCW]
.ProtocolOutCCW | —o)— [section2.ProtocolInCW]
.ProtocolOutCW] —o)— [section3.ProtocollnCCW]
.ProtocolOutCCW | —o)— [section3.ProtocolInCW]
.ProtocolOutCW | —o)— [section4.ProtocollnCCW]

Figure 6.7:
process.

The low-level zone model in the MoDeS? verification

83

~
sync LowLevelTrackModel |
// Train and SectionControl ports

I {0

// Components

component ccwFourSections : LowLevelZoneModel
component cwFourSections : LowLevelZoneModel
// Bindings

bind Trainl —> ccwFourSections. Trainl

bind Train2 —> ccwFourSections. Train2

bind Train7 —> cwFourSections. Train3
bind Train8 —> cwFourSections. Train4
bind SectionControll —> ccwFourSections. SectionControll
bind SectionControl2 —> ccwFourSections.SectionControl2

bind SectionControl7 —> cwFourSections.SectionControl3
bind SectionControl8 —> cwFourSections. SectionControl4
// Channels connecting the two zone components

channel | cwFourSections.ProtocolOutCCW | —o)—
[ccwFourSections.ProtocollnCW]

channel | ccwFourSections.ProtocolOutCCW | —o)—
[cwFourSections.ProtocollnCW |

channel [cwFourSections.ProtocolOutCW] —o)—
[ccwFourSections . ProtocollnCCW |

channel | ccwFourSections.ProtocolOutCW | —o)—

[cwFourSections.ProtocollnCCW]

Figure 6.8: The low-level track model in the MoDeS? verification
process.

84

rstatechart TrainSimulator |
// Moving the trains forward and backward
port TrainControll : requires TrainControl,
port TrainControl2 : requires TrainControl,
// Handling permissions and denials of sections
// At the same time two tracks (lower—level and higher—level) are handled

port HigherLevelSectionControll : requires SectionControl,
port LowerLevelSectionControll : requires SectionControl ,
port HigherLevelSectionControl8 : requires SectionControl,
port LowerLevelSectionControl8 : requires SectionControl ,

// Notifying sections about arrival and leaving
// At the same time multiple tracks can be handled due to broadcast ports
port Trainl : provides Train,

port Trainl8 : provides Train

] £

// If a train is disabled, it cannot move

var isDisabledl : boolean
var isDisabled2 : boolean
// The position of the trains
var positionl : integer := 1
var position2 : integer := 5

region mainRegion {
initial Initial
state Stable
choice ForwardChoicel
// Additional choices for forward and backward motion

}

// Trainl disabled when moving onto the S01 from S02

transition from Stable to Stable when
HigherLevelSectionControll . disableSection ||
LowerLevelSectionControll . disableSection [positionl = 12] /
isDisabledl := true; positionl := 1; raise Train2.unoccupy

// Enabling a disabled train on S0l

transition from Stable to Stable when
HigherLevelSectionControll.enableSection &&
!(HigherLevelSectionControll . disableSection)
[isDisabledl and positionl = 1] / isDisabledl := false

transition from Stable to Stable when
LowerLevelSectionControll .enableSection &&
!(LowLevelSectionControll . disableSection)
[isDisabledl and positionl = 1] / isDisabledl := false

// Trainl moving forward

transition from Stable to ForwardChoicel when TrainControll.moveForward &&
!(HigherLevelSectionControll . disableSection &&
LowerLevelSectionControll . disableSection ||

HigherLevelSectionControl8.disableSection &&
LowerLevelSectionControl8. disableSection) [not isDisabledl]
// Moving onto S02 from SO0l by trainl

transition from ForwardChoicel to Stable [positionl = 1] /
positionl := 12; raise Train2.occupy

// Moving fully onto S02 from S01 by trainl

transition from ForwardChoicel to Stable [positionl = 12] /
positionl := 2; raise Trainl.unoccupy

Figure 6.9: Important parts of the train model in the MoDeS?
verification process.

85

-
statechart Oracle |

port HigherLevelSectionControll : requires SectionControl,
port LowerLevelSectionControll : requires SectionControl,
port HigherLevelSectionControl8 : requires SectionControl,
port LowerLevelSectionControl8 : requires SectionControl,
port Error : provides Error

I {

region mainRegion {
initial Initial
state Good
state Error

}

transition from Initial to Good

// Comparing events from the two connected models

transition from Good to Error when
!(HigherLevelSectionControll . enableSection

= LowerLevelSectionControll.enableSection) / raise Error.error

transition from Good to Error when
'(HigherLevelSectionControll.disableSection =
LowerLevelSectionControll . disableSection) / raise Error.error

transition from Good to Error when
!(HigherLevelSectionControl8.enableSection
— LowerLevelSectionControl8.enableSection) / raise Error.error
transition from Good to Error when
'(HigherLevelSectionControl8. disableSection =
LowerLevelSectionControl8. disableSection) / raise Error.error

Figure 6.10: The oracle model in the MoDeS? verification process.

86

Bisimulation System Model

Realized Interfaces

D TrainControl

. Train (combined)
A Higher-level Lower-level 17
D SectionControl (combined) _/]] gl\/lodel Model]_\O)
Oracle

Figure 6.11: A schematic figure about the bisimulation system
model. Rectangles represent component instances in the system
model. Squares represent ports of component instances, which re-
alize interfaces either in provided mode (lollipop) or required mode
(socket). Channels are represented as the connection of lollipops
and sockets. Note that ports realizing the Train and SectionCon-
trol interfaces are depicted jointly.

87

cascade BisimulationSystem |
// Ports for moving the trains
port TrainlControl : requires TrainControl,
port Train2Control : requires TrainControl
I {
// The train, track and oracle components
// The types of components are either HighLevelTrackModel and
// MediumLevelTrackModel, or MediumLevelZoneModel and LowLevelZoneModel

component train : Train

component higherLevelModel : HighLevelTrackModel
component lowerLevelModel : MediumLevelTrackModel
component oracle : Oracle

// Defining the execution order
execute train, higherLevelModel, lowerLevelModel, oracle
// Binding train control ports
bind TrainlControl —> train.TrainControll
bind Train2Control —> train.TrainControl2
// Connecting train models to both track models
channel | train.Trainl | —o)—
[lowerLevelModel.Trainl, higherLevelModel. Trainl]

channel | train.Traind | —o)—
[lowerLevelModel.Traind4, higherLevelModel. Traind]
// Connecting Train ports from 5 to 8 in case of track models
// Connecting the section control ports of the higher level model to
// both the train model and the oracle
channel | higherLevelModel. SectionControll] —o)—
[oracle.HigherLevelSectionControll, train.HigherLevelSectionControll]

channel | higherLevelModel. SectionControld] —o)—
[oracle.HigherLevelSectionControl4d , train.HigherLevelSectionControld |
// Connecting SectionControl ports from 5 to 8 in case of track models

// Connecting the section control ports of the lower level model to
// both the train model and the oracle
channel | lowerLevelModel. SectionControll]| —o)—
[oracle.LowerLevelSectionControll , train.LowerLevelSectionControll |

channel | lowerLevelModel. SectionControld]| —o)—
[oracle.LowerLevelSectionControl4, train.LowerLevelSectionControld |
// Connecting SectionControl ports from 5 to 8 in case of track models

Figure 6.12: The bisimulation system model in the MoDeS? veri-
fication process.

88

S02

S03

S04

Figure 6.13: The half of the simplified MoDeS? track setup used
for proving the bisimulation relation between the zone models.

(cascade HighLevelSystem |
// Ports for moving the trains
port TrainlControl : requires TrainControl,
port Train2Control : requires TrainControl
I {
// The train and track components
component train : Train
component highLevelModel : HighLevelModel
// Defining the execution order
execute train, highLevelModel
// Binding train control ports
bind TrainlControl —> train.TrainControll
bind Train2Control —> train.TrainControl2
// Connecting train models to the track model
channel [train.Trainl | —o)—[highLevelModel. Trainl]

channel [train.Train8 | —o)— [highLevelModel. Train8]
// Connecting the section control ports of the
// higher level model to the train model
channel [highLevelModel.SectionControll] —o)—
[train.HigherLevelSectionControll]

channel [highLevelModel.SectionControl8 | —o)—
[train.HigherLevelSectionControl8]

Figure 6.14: The high-level system model in the MoDeS? verifi-
cation process.

89

Chapter 7

Conclusion

The Gamma framework is a modeling tool that supports the hierarchical design, imple-
mentation and verification of state-based reactive systems using model-driven software de-
velopment concepts. Gamma has an extensive language family, which is supported by the
Yakindu Statechart Tools for high-level design, a Java code generator for implementation
and the UPPAAL model checker for formal verification and test generation. Furthermore,
the extensible architecture of the framework allows additional tools and features to be
plugged in.

The main contribution of this work is the design and formalization of the Gamma Compo-
sition Language. The GCL builds on the Gamma Statechart Langauge, while extending it
with elements for composition. These new elements define ports and interfaces, enabling
individual components to serve as endpoints. Communication is provided by channels
connecting port instances. Relying on these elements, we defined various kinds of com-
ponents for hierarchical composite model building. The three distinguished composition
modes are the asynchronous-reactive, the synchronous-reactive and cascade.

Asynchronous components represent independently running components, which commu-
nicate with immutable messages stored in message queues. This semantics is suitable for
designing separate units executed in their own processes. Synchronous-reactive compo-
nents are useful for providing a single executing unit consisting of multiple, functionally
independent components. This composition mode is beneficial for the design of low-level,
tightly-coupled controllers. Cascade composition is practical for designing units with a
pipeline-like behavior: the input given into the model is processed by multiple consecutive
filters. We believe that these composition methods cover a large portion of the problems
emerging in the design of reactive systems.

The precise semantics of the aforementioned composition modes allowed us to extend the
existing code generation and verification functionalities already present in the previous
versions of the Gamma framework. Now all elements of the GCL are supported during
code generation and most of them during model checking. Furthermore, we have designed
the Gamma Test Language, which supports the definition of test scenarios for Gamma
components. Regarding test generation, now transition-coverage test-suites can also be
generated, in addition to state-coverage test-suites.

As for future work, we plan to integrate ongoing side-projects, aiming to extend the
Gamma framework with additional functionalities, including source code generation from
Gamma statecharts and code generation to distributed controllers with network commu-
nication based on DDS. Moreover, we also plan to extend the framework with additional
engineering tools, e.g., MagicDraw, and model checkers, e.g., Theta. In response to lessons

91

learned in the case study, we intend to provide support for symmetry handling in models,
e.g., new element types, such as array and structure elements as well as complex ports
that simplify the connection of components with many matching ports. Furthermore, we
plan to introduce automation processes to support the presented verification process.

By offering multiple modeling aspects, composition semantics, source code generation and
verification features in a single, extensible framework, we hope that Gamma can assist
system and software engineers in leveraging the potential of model-driven development.
As Gamma, is now open-source, we also hope that the results of our research influence and
aid fellow researchers and developers in developing their modeling tools.

92

Acknowledgements

First of all, I would like to express my gratitude to my advisor, Vince Molnar. He has
continuously provided me with guidance, valuable ideas and feedback. Without his help 1
never could have carried out my tasks in this quality.

I am also grateful to the members of the Fault Tolerant Systems Research Group, especially
Andras Voros, Istvan Majzik, and Zoltan Micskei for their suggestions and continuous
support over the past years.

Finally, I would like to thank my friends and family for their support and love.
This work was supported by

e MTA-BME Lendiilet Cyber-Physical Systems Research Group,

o Uj Nemzeti Kivalésag Program 2017-2018, and

e Emberi Eréforras Fejlesztési Operativ Program (EFOP-3.6.2-16-2017-00013).

93

Bibliography

1]

2]

[11]

[12]

David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231-274, June 1987.

Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational
semantics of UML statechart diagrams. In Formal Methods for Open Object-Based
Distributed Systems, pages 331-347. Springer, 1999.

Michelle L. Crane and Juergen Dingel. On the semantics of UML state machines: Cat-
egorization and comparision. In In Technical Report 2005-501, School of Computing,
Queen’s, 2005.

Michelle L. Crane and Juergen Dingel. UML vs. classical vs. Rhapsody statecharts:
Not all models are created equal. In Lionel Briand and Clay Williams, editors, Model
Driven Engineering Languages and Systems, pages 97-112, Berlin, Heidelberg, 2005.
Springer.

Rik Eshuis. Reconciling statechart semantics. Science of Computer Programming,
74(3):65-99, 2009.

Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti,
and Tiziano Villa. A platform-based design methodology with contracts and related
tools for the design of cyber-physical systems. Proceedings of the IEEFE, 103(11):2104—
2132, 2015.

Bence Graics. Model-driven design and verification of component-based reactive sys-
tems. Students’s Association Report, Budapest University of Technology and Eco-
nomics, 2016.

Bence Graics and Vince Molnar. Formal Compositional Semantics for Yakindu Stat-
echarts, page 22-25. Budapest University of Technology and Economics, Department
of Measurement and Information Systems, 2017.

Bence Graics. Model-driven design and verification of component-based reactive sys-
tems. Bachelor’s thesis, Budapest University of Technology and Economics, 2016.

Vince Molnar, Bence Graics, Andras Voros, Istvan Majzik, and Daniel Varré. The
Gamma Statechart Composition Framework. In 40th International Conference on
Software Engineering (ICSE 2018), Gothenburg, Sweden, 2018. ACM, ACM.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engi-
neering in practice. Synthesis Lectures on Software Engineering, 3(1):1-207, 2017.

Technical Operations International Council on Systems Engineering INCOSE. IN-
COSE Systems Engineering Vision 2020. Technical report.

95

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

Anneke G. Kleppe, Jos B. Warmer, and Wim Bast. MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Professional, 2003.

Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-
puter, 39:25-31, 2006.

Jung Ho Bae and Heung Seok Chae. Systematic approach for constructing an under-
standable state machine from a contract-based specification: controlled experiments.
Software € Systems Modeling, pages 1-33, 2014.

John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Lan-
guages, And Computation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1990.

Edmund M. Clarke Jr., Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. Model checking. MIT press, 2018.

Christopher Brooks. Ptolemy II: An open-source platform for experimenting with
actor-oriented design, February 2016. Poster presented at the 2016 Berkeley EECS
Annual Research Symposium.

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity - the
Ptolemy approach. Proceedings of the IEEE, 91(1):127-144, 2003.

Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773-801, May 1995.

Edward A Lee and Eleftherios Matsikoudis. The semantics of dataflow with firing. G.
Huet, G. Plotkin, J.-J. Lévy, and Y. Bertot, editors, From Semantics to Computer
Science: FEssays in Honour of Gilles Kahn, pages 71-94, 2008.

Albert Benveniste and Gérard Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270-1282, 1991.

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data flow programming language lustre. Proceedings of the IEEE,
79(9):1305-1320, 1991.

Stephen A. Edwards and Edward A. Lee. The semantics and execution of a syn-
chronous block-diagram language. Science of Computer Programming, 48(1):21 — 42,
2003.

N. Hili, J. Dingel, and A. Beaulieu. Modelling and code generation for real-time
embedded systems with UML-RT and Papyrus-RT. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Companion (ICSE-C), pages 509510,
May 2017.

Eric James Rapos and Juergen Dingel. Incremental test case generation for UML-RT
models using symbolic execution. In Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on, pages 962-963. IEEE, 2012.

96

[28]

[29]

[33]

[34]

[35]

[36]

37]

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan Jackson.
OpenMETA: A Model- and Component-Based Design Tool Chain for Cyber-Physical
Systems, pages 235-248. Springer, Berlin, Heidelberg, 2014.

Gabor Simko, David Lindecker, Tihamer Levendovszky, Sandeep Neema, and Janos
Sztipanovits. Specification of Cyber-Physical Components with Formal Semantics —
Integration and Composition. In Ana Moreira, Bernhard Schétz, Jeff Gray, Anto-
nio Vallecillo, and Peter Clarke, editors, Model-Driven Engineering Languages and
Systems, pages 471-487, Berlin, Heidelberg, 2013. Springer.

Arne Haber, Markus Look, Antonio Navarro Perez, Pedram Mir Seyed Nazari, Bern-
hard Rumpe, Steven Volkel, and Andreas Wortmann. Integration of heterogeneous
modeling languages via extensible and composable language components. In Model-
Driven Engineering and Software Development (MODELSWARD), 2015 3rd Inter-
national Conference on, pages 19-31. IEEE, 2015.

Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Code generator composition for model-driven engineering of robotics component &
connector systems. CoRR, abs/1505.00904, 2015.

Ajay Chhokra, Sherif Abdelwahed, Abhishek Dubey, Sandeep Neema, and Gabor
Karsai. From system modeling to formal verification. The 2015 FElectronic System
Level Synthesis Conference, 2015.

Preeti Ranjan Panda. SystemC: a modeling platform supporting multiple design ab-
stractions. In Proceedings of the 14th international symposium on Systems synthesis,
pages 75-80. ACM, 2001.

Paula Herber. A Framework for Automated HW/SW Co-Verification of SystemC
Designs using Timed Automata. Logos Verlag Berlin GmbH, 2010.

Marco Bernardo, Lorenzo Donatiello, and Paolo Ciancarini. Stochastic process al-
gebra: From an algebraic formalism to an architectural description language. In
IFIP International Symposium on Computer Performance Modeling, Measurement
and Evaluation, pages 236-260. Springer, 2002.

Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in BIP. In Software Engineering and Formal Methods (SEFM) 2006.
Fourth IEEE International Conference, pages 3—12. IEEE, 2006.

Kyungmin Bae, Peter Csaba Olveczky, Thomas Huining Feng, Edward A. Lee, and
Stavros Tripakis. Verifying hierarchical Ptolemy II discrete-event models using Real-
Time Maude. Science of Computer Programming, 77(12):1235 — 1271, 2012.

Karolina Zurowska and Juergen Dingel. Language-specific model checking of UML-
RT models. Software & Systems Modeling, 16(2):393-415, 2017.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time Object-oriented Modeling.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

Karolina Zurowska. Language specific analysis of state machine models of reactive
systems, 2014.

Abel Hegediis, Gabor Bergmann, Istvan Rath, and Déaniel Varré. Back-annotation
of simulation traces with change-driven model transformations. Proceedings of the
Software Engineering and Formal Methods (SEFM) 2010, pages 145-155, 2010.

97

[42]

[43]

[49]

[50]

Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model checkers:
a survey. Software Testing, Verification and Reliability, 19(3):215-261, 2007.

John Callahan, Francis Schneider, and Steve Easterbrook. Automated software test-
ing using model-checking. 2000.

Andrds Vorés, Marton Bur, Istvan Ré&th, Akos Horvath, Zoltdn Micskei, Laszl6
Balogh, Balint Hegyi, Benedek Horvath, Zsolt Mazld, and Déniel Varré. MoDeS3:
Model-based demonstrator for smart and safe cyber-physical systems. In Aaron Dutle,
César Munoz, and Anthony Narkawicz, editors, NASA Formal Methods, pages 460—
467, Cham, 2018. Springer.

Shuang Liu, Yang Liu, Etienne André, Christine Choppy, Jun Sun, Bimlesh Wadhwa,
and Jin Song Dong. A formal semantics for complete UML state machines with
communications. In Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal
Methods, pages 331-346, Berlin, Heidelberg, 2013. Springer.

F. Wagner. VFSM executable specification. In CompFEuro 1992 Proceedings Computer
Systems and Software Engineering, pages 226-231, May 1992.

Déniel Varré, Gabor Bergmann, Abel Hegediis, Akos Horvath, Istvan Rath, and
Zoltan Ujhelyi. Road to a reactive and incremental model transformation plat-
form: three generations of the VIATRA framework. Software & Systems Modeling,
15(3):609-629, 2016.

Tamés Toth, Akos Hajdu, Andras Voros, Zoltdan Micskei, and Istvan Majzik. Theta:
a framework for abstraction refinement-based model checking. In Daryl Stewart and

Georg Weissenbacher, editors, Proceedings of the 17th Conference on Formal Methods
in Computer-Aided Design, pages 176-179, 2017.

Anders Hessel, Kim G. Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson,
and Arne Skou. Formal methods and testing. chapter Testing Real-time Systems
Using UPPAAL, pages 77-117. Springer-Verlag, Berlin, Heidelberg, 2008.

Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Moller, Paul Pettersson,
and Wang Yi. UPPAAL - present and future. In Proc. of J0th IEEE Conference on
Decision and Control. IEEE Computer Society Press, 2001.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs,
pages 52-71. Springer, 1981.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design of
Real-Time Systems: 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT 2004, number 3185 in
LNCS, pages 200-236. Springer—Verlag, September 2004.

D. Sangiorgi. Towards bisimulation, page 11-27. Cambridge University Press, 2011.

Jan Tretmans. Model Based Testing with Labelled Transition Systems, pages 1-38.
Springer, Berlin, Heidelberg, 2008.

S. Balaji and M. Sundararajan Murugaiyan. Waterfall vs. V-Model vs. Agile: A
comparative study on SDLC. International Journal of Information Technology and
Business Management, 2(1):26-30, 2012.

98

Appendix: List of Symbols

Symbol Description

Tuples, sets and sequences

(...) Tuple
{..} Set
|...] Size of set
(.. Sequence
A* The set of finite (possible repeating) sequences of the elements of the set A
€ The empty sequence
|s] The length of sequence s
si] The ith element of sequence s
o(a) A permutation of set a
Se(a) All permutations of set a

Indices and sizes
A generic index variable
A secondary generic index variable
Another value for variable a
A generic size variable
An index used for components
The number of components

[/ S, =

= o~ 3

Temporal valuations

~

Next value of a
The value of variable a in the ith step

SHES!

Component types
Definition of synchronous components ("single-threaded")
The kth synchronous component
Definition of synchronous composites
Definition of cascade composites
Definition of composite (¢) as a synchronous component
Definition of asynchronous components ("multi-threaded")
The kth asynchronous component
Definition of the asynchronous wrapper component
Definition of asynchronous composites
Definition of (z) as an asynchronous component
Part a of the kth component (e.g., Sy of ©y,)

©)
= @
®@@w®

®@0dD

S

©
N0

Events
An event
The set of events
The set of input events
The set of output events
The domain function
The domain of event e
An element of a domain
The ith element of a domain
A parameter (of an event)
The empty parameter denoting that an event is missing
inst(e) The instances of event e
inst) (e) The instances of event e including the “null” instance (e, L)

DO ~MIo

>
—~

9]
~

= & a

1 All input events of constituent components

99

All output events of constituent components
All domains of events in constituent components

Event vectors

VE An event vector for events in F
Vi All possible event vectors for events in F
vr An input vector
V0 An output vector
Vi All possible input vectors
Vo All possible output vectors
vy The last output of constituent components
Ve All possible last outputs of constituent components
1s Empty output vector for all constituent components
1y Empty input vector
Event sequences
q A queue (a sequence of event instances)
w An output sequence of event instances
Q The set of possible output sequences of event instances
Component parts
S The set of states
S A state
s0 The initial state
T A state-transition function
t A single state-transition
Composite parts
C Constituent components of a composite
= Channels in a composite
=(e) The the events linked to event e determined by the channels
X The order of execution of components of cascade composites
Async wrapper
€ The control event
trig The trigger predicate
as Part a of the wrapped synchronous component (e.g., Ss of ©,)
Messages
m A message
€eo The source event of a message
ngt The output event set of the external component
er A single target event of a message
Er Target events of a message
Egt The input event set of the external component
sre(m) The source (sending) component of m
® The external component representing the environment
Occurrences
send(m) The occurrence of sending message m
recv(m,ey) The occurrence of receiving message m on target event ey
[t] An occurrence of transition ¢
my A message triggering the occurrence of a transition
mo A message generated by an occurrence of a transition
Mo The messages generated by an occurrence of a transition
#occ The position of occurrence occ in a total ordering of occurrences

100

	Kivonat
	Abstract
	Introduction
	Project Timeline
	Overview

	Background
	Modeling
	Model-Driven Software Development
	Modeling Languages

	State Machine Formalism
	Formal Verification and Model Checking
	Composite Reactive Modeling
	Related Work

	The Gamma Framework Features
	Overview
	Integrating Engineering Models
	Validation
	Code Generation
	Verification
	Formal Verification
	Test Generation

	The Gamma Modeling Languages
	Running Example: Railway Safety System
	Packages
	The Constraint Language
	The Interface Language
	Endpoint Elements

	The Statechart Language
	The Composition Language
	Communication Elements
	Components
	Synchronous Components
	Asynchronous Components
	Summary

	Formal Semantics of the Composition Language
	Events
	Event Vectors
	Synchronous Component
	Synchronous Composite Component
	Cascade Composite Component
	Event Sequences
	Asynchronous Component
	Asynchronous Adapter
	Asynchronous Composite Component
	External Component
	Messages and Execution Traces

	Gamma Test Language

	Implementation
	Technologies
	Eclipse Environment
	Xtext Framework
	VIATRA framework

	Architecture
	Integrated Modeling Languages
	Integrated Engineering Language: Yakindu
	Integrated Model Checker: UPPAAL

	Generated Source Code: Java
	Interfaces
	Components

	Case Study: MoDeS3
	Introduction
	The Simplified MoDeS3 Track Setup
	Bisimulation-based Formal Verification
	The Events of the New Communication Protocol
	The Track Models
	The New Section Model
	Proving the Bisimulation Relations
	Formal Verification of the MoDeS3 Safety-Logic

	Summary

	Conclusion
	Acknowledgements
	Bibliography

