

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Radnai Bálint

INTEGRATION OF SCXML STATE

MACHINES TO THE GAMMA

FRAMEWORK
Bachelor's thesis

ADVISOR

Graics Bence

BUDAPEST, 2022

Contents

Összefoglaló ... 1

Abstract ... 2

1. Introduction ... 3

1.1. Model-driven development ... 3

1.2. Overview .. 3

2. Background.. 5

2.1. State machine formalisms ... 5

2.1.1. UML state machines .. 5

2.1.2. SCXML ... 6

2.1.3. Gamma Statechart Composition Framework .. 7

3. Theoretical results ... 9

3.1. Comparing UML and SCXML state machines .. 9

3.1.1. Semantic similarities .. 9

3.1.2. Differences .. 11

3.2. Comparing SCXML and Gamma statecharts ... 12

3.2.1. Similarities ... 12

3.2.2. Differences .. 13

3.3. Mapping between SCXML and Gamma elements ... 16

3.3.1. Core statechart elements ... 16

3.3.2. Action and data model elements ... 18

3.3.3. Composition and communication elements .. 19

3.3.4. Resolving differences between SCXML and Gamma statecharts 20

4. Implementation.. 24

4.1. Technologies .. 24

4.1.1. Eclipse Modeling Framework .. 24

4.1.2. Xtext .. 24

4.1.3. Xtend ... 25

4.2. Implementation of the SCXML-Gamma transformation 25

4.2.1. Traversing an SCXML statechart ... 26

4.2.2. Traceability classes .. 26

4.2.3. Transformer classes.. 27

5. Evaluation .. 28

5.1. Example: Crossroads .. 28

5.1.1. Transforming a statechart component ... 28

5.1.2. Transforming the composite model .. 32

5.1.3. Verification of the transformed Crossroads component 34

6. Conclusion ... 35

Bibliography .. 36

HALLGATÓI NYILATKOZAT

Alulírott Radnai Bálint, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg

nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat

(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,

vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető

elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán

keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem, hogy a

benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel

titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik

hozzáférhetővé.

Kelt: Budapest, 2022. 12. 09.

 ...…………………………………………….

 Radnai Bálint

1

Összefoglaló

Napjainkban egyre fontosabb szerepet kapnak a modellalapú szoftverfejlesztési

paradigmák, mivel a reaktív rendszerek és szakterület-specifikus modellek komplexitása

az utóbbi években nagymértékben megnőtt. A modellvezérelt fejlesztőeszközök lehetővé

teszik, hogy a rendszertervező mérnökök modellekben gondolkozhassanak. Az elkészült

modellekhez a keretrendszer automatikus verifikációs, illetve forráskód generáló

eszközöket biztosít, ezáltal felgyorsítva a fejlesztési folyamatot. A rendszerek és

komponenseik belső viselkedésének leírására gyakran alkalmazunk állapot alapú

modelleket. Az állapot alapú fejlesztést támogató eszközök – mint az UML vagy az

SCXML – hiányossága, hogy jellemzően nem definiálnak precíz végrehajtási

szemantikát, így nem teszik lehetővé a modellek formális verifikációját, illetve forráskód

generálását sem.

Munkámban egy olyan modelltranszformációt mutatok be, amely lehetővé teszi

modellvezérelt fejlesztőeszközök alkalmazását SCXML modelleken. A transzformáció

SCXML állapotgépeket alakít a Gamma Állapotgép Kompozíciós Keretrendszer köztes

állapotgép nyelvére. E transzformáció eredményeképp a keretrendszer formális

modellellenőrzési, illetve automatikus teszt- és kódgenerálási funkciói elérhetővé válnak

az SCXML modellekhez is. A transzformáció az Eclipse EMF és az Xtext

keretrendszereken alapul, és az SCXML állapotgépek nyelvi elemeinek többségét képes

a Gamma keretrendszer megfelelő modellelemeire leképezni. Azért, hogy a

transzformáció megőrizze az SCXML modellek szemantikai sajátosságait,

összehasonlítom egymással a két állapot alapú formalizmus szintaktikáját és

szemantikáját. A modelltranszformáció képességeit a Gamma útmutatójában szereplő

projekten mutatom be, amely egy útkereszteződés közlekedési lámpáinak vezérlőit

modellezi.

A modelltranszformációt jelen állapotában vagy önálló SCXML állapotgépekre,

vagy több együttműködő SCXML állapotgépből álló, összetett SCXML modellen lehet

végrehajtani. A későbbiekben kiegészíthető az SCXML fennmaradó vagy opcionális

nyelvi elemeinek leképezésével.

2

Abstract

Model-driven software development approaches are getting more and more

important as the complexity of component-based reactive systems and domain-specific

models has been increasing in the last years. Model-driven development tools speed up

the development process by allowing system architects thinking in models, and provide

verification and automatic code generation capabilities based on these models. The

internal behavior of systems and their components is usually represented using state-

based formalisms. Several of the widely used tools which support state-based modeling

like UML and SCXML provide execution semantics, but intentionally leave parts of their

dynamic semantics un- or underspecified. To ensure the compatibility and traceability of

models and generated code, rigorous model semantics is needed.

To help modelers use model-driven features with precise semantics on SCXML

models, a model transformation is presented that translates SCXML state machines to the

intermediate statechart language of the Gamma Statechart Composition Framework. By

this transformation, the automatic model checking, code generation and model-based test

generation features can be used on transformed SCXML models. The transformation

builds on Eclipse EMF and the Xtext framework. The transformer is capable of mapping

most elements of an individual SCXML state machine to Gamma model elements. To

ensure semantic equivalence of transformed elements, the two formalisms are compared

both syntactically and semantically. The capabilities of the transformer are demonstrated

on a crossroad model included in the tutorial project of Gamma.

This model transformer can translate individual SCXML state machines as well

as composite components containing state machines. It can later be extended with the

transformation of remaining language elements of SCXML.

3

1. Introduction

1.1. Model-driven development
Model-driven engineering1 is a software development methodology that focuses

on creating and exploiting domain models, which are conceptual models of all the topics

related to a specific problem. It highlights abstract representation of knowledge of a

particular application domain rather than computing concepts.

Model-driven software development tools make use of models. A model is the

simplified image of an element of the real or a hypothetical world (the system), that

replaces the system in certain considerations. Models are abstractions that focus only on

the important features of the modeled system from the point of the purpose of modeling.

An advantage of model-driven software design is automatic source code

generation from models, which makes the complexity of the modeled system manageable,

and ensures consistency between models and generated code as well as reducing human

errors in the system implementation. This is the reason why this development paradigm

is usually applied in the development of safety-critical systems, since validation and

verification steps have to be taken at each phase of system design [1].

1.2. Overview
Different modeling languages aim to serve different modeling purposes, and this

is the case for statechart modeling languages, too. One formalism may provide more

rigorous rules on how modeles state machines have to be executed. This can be done

using formal semantics that define with mathematical precision how a model has to be

interpreted. Other formalisms may lack of such rigorous semantics, but provide a more

open modeling formalism. Implementations of these languages are free to implement

these intentionally underspecified or unspecified modeling features for their purposes

(possibly with optimizations).

Modelers may want to create a model that they wish to describe models that can

be easily validated and verified, but the modeling framework they use do not provide

tools for doing this. In this cases, a model-to-model transformation can help to transform

1 Model-driven engineering, https://en.wikipedia.org/wiki/Model-driven_engineering

https://en.wikipedia.org/wiki/Model-driven_engineering

4

their model to a formalism in the background that they do not need to learn, just use its

automatic features.

In this work, I created a model-to-model transformation that maps the metamodel

elements of a general purpose state-based modeling language to the metamodel elements

of another formalism that help modelers with such automatic model-driven tasks, that I

presented above. The transformation aims at keeping the semantics of the transformed

modeling languages the same or similar. This enables verifying a simple or composite

statechart model with mathematical precision.

Chapter 2 is a brief introduction of the modeling languages that provide state-

based modeling features, and which the model transformation builds on.

In Chapter 3, I investigate and summarize the main similarities and differencies

of the languages presented in Chapter 2. I present the mapping rules of the transformation

that has to be implemented.

The tools I used in the implementation of the transformation as well as some

aspects of the transformer is presented in Chapter 4.

In Chapter 5, I show the capabilities of the transformer and the structure of the

components generated from SCXML models of an example Crossroads model.

Chapter 6 summarizes the work, and provides tips for future work.

5

2. Background

2.1. State machine formalisms
State machine formalisms are mathematical models of computation, which

describe the behavior of the modeled system or component in an event-driven way. A

state machine is a quintuple (𝐼, 𝑂, 𝑆, 𝑠0, 𝑇) where

 𝐼 is a finite set of input events or signals

 𝑂 is a finite set of output events or signals

 𝑆 is a finite non-empty set of states

 𝑠0 is an initial state, an element of 𝑆

 𝑇 is a finite set of transitions, which represent changes of states in response to

input events, and generate output events

This basic state machine formalism can be extended to statecharts, which support

state refinement, concurrent states and extend the broadly understood state space by

variables. I introduce three statechart formalisms in this section. [1, pp. 6-7]

2.1.1. UML state machines

The Unified Modeling Language (UML) [2] is a standard visual modeling

language. It is intended to be used for the analysis, design and implementation of

software-based systems and to model business processes2. UML behavior diagrams

represent the dynamic aspects of the system. State-based modeling is supported by state

machine diagrams.

There are two types of UML state machines. Behavioral state machine specifies

discrete behavior of a part of a designed system through finite state transitions. The state

machine formalism is an extended object-based variant of Harel statecharts3. Protocol

state machine is a specialization of behavioral state machine used to express the usage

protocols or the lifecycle of a UML classifier.

2 The Unified Modeling Language, https://www.uml-diagrams.org/

3 Modeling Reactive Systems with Statecharts: The STATEMATE Approach, (with M. Politi),

McGraw-Hill, 1998., http://www.wisdom.weizmann.ac.il/~dharel/reactive_systems.html

https://www.uml-diagrams.org/
http://www.wisdom.weizmann.ac.il/~dharel/reactive_systems.html

6

2.1.2. SCXML

SCXML (StateChart XML) [3] is a W3C4 technical report used to describe

general-purpose event-based state machines. The language is a generalized extension of

the state and event notation of CCXML5, an event-based state machine language designed

to support call control features in Voice Applications. The language has XML-like textual

syntax and semantics based on Harel statecharts and UML.

SCXML models are defined by SCXML documents. SCXML documents are

loaded, parsed and processed by SCXML processors. Execution of a state machine is

called an SCXML session. An SCXML processor is a pure event processor that can send

and receives events with the help of SCXML event processors. Processors keep track of

the internal and external event queue of asynchronous messages, trigger the execution of

transitions and maintain the data model of the statechart. SCXML is extendable by custom

action elements that can be taken as part of taking transitions. SCXML is a widely

extendable language, but also specifies some features that help interoperability. Such

features are the ECMAScript datamodel based on the third edition of ECMAScript6, and

the Basic HTTP Event I/O Processor to implement messaging between any kind of web-

based service supporting HTTP POST requests. Support for these language features is

optional. SCXML processors may support other platform-specific data model languages,

or event processors that implement platform-specific message sending.

SCXML is used in Cameo Simulation Toolkit, the simulation toolset of

MagicDraw, as part of its extendable model execution framework7. There are several

SCXML implementations like Apache Commons SCXML8, uSCXML9 and Qt SCXML

Engine10. Because SCXML is a widely used state machine execution platform in

4 World Wide Web Consortium, https://www.w3.org/

5 Voice Browser Call Control: CCXML Version 1.0, https://www.w3.org/TR/2011/REC-ccxml-

20110705/

6 http://www.ecma-international.org/publications/standards/Ecma-262.htm

7 https://docs.nomagic.com/display/CST2021x/State+Machine+simulation

8 Apache Commons SCXML, https://commons.apache.org/proper/commons-scxml/

9 uSCXML, https://github.com/tklab-tud/uscxml

10 Qt SCXML Engine, https://doc.qt.io/qt-6/qtscxml-index.html

https://www.w3.org/
https://www.w3.org/TR/2011/REC-ccxml-20110705/
https://www.w3.org/TR/2011/REC-ccxml-20110705/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://docs.nomagic.com/display/CST2021x/State+Machine+simulation
https://commons.apache.org/proper/commons-scxml/
https://github.com/tklab-tud/uscxml
https://doc.qt.io/qt-6/qtscxml-index.html

7

engineering practice, we should also focus on SCXML modeling toolsets that support

semantically correct validation, analysis and code generation of such models.

2.1.3. Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework (Gamma)11 [4] is a toolset

to model, verify and generate code for component-based reactive systems. Individual

statecharts, as well as composite statechart networks can be validated and verified by an

automated translation to different backend model checkers. Designers can use the code

generation functionality of the framework, which can derive, for example, Java code for

the whole system.

Gamma has rigorous semantics concerning composition, communication and

execution of components, which is necessary for the validity and conformation of models,

generated code, generated tests and the result of formal analysis. It provides strongly-

typed model and domain-specific languages for different aspects of modeling composite

reactive systems.

2.1.3.1. Gamma Statechart Language

The Gamma Statechart Language (GSL) is an intermediate state machine

formalism for the Gamma framework which is the starting point for model-based test

generation, source code generation and formal verification of individual statechart

components. GSL is configurable thus the developer can set e.g. the priority of different

hierarchy levels (top-down or bottom-up scheduling of contained regions), as well as

setting the execution order of parallel regions in a statechart. It contains the building

blocks of a statechart, so it also provides the basis of modeling composite reactive

systems.

2.1.3.2. Gamma Composition Language

The Gamma Composition Language (GCL) supports the definition of

communicating composite systems from individual components. Components can behave

as communication endpoints by defining ports. Communication of components on the

same hierarchy level is made through channels connecting compatible port instances of

11 The Gamma Statechart Composition Framework is open-source project, whose source code is

available at https://github.com/ftsrg/gamma/tree/dev

https://github.com/ftsrg/gamma/tree/dev

8

the connected components. Ports and interface realizations are also strongly-typed. For

two ports to be compatible, one has to provide the same or a more specialized interface

that the other port requires. Communication hierarchy is established through port binding,

where events occurring on a composite system port are forwarded to an appropriate port

of a subcomponent of the composite system. The hierarchical composition of components

is supported by various component types implementing various execution models, e.g.

synchronous or asynchronous composition. [1]

9

3. Theoretical results

In this section I summarize the main theoretical observations I made considering

the syntax and semantics of SCXML and Gamma statecharts. To get more familiar with

SCXML, I first compare it with UML state machines, as UML is a very widely known

formalism based on which the main concepts of SCXML can be introduced.

After summarizing the similarities and differences between UML and SCXML, I

compare SCXML and UML with the Gamma Statechart Language, focusing more on

semantic differences. Then I give an overview on how the similar elements of the two

languages can be mapped to each other, and how their differences can be resolved if

possible.

3.1. Comparing UML and SCXML state machines
SCXML state machines are based on Harel State Tables just like UML and thus

share some basic concepts like states, transitions, parallel regions and actions. Generally,

SCXML syntax and semantics of these basic concepts are a subset of those found in UML

state machines, even if their execution environments are different. [5]

3.1.1. Semantic similarities

3.1.1.1. Transition selection and execution

Some of the most important semantic similarities of them is that transitions are

selected and executed the same way in both formalisms. [3] [2]

1. When an event E occurs, the state machine interpreter that executes the state

machine, observes the transitions enabled by that event in atomic descendant

states of the active state configuration C. A transition T is enabled by event E in

atomic state S if

a. T’s source state is S or an ancestor of S

b. T matches E

c. T lacks a guard expression or its guard evaluates to true.

2. The interpreter next determines the optimal transition set of event E in

configuration C. This set will contain the largest set of enabled transitions so that

no two transitions conflict in the set, and there are no enabled transitions with

higher priority outside this optimal transition set. Two transitions T1 and T2

10

conflict12 in state configuration C if the intersection of their exit sets is not empty.

The exit set of a transition in configuration C is consists of all active states in C

that are proper descendants of the least common compound ancestor (LCCA) of

its source and target states13. When resolving conflicts, transitions are prioritized:

transitions residing in descendant states or preceding other transitions in document

order are selected in the optimal transition set.

3. The state machine interpreter executes the transitions in the optimal transition set

of event E in configuration C. This is called a microstep.

When executing a microstep, the state machine first exits all source states in exit

order, and executes exit actions accordingly. Exit order or reverse document order means

that descendant states are exited earlier than ancestor states, with reverse document order

used to break ties. The statechart processor then executes the effects of the selected

transitions themselves in document order, as transitions appear in the document. Finally,

the state machine enters the target states in entry order (or top-down order, from parents

to children, which is the same as document order) and executes entry actions of these

states.

3.1.1.2. Determinism

An SCXML state machine runs deterministically if it does not invoke any external

event processor, and if the actions it executes are not programmed to introduce any non-

deterministic behavior. Determinism in this context means that the state machine takes

the exact same transitions, goes through the same state configuration changes and emits

the same sequence of output events every time it is executed with the same sequence of

input events.

The way how transitions are selected when an event occurs is designed to resolve

situations when more transitions could be selected. They are prioritized. If the source state

12 Two enabled transitions conflict when they reside in different orthogonal regions of an SCXML

<parallel> element, but at least one has a target state that is outside of that region. In this case, executing

both transitions might take the statechart in an invalid active state configuration. To prevent this, at most

one such transition can be taken. Such conflicting transitions have a non-null intersection of exit state sets.

Thus this requirement is caught by examining the intersection of the exit sets of transitions.

13 This is the case when the type of the transition is ‘external’. If a transition is internal and all

target states are descendants of the source state S, the exit set of the transition contains only the active

proper descendants of S, i.e. S is not part of the exit set in this case.

11

of two transitions are the same or these states are not descendants of each other, document

order specifies which one is selected. When the source states of two conflicting transitions

are not the same, but one is descendant of the other, the transition in the descendant state

is selected. When there is no matching transition when an event is removed from an event

queue, the state machines take no action, and wait for the next event in the queue.

3.1.1.3. Run to completion and termination

Another semantic similarity is the run-to-completion execution behavior of

microsteps in both formalisms. This means that the state machine does not process an

event occurrence until the previous event is processed, its effects are completed and a

stable state configuration is reached. Besides that, completion events are generated

automatically. A completion event is generated when a simple state has finished executing

its entry and do behaviors. Also, in the case of composite or submachine states, a

completion event is generated when the given state has reached a final state.

3.1.2. Differences

UML state machines have an explicit structural context in which they are defined.

In contrast to this, a single SCXML state machine (denoted by an <scxml> element) is

the top-level language element. Hence, SCXML state machines have an execution

environment that is independent from other SCXML statecharts. They can interact with

each other and external services via URIs, for example, in a web-based environment. An

SCXML state machine therefore cannot contain any submachine states, but they can

instantiate other (external) child SCXML sessions by using the <invoke> element.

Protocol state machines are not supported either.

SCXML has its own event model. It does not define a typed event model, but uses

specific event matching descriptor strings. SCXML’s data model is also different from

that of UML, and it is customizable: the SCXML state machine and all of its states can

define parts of global or local sets of data. An SCXML implementation can support

different data models, all of which define the format in which data is stored, the datatypes

and the legal operations on the data elements. An implementation can define its own data

model and realize it in a platform-specific way.

SCXML supports only a subset of UML pseudo states, namely initial states and

shallow or deep history states. There is no ‘do’ event in SCXML, but states can have an

arbitrary number of <onentry> and <onexit> handlers, which can contain executable

12

content, and are executed upon entering or exiting the state, respectively. SCXML also

has some specific action elements, but they mostly have general programming equivalents

(like the <foreach> element).

As mentioned before, completion events are also present in SCXML similarly to

UML, but they are also identified by unique names. For example,

‘done.state.<stateId>’ represents the completion event of a <state> or a

<parallel> element with identifier ‘stateId’. The modeler can use them to

explicitly trigger transitions in the state machine, so SCXML gives greater control over

handling completion-related constructs than UML.

3.2. Comparing SCXML and Gamma statecharts
As a general observation, SCXML offers some basic state machine elements

which aim at state machine interoperability. However, the language also contains highly

customizable constructs like the chosen data model, event content structure and external

communication methods. These characteristics are in contrast to the precise design

languages of Gamma with formal syntax and semantics. Here I compare the syntax and

semantics of the most important SCXML and Gamma statechart elements.

3.2.1. Similarities

Both formalisms describe statecharts based on Harel State Tables, therefore the

core constructs of SCXML and Gamma are also similar. Gamma statecharts can be

configured in several aspects, like how enabled transitions are scheduled and selected,

how orthogonal regions are scheduled and executed, and when transition guard

expressions are evaluated. There are appropriate configurations that cause the statechart

to be executed with UML and SCXML-like semantics.

When transitions are selected for firing in SCXML, transitions from descendant

states and ones appearing in the same state, but earlier in document order are selected. In

Gamma, these semantics can be enforced by setting the statechart’s scheduling order to

bottom-up and setting the transition priority to order-based.

Selected transitions are executed in a microstep, or cycle in both formalisms. First,

states in the exit set of all transitions are exited in exit order. Then transitions effects are

executed as blocks of actions. As the last step, states are entered in the transitions’ entry

set in entry order (from parent states to atomic child states, or otherwise in document

order).

13

Gamma also supports parallel region execution in a compound state, just like

UML and SCXML. Orthogonal regions and parallel execution do not introduce real

parallelism in SCXML, just denotes all children states of a parallel element are

simultaneously active. This affects which transitions are enabled in a state configuration,

but the selected ones are executed sequentially in document order (possibly on one

execution thread). In Gamma, setting the orthogonal region scheduling order to sequential

meets this semantics. In Gamma, it is also possible to set the order of orthogonal regions

as unordered, or parallel.

3.2.2. Differences

3.2.2.1. Differences in composition and communication

In SCXML, statecharts are run individually, and communicate with each other by

URIs as addresses. In SCXML, external communication is handled by event processors.

The main event processor is the SCXML Event I/O Processor, which any SCXML

implementation platform must support, and which handles SCXML events for the state

machine. These event I/O processors define only the transportation mode and the

mapping of event metadata between SCXML sessions and other services. The

implementation details of event transmission and the mapping of event content between

the sender and the receiver SCXML session are platform-dependent.

Communication between SCXML statecharts is implemented by <send>

elements, which define the target URI, SCXML event processor, the optional time delay,

and the event content sent to the receiving SCXML session or other web service as

payload. The event is sent by the ‘fire and forget’ concept. The format of the payload

depends on the data model, and the delivery depends on the selected event processor, both

of which can have platform-dependent parts. The content sent in the event is not strongly-

typed.

In Gamma, multiple components can be integrated in a composite model using

the semantically well-defined Gamma Composition Language. Hierarchic nesting of

components is also supported.

Gamma establishes communication between components in a different manner.

In a Gamma composite model, each component has its own ports, which serve as

communication endpoints, and communication can only happen through these ports. Each

port realizes an interface, which interface in turn defines the receivable and transmittable

14

events. The events are directed (by ‘in’, ‘out’, or ‘inout’ directions), and can have

typed payload parameters, e.g. a string or an array of integers.

Communication between ports is done by channels connecting two compatible

ports. Port compatibility means that one of the ports provides an interface with in and out

events, and the other one implements an interface with the subset of the same events but

with opposite directions. Also, in Gamma, a subcomponent’s port can only be connected

to another port with a channel, and only if they are at the same hierarchy level. Nested

components can only communicate through their ancestors’ matching ports by port

binding.

In SCXML, when events are sent or are set as triggers of transitions, they are

referenced by event descriptor strings. Such examples are ‘*’, ‘count’, ‘count.add’

or ‘count.add.zero’. Event matching on selecting transitions is done by splitting the

trigger’s event descriptors into tokens by dot characters. An event descriptor matches

such an event name, if it is the same or its prefix (e.g. incoming event name

‘count.add.one’ would match descriptors ‘*’, ‘count’ or ‘count.add’, and the

transition would be enabled, however, it would not match ‘count.add.zero’).

3.2.2.2. Differences in the data model, actions and expressions

In SCXML, the state machine has a data model, and it can have <data> elements

like variables. The interpretation of those data all depend on the data model set in the state

machine. Examples are

- boolean expressions of transition guards

- data model’s value expressions

- data manipulating actions executed in entry, exit actions and when taking

transitions.

Data elements can be complex objects with a possible XML, JSON, plain text or

a platform-specific notation.

Gamma provides constants and variables that a statechart can handle. Constants

are set at instantiation time, but the values of variables can be changed. The variables and

constants all have a type, which comes from a limited, but complex enough datatype set

(array and record objects are supported, and can be nested to create complex typed

15

datatypes). Mapping simple SCXML data elements to Gamma variables can even be done

by the Gamma Expression Language’s automatic type recognizer feature.

An SCXML <raise> action corresponds to a Raise Event Action in Gamma, but

we have to create an Event object and specify the interface and port on which we send

out that event. <send> actions represent sending an event wrapped in an asynchronously

sent message, which can also be mapped to Raise Event Actions. The SCXML event

name is mapped to a Gamma Event object. The target of the send action can be mapped

to a Gamma Instance Port Reference, representing a port of an instance of a component

type. The name of the interface and the port has to be inferred from the target.

3.2.2.3. Differences in execution-related elements

An SCXML transition defines the target state specification to which the transition

brings the statechart after it is executed. This target state specification can contain

multiple <state> and <parallel> element identifiers, and allows for greater control

over specifying the exact target state configuration. The next active state configuration

will be deduced by expanding this state specification by initial and history states of

compound states, parallel regions and their successive subregions. In Gamma, the state

configuration specified by the transition target is determined the same way as in SCXML,

but only a single target state can be specified as a target state specification.

A syntactical difference is that SCXML transition targets are given by state

identifier strings (such as event descriptors). Another syntactical difference is that in

SCXML, the initial state of a state can be given by an <initial> element, or an initial

attribute. If neither is specified then the first state in (top-down) document order is the

initial state in that compound state.

Execution is different considering final states and completion events. SCXML

offers referencing named completion events (and also error events) explicitly. Transitions

implicitly triggered by such completion events are prioritized over explicit event triggers,

therefore event execution order depends on execution time.

Gamma does not support completion-related constructs, because the timed

behavior and completion events make the state space unmanageable and hard to formally

analyze.

16

3.3. Mapping between SCXML and Gamma elements
Many aspects of the basic state machine concepts of the two languages can be

mapped easily, though they have semantically quite different constructs as well. Where

mapping the different syntactical and semantical aspects was not trivial, I chose a solution

that can fit in the Gamma framework and which aims to keep the semantics of the original

language. When I could not resolve a difference, I gave the SCXML modeler

customization possibilities for the model as well as set some restrictions that the model

transformation will expect. These custom SCXML modeling constructs still can be

translated into a Gamma statechart, but partially support those SCXML features they are

created with.

3.3.1. Core statechart elements

Table 3-1 contains the core SCXML statechart elements and their corresponding

Gamma model elements. The name of the <scxml> element is mapped to the name of the

Gamma statechart. The identifiers (id attributes) of <state>, <parallel> and

<history> elements become the name of the corresponding Gamma statechart element.

These identifiers have to be unique in the statechart.

17

Element SCXML element Gamma element

Statechart <scxml> Synchronous Statechart Definition

State <state>
-id

State
- contains a Region with an

Initial State if it is compound

Parallel
regions

<parallel> State with more regions containing
the mapped children of the
<parallel> element

Initial
state

- <initial> element
- initial attribute of <scxml> or
<state>

- first child state in document
order of <scxml> or <state>

Initial State
- Transition from the initial pseudo

state if not an SCXML <initial>
element

History
(shallow /
deep)

<history> with
type = ‘shallow’ / ‘deep’

Shallow History State /
Deep History State

Entry
behavior

<onentry> Action block containing mapped
individual child actions of
<onentry>

Exit
behavior

<onexit> Action block containing mapped
individual child actions of <onexit>

Transition <transition>
- source
- target
- trigger
- guard
- effects (children actions)

Transition

 containing State Node

 target State Node, name = target id

 Port-Event Trigger

 (Boolean)Expression

 Action block containing mapped
<assign>, <raise> actions etc.

Variable <data> with implicit type of
boolean, integer, string or an
array of one of these types

Variable Declaration

 resolving its type automatically
if ’gamma’ data model is used

Assign <assign> Assignment Statement

Raise
event

<raise> Raise Event Action

Table 3-1: Corresponding SCXML and Gamma statechart elements

18

3.3.2. Action and data model elements

Element SCXML element Gamma element

Variable <data> with implicit type of
boolean, integer, string, array,
record or other valid Gamma
type

Variable Declaration

 resolving its type automatically
if ’gamma’ data model is used

Assign <assign> Assignment Statement

Raise
event

<raise> Raise Event Action

Table 3-2: Corresponding SCXML and Gamma action and data model elements

The datamodel of the SCXML statecharts have to be set to ‘gamma’ to use the

platform-specific Gamma action and expression elements. Other datamodel

specifications are not supported by the transformation project. Besides history states, an

SCXML statechart has inner memory by comprising a data model. When using the

Gamma datamodel, SCXML <data> elements with expressions of supported Gamma

types can be specified. These <data> elements are mapped to variables with the name

of the unique identifier of <data> and the value of the parsed expression of <data>.

Like transition guards, variables can be initialized and updated with the evaluated

values of Gamma expressions. The expression transformer parses the textual Gamma

expression tree from the expr attribute. It also links all variable names to their

corresponding variable declarations, so that evaluation of the parsed expression will use

the actual value of the variable instead of its name.

19

3.3.3. Composition and communication elements

Element SCXML element Gamma element

Composition
/ invoking
services

SCXML model with <invoke>
elements

Scheduled Asynchronous Composite
Component

Message
sending

<send>
-target attribute

Raise Event Action
-InstancePortReference

Event -implicitly defined by
transitions, <raise> or
<send> actions,
or <data> with implicit type of
boolean, integer, string or an
array of one of these types

Event
EventDeclaration with the proper
event direction: internal or out

Interface Implicitly defined by event
string or by a top-level <data>
element representing a port

Interface and EventDeclarations

Port Implicitly defined by event
string
or top-level <data> element
with id starting with
‘pro_port_’ or
‘req_port_’

Port and InterfaceRealization

Port binding top-level <data> element with
id starting with ‘binding_’

Port Binding

Channel top-level <data> element with
id starting with ‘channel_’

Channel

Table 3-3: Corresponding SCXML and Gamma composition and communication elements

In SCXML, the <invoke> element creates an external service when executed. It

allows for more coupled communication between a parent SCXML session and a child

service than <send>, but less tightly coupled than the composition and communication

in Gamma. In this work, I only handle the cases when the child service is also an SCXML

statechart, to stay in the domain of the SCXML-Gamma transformation.

I transform the individual statecharts of the composite SCXML model, then

compose them into a composite Gamma component. For the composition semantics I

chose the scheduled asynchronous model of computation. The corresponding Gamma

component type is also called Scheduled Asynchronous Composite Component.

Individual statecharts process events asynchronously. An SCXML interpreter

uses an internal message queue for events raised and targeted inside that SCXML session,

and an external message queue for storing messages coming from external services.

20

An event in the SCXML model is defined implicitly by its name. During

transformation, a Gamma Event object is created with this name. Because there are no

elements in SCXML that directly define the interfaces, ports and contracts that define

communication between components, I changed the semantics of the structure of event

descriptors for the purpose of modeling a transformable SCXML statechart. Interface

names and port names can be defined in event descriptors with a special syntax, with the

option of omitting one or both (See Section 3.3.4.2). The names of events and interfaces

are considered to be global in the context of the transformation. Where the same event or

interface name is found, they are mapped to the same Gamma Event or Interface object,

respectively when transforming any SCXML model.

Event declarations on the Gamma interface must have an event direction

specified. The special direction internal is used for events that are sent to the same

component as the sender. The default interfaces of transformed statecharts contain only

this kind of events, the default interfaces and ports becoming internal automatically. All

other events are directed as out events. This is not a problem, because in events are

received by ports that realize interfaces in required mode, so these out events become in

events on them. This way SCXML events on can be mapped to events and event

declarations on a strongly-typed Gamma interface, and they can be sent and received

through ports.

3.3.4. Resolving differences between SCXML and Gamma statecharts

There are some constructs in SCXML that cannot be easily mapped into Gamma.

Completion events and event descriptors are two examples.

Handling completion events in an environment that does not support them is nbot

trivial. It would require additional states, transitions, and another message queue with

higher priority than the one queueing normal event occurrences. Implementing this

feature and mapping corresponding SCXML states and events would result in a complex

statechart model with a state space too complex for an SCXML model, so I did not focus

on resolving it in this work.

3.3.4.1. Choice of data model and expression language

Parsing expressions from different data models (such as ECMAScript, Lua or

XPath), would need support for their data representation, expressions and actions

manipulating the data. This was out of the scope of the core transformation. Instead of

21

supporting these languages and creating a transformation just for the optional datamodel

language, I made a restriction for the input SCXML models. They have to use a custom

data model named ‘gamma’, which uses the Gamma Expression Language for its

conditional expressions and value expressions. This is a reasonable choice because the

Gamma Expression Language provides the common simple and complex datatypes,

expressions, variables, logic operators, arithmetic operators and selectors that can

conveniently model a broad set of expressions occurring in an expression modeling

language, while enabling the formal analysis of these expressions. Besides that, the

framework used in the implementation support the parsing of these expressions out-of-

the-box (See Chapter 4).

3.3.4.2. Handling event descriptors

In the case of event descriptors, SCXML uses event strings and prefix matching

at transition triggers. Because of this prefix matching strategy, there can be infinitely

many possible matching events for an SCXML event descriptor in an SCXML transition

list, which Gamma cannot handle. Gamma does not support trigger name prefix matching.

Because of that, the model transformer handles only exact event names, not event name

prefixes.

To allow SCXML developers to specify a convenient and more elaborated model

of events, I decided to support three kinds of event description modes. Event name tokens

are separated by single dots:

 ‘port.interface.event’: Port, interface and event names are all specified. In the

transformed Gamma model, the event will be transmitted on the specified port

realizing the interface. This allows for differentiation of multiple port instances on a

statechart providing the same interface.

 ‘interface.event’: Events with the specified event name will be transmitted

through the interface specified in the name as its first token. The transformer

automatically creates a default port for this interface, which implements this interface

as provided. This default port of the named interface is different from named ports

specified with the ‘port.interface.event’ description mode.

 ‘event’: Specifies only the event name. To handle this event description mode in

Gamma, the transformer automatically creates an interface, which will serve as the

default interface for the Gamma statechart, and also a port providing this default

interface, which will be its default port. The default interface and port are different

from all other interfaces and ports of the same statechart. For the transition triggers

and raise event actions that receive or send this type of event (i.e. events with exactly

22

this name), the event will be sent out and received through this default port and

interface.

3.3.4.3. Composition with <invoke> elements

To model the composition of SCXML statecharts, I included transforming an

SCXML statechart with <invoke> elements to a composite Gamma component. The

<invoke> element represents a service that is invoked when the SCXML session has

reached a stable state, and cancelled when the state containing the <invoke> is

deactivated. The structure of composite models in Gamma cannot be changed

dynamically in this sense. To model similar execution semantics in SCXML that Gamma

composite models support, the SCXML modeler should place all invocations in a state

that is always active while the SCXML statechart is being executed. The transformer

currently supports hierarchical invocations for one level depth, with at most one

composite statechart. Statechart-like semantics can only be specified in atomic statechart

models, which do not contain any <invoke> elements.

The src attribute of an <invoke> element defines the SCXML file that contains

the markup of the invoked statechart. Thus, the transformer tries to find and load the

contents of that file when transforming <invoke>. Multiple invocations may refer to the

same SCXML statechart file, so these SCXML sources can be mapped to statechart

definitions in Gamma. Invocations are then mapped to instances of this statechart

component type.

The transformer composes the subcomponents based on the scheduled

asynchronous composite model of computation [1, p. 9]. I chose this model because

individual SCXML sessions are executed independently, just as components in an

asynchronous-reactive model of computation.

To support this computation model, I wrapped Synchronous Statechart Definition

instances into Asynchronous Adapters, that control the wrapped statecharts

asynchronously. The adapters communicate using message queues to store messages

from other services. They are responsible for storing incoming messages in message

queues. When a message arrives, they extract the event from it, and make their wrapped

state machine execute it. The queues follow first-in-first-out semantics. While the

external event queue is empty, it is blocking, but when a message arrives in that queue, a

new execution cycle – a macrostep – starts in the SCXML session. The internal event

23

queue has greater priority than the external. While there are internal events generated

inside the statechart, external events are not removed or executed from the external event

queue. The schedulable asynchronous component is used because its semantics is similar,

but more general than an asynchronous composite component, since the execution list of

its subcomponents can be specified or refined.

3.3.4.4. Handling top-level <data> elements describing communication

Since SCXML lacks the precise notion of interfaces, ports, port bindings and

communication channels, a modeler should be able to specify these elements in an

SCXML model, too. To achieve this, the transformer investigates a composite statecharts’

top-level <data> elements with the special identifiers of the SCXML-Gamma

transformation platform. The transformer assumes that some top-level SCXML <data>

elements will be responsible to represent these communication elements.

 Composite system ports: To make it possible to explicitly model ports

communicating with the environment, composite system ports can be defined by

a top-level <data> element with id that starts with the string ‘pro_port_’ or

‘req_port_’. With these identifiers, the modeler can specify a provided or

required port, respectively. The expr attribute of the port <data> has to be set to

[<port_name>].<interface_name>. The name of the port can be omitted, in

this case it will be the same as the interface name. Interface names are considered

global in the modeled composite component and its subcomponents.

 Port bindings: Composite system ports can be bound to a port of a subcomponent

instance by port binding. A binding can be specified by a top-level <data> element

with id starting with the string ‘binding_’. The expr should be in this format:

‘<system_port_name> - <instance_name><port_name>’. This will tell

the transformer to bind the system port to the specified port of a component

instance. The ports’ interfaces have to be compatible for binding.

 Channels: A top-level <data> element represents a channel if its id starts with

‘channel_’. The expr attribute shall contain a channel descriptor with the format

‘<source_port>.<source_interface> - <target_port>.<target_interface>’. A

channel will be created during transformation that connects the compatible source

and target ports.

24

4. Implementation

4.1. Technologies
I used the Eclipse14 platform as the development environment for the SCXML-

Gamma statechart transformation projects. For handling the abstract syntax of the

language models, I used Eclipse Modeling Framework (EMF)15. This is a reasonable

choice because the Gamma framework itself is written as a set of Eclipse plugin projects,

and other model transformers in Gamma also use this Eclipse-based modeling framework.

I also introduce Xtext technology because the languages in Gamma are built upon

it, and I use the Gamma Expression Language for parsing transition guard and variable

value expressions. Xtend helped me write easy-to-read transformation source code.

4.1.1. Eclipse Modeling Framework

The EMF project is a modeling framework and code generation facility for

building tools and other applications based on a structured data model. From a model

specification described in XMI, EMF provides tools and runtime support to produce a set

of Java classes for the model, along with a set of adapter classes that enable viewing and

command-based editing of the model, and a basic editor.

The framework includes Ecore meta models which describe the abstract syntax of

a modeled language. In an Ecore meta model, EClass, EAttribute, EReference, EEnum,

ELiteral, EOperation metamodeling elements can be used to capture the abstract

conceptual model and logical connections of the concrete language elements. The

framework also uses Genmodel files which hold code generation settings for a model,

and by which the framework provides automatic code generation features (e.g. Java code).

4.1.2. Xtext

Xtext16 is a language engineering framework. Programming languages and

domain-specific languages can be developed with Xtext by using a powerful grammar

language. The meta models of defined languages are Ecore models, as Xtext is based on

14 Eclipse homepage: https://www.eclipse.org/

15 Eclipse Modeling Framework (EMF), https://www.eclipse.org/modeling/emf/

16 Xtext homepage, https://www.eclipse.org/Xtext/

https://www.eclipse.org/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/

25

EMF. With Xtext, we define the concrete syntax of our language as well as how it is

mapped to its semantic Ecore model. As a result, Xtext provides a full infrastructure,

including parser, linker, type checker, compiler and editing support for Eclipse.

4.1.3. Xtend

Xtend17 is a high level statically-typed programming language, which translates

to comprehensible Java source code. Xtend is built in Xtext, and has its syntactic and

semantic roots in the Java programming language. Xtend extends and improves Java in

many aspects. Extension methods, lambda expressions, dispatch methods (for

polymorphic function invocation) and type inference are some of the most important

features of the language that improve readability, maintainability and convenient

development of the source code.

4.2. Implementation of the SCXML-Gamma transformation
Both SCXML and Gamma has an Ecore meta model. This makes the

transformation possible in EMF. I found a suitable SCXML meta model18 on GitHub,

which provides the language elements in an EMF Ecore model and contains SCXML

editor features. The models and languages of Gamma also provide their Ecore meta

models (as the framework was built upon EMF).

To implement the model transformation, I created two Eclipse plugin projects.

The task of the first plugin is executing the actual statechart transformation. The other

plugin is an Eclipse command handler, which is used to process Eclipse UI interactions

in an Eclipse instance and start the SCXML-Gamma transformation project code for a

selected file containing an SCXML model. I included the meta model packages of both

languages in the transformation project. I traverse the whole SCXML Ecore model in

multiple phases, create and set corresponding Gamma expression, action, interface,

statechart and composition language elements, and store mapped model elements in

traceability objects. I defined a traceability type for holding data for an individual

statechart component, and another type to handle composite statechart models,

(containing instance type traceabilities as well). Execution of the statechart transformer

returns the appropriate traceability object to the caller. The Eclipse command handler then

17 Xtend homepage, https://www.eclipse.org/xtend/

18 SCXML Ecore meta-model in EMF: https://github.com/eventB-Soton/SCXML_EMF

https://www.eclipse.org/xtend/
https://github.com/eventB-Soton/SCXML_EMF

26

serializes the Gamma statechart and its interface into two separate Gamma files with the

textual syntax of Gamma.

The transformation ends with this step. The generated Gamma models can be used

to generate statechart and composite component Java code, test suites, as well as create a

formal composite model and execution traces using a verification backend that Gamma

provides.

4.2.1. Traversing an SCXML statechart

I transformed SCXML models by first transforming the state containment

hierarchy, then transforming other cross references in the model between states. Such

cross references are transitions and initial states in this transformation algorithm. While I

transform states and parallel regions, I also transform events and their interfaces and ports,

if needed. I did the transformation of interfaces and communication elements in the

manner of ‘get or transform’, while storing already transformed elements in the statechart

traceability object.

The root <scxml> element with <state>, <parallel> and <final> elements

form a tree of states, because their containment graph is an SCXML document tree, which

cannot contain cycles. Therefore, this state hierarchy forms the framework of the state

machine. This is the first phase of statechart transformation. After I transform these state

nodes, SCXML transition source and target states are already transformed, so the

transformed Gamma transition source and target state node references can be set to

already existing Gamma states. SCXML initial attributes of the root element or

compound states can also be transformed then, since the target Gamma state of the

transition from this initial element is already known.

While traversing states, I also transform entry and exit actions. While

transforming transitions, I also transform its executable content.

4.2.2. Traceability classes

The StatechartTraceability Xtend class of the transformation project is

responsible for storing an SCXML statechart’s elements and their mapped Gamma model

elements which are important to be stored while the transformation runs. One can set the

SCXML root element in such a traceability object during creation, and get its

corresponding Gamma synchronous statechart definition and its generated interfaces after

statechart transformation is executed.

27

StatechartTraceability contains maps for statecharts, states, transitions,

ports and interfaces – including default ports and interfaces for the statechart –, and

variable mappings. There are put~, get~ and contains~ methods for the proper element

types to change the content of the traceability object. States can also be searched by their

string identifiers, because we need such a function when transforming an SCXML

transition’s target state. I store ports and interfaces by their given or generated name

tokens, because there are no matching pairs for them in the SCXML state machine.

CompositeTraceability holds mapping data for a composite SCXML model

with invoked statechart types. It traces the sources, definitions and transformed Gamma

statechart definitions of the types of instances. It also traces the instantiated scheduled

asynchronous composite component, and its subcomponents, which are the transformed

statechart wrapper instances. Interfaces, constant declarations and events are collected in

composite component-scoped hashed maps, then serialized into one declarations file.

4.2.3. Transformer classes

I applied the principle of ‘separation of concerns’ on the transformation project. I

put the transformation functions of basic SCXML state machine elements in the

ScxmlToGammaStatechartTransformer Xtend class, and the transformation of the

composite components is put into the ScxmlToGammaCompositeTransformer class.

I extracted and encapsulated other aspects of transformation into another classes, which

hold their set of transformation functions for that given set of state machine concepts.

Such classes are Action~, Data~, Event~, Interface~, Port~ and TriggerTransformer. For

example, transformation of events occurs both when transforming transition triggers (by

creating a reference to a pair of port and event) and when transforming raise event actions.

Therefore, PortTransformer acts as an API to the statechart transformer and the action

transformer classes.

I also had to resolve referenced variables in parsed Gamma expressions. These

expressions appear as transition guards or the value expression in <assign> elements.

In the Scxml-Gamma expression language parser class I iterate over the variable

declarations parsed by the Gamma Expression Language parser, and set the

corresponding variable declarations in those parsed Xtext reference expressions.

28

5. Evaluation

I tested the implemented transformer with an SCXML model of the composite

Crossroads component from the Gamma tutorial19.

5.1. Example: Crossroads
The Gamma tutorial presents a traffic lights controller of a crossroad, where there

are two roads intersecting each other (Figure 5-1). Traffic lights are standard 3-phase

lights looping through the red-green-yellow-red sequence. The police can trigger an

interrupted mode in which the traffic lights are blinking yellow.

The controller is divided into three submodules. Each submodule’s behavior is

described by statecharts. Two traffic light controller submodules are controlling the traffic

lights in each direction, and a single crossroad controller component is responsible for the

coordination of the flow of traffic.

The transformer I implemented is capable of transforming either submodule or

the whole system to an asynchronous Gamma component, or transforming the composite

component as a whole. I show some relevant parts of the original and translated models

in this documentation. I use the Traffic Light Control component as an example for a

transformation of an individual statechart. Then I show how I transformed the Crossroads

composite component to Gamma.

Figure 5-1: Traffic lights of a crossroad presented in the Gamma tutorial

5.1.1. Transforming a statechart component

I first translated the statecharts of the subcomponents I present this phase of the

transformation on the traffic light controller.

19 Gamma tutorial, https://github.com/ftsrg/gamma/tree/master/tutorial

https://github.com/ftsrg/gamma/tree/master/tutorial

29

5.1.1.1. SCXML model of a traffic light controller

I translated the Gamma statechart of the traffic light controller submodule to an

SCXML state machine manually. The only difference is that the transformer cannot

handle timeouts used in the interrupted mode of the lights (the <send> element is needed

to simulate timed behavior by delaying events). Instead of timeouts, I put explicit timeout

events in the model to trigger light change when blinking. I did not specify the port on

which these events would be received, so the transformation should transmit them on the

default port of the Gamma statechart.

Some relevant parts of the SCXML model of the crossroad (parts not included

here are replaced with triple dots):

<?xml version="1.0" encoding="UTF-8"?>
<scxml:scxml xmlns:scxml=http://www.w3.org/2005/07/scxml
 initial="Normal" name="TrafficLightCtrl">
 <scxml:state id="Normal" initial="Entry2">
 …
 </scxml:state>
 <scxml:state id="Interrupted">
 <scxml:initial>
 <scxml:transition target="BlinkingYellow" type="external"/>
 </scxml:initial>
 <scxml:state id="BlinkingYellow">
 <scxml:onentry>
 <scxml:raise event="LightCommands.displayYellow"/>
 </scxml:onentry>
 <scxml:transition event="BlinkingYellowTimeout" target="Black"
type="external"/>
 </scxml:state>
 ...
 <scxml:transition event="PoliceInterrupt.police" target="Normal"
type="external"/>
 </scxml:state>
</scxml:scxml>

Figure 5-2: Parts of the SCXML document of a Traffic Light Control component

5.1.1.2. Transformed Gamma model of the Traffic Light Control component

Execution of the SCXML-Gamma statechart transformation produced the two

Gamma files required. TrafficLightCtrlDeclarations.gcd contains the

LightCommands interface to handle traffic lights, the Control interface to receive light

toggle commands from the crossroad controller, the PoliceInterrupt interface to

switch between normal and interrupted operation modes, and the default component

interface to receive timeout events when blinking.

Here are the transformed interfaces in the generated

TrafficLightCtrlDeclarations.gcd. Note that the default interface contains only

http://www.w3.org/2005/07/scxml

30

internal events, and all other interfaces contain only out directed events. This declarations

package also contains a constant that is used when setting default message queue

capacities in asynchronous adapters.

package trafficlightctrl_interfaces
const QUEUE_CAPACITY : integer := 4
interface LightCommands {
 out event displayRed
 out event displayGreen
 out event displayYellow
 out event displayNone
}
interface Control {
 out event toggle
}
interface PoliceInterrupt {
 out event police
}
interface TrafficLightCtrl_DefaultInterface {
 internal event BlinkingYellowTimeout
 internal event BlackTimeout
}

Figure 5-3: The interfaces and constant declaration of the transformed Traffic Light Control

component

TrafficLightCtrl.gcd contains the transformed Gamma statechart definition and its

asynchronous wrapper component. The transformer put in a Gamma package, which

package imports another package that contains the common interfaces and other

declarations needed for the component.

The statechart maps the core SCXML execution elements of the original model,

like states, transitions and event raising actions. Note the necessary execution-related

annotations on the statechart that configure aspects of the statechart execution

semantically the same as the SCXML model.

The asynchronous adapter defines the internal and external message queues that

correspond to the message queues of an SCXML session. Appropriate incoming events

of ports are set to trigger execution of the wrapped statechart when the adapter receives a

message. Event references tell how the events are selected by the queues of different

priorities.

package trafficlightctrladapter
import "/hu.bme.mit.gamma.scxml.examples.crossroads/model/

TrafficLightControl/TrafficLightCtrlDeclarations.gcd"
adapter TrafficLightCtrlAdapter of
 component TrafficLightCtrl : TrafficLightCtrl
{

31

 when Control.toggle / run
 when PoliceInterrupt.police / run
 queue TrafficLightCtrlInternalEventQueue
 (priority = 2, capacity = QUEUE_CAPACITY) {
 TrafficLightCtrl_DefaultPort.BlinkingYellowTimeout,
 TrafficLightCtrl_DefaultPort.BlackTimeout
 }
 queue TrafficLightCtrlExternalEventQueue
 (priority = 1, capacity = QUEUE_CAPACITY) {
 Control.toggle, PoliceInterrupt.police
 }
}

Figure 5-4: Asynchronous adapter of TrafficLightCtrl that enables using the statechart model in an

asynchronous composite component. It has a message queue for external events, and one for the

internal statechart events with higher priority.

@RegionSchedule = bottom-up
@TransitionPriority = order-based
@GuardEvaluation = beginning-of-step statechart TrafficLightCtrl [
 port TrafficLightCtrl_DefaultPort : provides
TrafficLightCtrl_DefaultInterface
 port LightCommands : provides LightCommands
 port Control : requires Control
 port PoliceInterrupt : requires PoliceInterrupt
] {
 region TrafficLightCtrlRegion {
 state Normal {
 region NormalRegion {
 state Red {
 entry / {
 raise LightCommands.displayRed;
 }
 }
 ...
 shallow history Entry2ShallowHistory
 initial NormalInitial
 }
 }
 state Interrupted {
 ...
 }
 initial TrafficLightCtrlInitial
 }
 transition from Entry2ShallowHistory to Red
 transition from Red to Green when Control.toggle
 ...
 transition from Interrupted to Normal when PoliceInterrupt.police
 transition from TrafficLightCtrlInitial to Normal
 transition from NormalInitial to Entry2ShallowHistory
}

Figure 5-5: Relevant parts of the transformed Traffic Light Control Gamma statechart. Note the

execution-related annotations on top of the TrafficLightCtrl statechart definition.

32

5.1.2. Transforming the composite model

5.1.2.1. Presenting the composite SCXML statechart model

The composite model contains an SCXML statechart with the <invoke> elements

that represent subcomponent instantiation. They are placed in state Invocation under a

Working <parallel> element to be run always while the statechart runs. Three composite

system ports are defined on this composite component with appropriate bindings to the

instantiated Controller and Traffic Light Control components. The two Traffic Light

control components share the same source URI, so their corresponding Gamma

component instances are instances of the same transformed asynchronous adapter

component type. The three submodules are at the same hierarchy levels, and their

appropriate ports are connected with channels.

<scxml:scxml
 xmlns:scxml=http://www.w3.org/2005/07/scxml
 datamodel="gamma" initial="Working" name="Crossroads">
 <scxml:datamodel>
 <scxml:data expr="police.PoliceInterrupt" id="req_port_1"/>
 <scxml:data expr="priorityOutput.LightCommands" id="pro_port_1"/>
 <scxml:data expr="secondaryOutput.LightCommands" id="pro_port_2"/>
 <scxml:data expr="police - controller.PoliceInterrupt" id="binding_1"/>
 <scxml:data expr="priorityOutput - prior.LightCommands" />
 <scxml:data id="binding_2"
 expr="secondaryOutput - secondary.LightCommands" id="binding_3"/>
 <scxml:data id="channel_1"
 expr="controller.PriorityControl - prior.Control" />
 <scxml:data id="channel_2"
 expr="controller.SecondaryControl - secondary.Control" />
 <scxml:data id="channel_3"
 expr="controller.PriorityPolice - prior.PoliceInterrupt" />
 <scxml:data id="channel_4"
 expr="controller.SecondaryPolice - secondary.PoliceInterrupt" />
 </scxml:datamodel>
 <scxml:parallel id="Working">
 <scxml:state id="Invocation">
 <scxml:invoke id="controller"
 src="hu.bme.mit.gamma.scxml.examples.crossroads/model/
 Controller/Controller.scxml"/>
 <scxml:invoke id="prior"
 src="hu.bme.mit.gamma.scxml.examples.crossroads/model/
 TrafficLightControl/TrafficLightCtrl.scxml"/>
 <scxml:invoke id="secondary"
 src="hu.bme.mit.gamma.scxml.examples.crossroads/model/
 TrafficLightControl/TrafficLightCtrl.scxml"/>
 </scxml:state>
 <scxml:state id="Operating"/>
 </scxml:parallel>
</scxml:scxml>

Figure 5-6: The SCXML model of the Crossroads component. It composes Controller and

TrafficLightCtrl components by instantiating and connecting them.

http://www.w3.org/2005/07/scxml

33

5.1.2.2. The transformed Crossroads component

Two files are generated when applying the SCXML-Gamma transformation to the

composite component, too. CrossroadsDeclarations.gcd contains the global interfaces and

declarations of the components, basically the same as the ones contained in

TrafficLightCtrlDeclarations.gcd, completed with the default interfaces of the Controller

module. The transformed scheduled asynchronous composite component resides in

Crossroads.gcd.

package crossroads
import
"/hu.bme.mit.gamma.scxml.examples.crossroads/model/CrossroadsDeclarations.
gcd"
scheduled-async Crossroads [
 port police : requires PoliceInterrupt
 port priorityOutput : provides LightCommands
 port secondaryOutput : provides LightCommands
] {
 component controller : ControllerAdapter
 component prior : TrafficLightCtrlAdapter
 component secondary : TrafficLightCtrlAdapter
 bind police -> controller.PoliceInterrupt
 bind priorityOutput -> prior.LightCommands
 bind secondaryOutput -> secondary.LightCommands
 channel [controller.PriorityControl] -o)- [prior.Control]
 channel [controller.SecondaryControl] -o)- [secondary.Control]
 channel [controller.PriorityPolice] -o)- [prior.PoliceInterrupt]
 channel [controller.SecondaryPolice] -o)- [secondary.PoliceInterrupt
]
}

Figure 5-7: The transformed Crossroads component with its ports, component instances, port

bindings and channels.

34

5.1.3. Verification of the transformed Crossroads component

After transformation, I initiated the Gamma framework to create the formal

analysis model of the composite component. I also specified a Gamma generator file in

which I asked Gamma to generate state coverage traces and generate test cases from these.

The verification process resulted in traces that show the reachability of the states of the

Crossroads component by raising events and taking transitions.

import "/hu.bme.mit.gamma.scxml.examples.crossroads/model/.Crossroads.gsm"
trace CrossroadsTrace of Crossroads
step {
 act {
 reset
 }
 assert {
 raise priorityOutput.displayRed();
 raise secondaryOutput.displayRed();
 state controller_Controller.ControllerRegion.Operating;
 state controller_Controller.OperatingRegion.Init;
 state prior_TrafficLightCtrl.TrafficLightCtrlRegion.Normal;
 state prior_TrafficLightCtrl.NormalRegion.Red;
 state secondary_TrafficLightCtrl.TrafficLightCtrlRegion.Normal;
 state secondary_TrafficLightCtrl.NormalRegion.Red;
 }
}
step {
 ...

}

Figure 5-8: Beginning of a trace file generated as part of the state coverage verification process on

the generated Crossroads component

35

6. Conclusion

Model-driven development tools speed up the development process by allowing

system architects thinking in models, and provide verification and automatic code

generation capabilities based on these models. The internal behavior of systems and their

components is usually represented using state-based formalisms.

To help modelers use model-driven features with precise semantics on SCXML

models, I designed and implemented a model transformer that translates SCXML state

machines to the Gamma Statechart Composition Framework. By this transformation, the

automatic model checking, code generation and model-based test generation features can

be used on transformed SCXML models. To ensure semantic equivalence of transformed

elements, I compared the two formalisms to each other both syntactically and

semantically.

I used Eclipse EMF and the Xtext framework to catch the abstract syntax elements

for transforming models and parsing languages (e.g. the Gamma Expression Language).

I developed statechart traceability and transformation classes using the Xtend language.

The transformer is capable of mapping most elements of an individual SCXML state

machine to Gamma model elements. I tested the capabilities of the transformer on a

crossroad controller included in the tutorial project of Gamma.

This model transformer in itself can translate individual SCXML state machines

or composite SCXML system models with one level of subcomponents. For future work,

it should be extended with the validation of the model to be transformed, clearing and

extending the options how non-trivial mappings can be modeled, and adding support for

the transformation of more SCXML elements, including elements which are more

challenging to map to Gamma in a semantically correct way.

36

Bibliography

[1] B. Graics, "Model-Driven Design and Verification of Component-Based Reactive

Systems" 2016. [Online]. Available:

https://inf.mit.bme.hu/sites/default/files/gamma/documents/BSc2016_Graics.pdf.

[Accessed 09-12-2022].

[2] Object Management Group, "Unified Modeling Language" Object Management

Group, [Online]. Available: https://www.omg.org/spec/UML. [Accessed 09-12-

2022].

[3] World Wide Web Consortium, "State Chart XML (SCXML): State Machine Notation

for Control Abstraction" World Wide Web Consortium, 01-09-2015. [Online].

Available: https://www.w3.org/TR/scxml/. [Accessed 09-12-2022].

[4] B. Graics, V. Molnár, A. Vörös, I. Majzik and D. Varró, "Mixed-semantics

composition of statecharts for the component-based design of reactive systems"

Software and System Modeling, vol. 2020, no. 19, pp. 1483-1517, 01-07-2020.

[5] B. Selic, "General Differences Between SCXML and UML" 16-01-2015.

