
Chapter2

Preliminaries

This chapter presents the theoretical foundations of the dissertation necessary to understand the sub-
sequent chapters. The chapter starts with an overview of the well-known state machine formalism
(see Section 2.1) serving as a theoretical basis in this work for defining and integrating state-based
components. Next, Section 2.2 introduces statecharts, the extension of the state machine formalism,
to lay the foundations for the high-level description of state-based behavior in the Gamma frame-
work. Section 2.3 presents two running examples used throughout this dissertation. Building on the
running examples, Section 2.4 overviews a low-level analysis formalism, called EXtended Symbolic
Transitions Systems (XSTS), which serves as an intermediate representation for reactive behavior and
its verification in the framework. Finally, Section 2.5 informally presents the composition modes that
we formalize and realize in our framework’s composition language.

2.1 State machines

Event-driven behavior is commonly defined on the basis of state machines. This section formally in-
troduces the theory of state machines – an abstract representation of reactive behavior that different
modeling aspects of this work builds on, including (1) the high-level statechart language for capturing
standalone component behavior (an extension of the state machine formalism) and (2) the composi-
tion language that considers an abstract state machine based view (abstract behavioral contract) of
components (see following paragraphs) during component integration.

State machines are a mathematical model of computation to describe the behavior of a reactive
system, component or object in an event-driven way [BC14]. Formally, a deterministic, fully specified
finite state machine is a 5-tuple: M = (S, s0, I, O, T) where:

• S = {s1, s2, · · · , sn} is a finite set of states, i.e., stable situations of the state machine with
s0 ∈ S being the initial state.

• I is a finite set of input events that are stimuli from the environment and O is a finite set of
output events that are stimuli for the environment such that I ∩O = ∅.

• T : (I × S) → (S ×O) is the fully defined transition function that represents changes of states
in response to input events and generating output events meanwhile.

The behavior of a state machine, that is, the operational semantics of the formalism, is defined
by the maximal set of execution traces. An execution trace consists of a sequence of steps. A step
describes a change of state with an output event raised by the state machine in response to an input
event. Formally, an execution trace of a state machine can be described as follows:

9

2. Preliminaries

• ρ = (i0, s0, s
′
0, o0), · · · , (in, sn, s′n, on) is an execution trace, which consists of one or more

steps: n ∈ N.
• (ii, si, s

′
i, oi) is a step, consisting of an input event ii ∈ I , a source state si ∈ S, a target state

s′i ∈ S and an output event oi ∈ O. A step is considered valid if T (i, si) = (s′i, oi).
• An execution trace ρ is considered valid if:

– s0 = s0, that is, the source state of the first step is the initial state;
– For each step (ii, si, s

′
i, oi), si = s′i−1, that is, the source state of a particular step is the

target state of the previous step.
A state s of the state machine is reachable if an execution trace ρ = (i0, s0, s

′
0, o0), · · · , (in, sn, s′n, on)

exists with s = s′n for some n.

2.2 Statecharts

There are various extensions to the state machine formalism that facilitate the compact modeling of
hierarchical and concurrent systems [HU90]. The most relevant one is statecharts [Har87], which
extends the state machine formalism’s concept of state and transition with

• auxiliary variables, i.e., the valuations of variables are included in the states of the statemachine;
• actions related to transitions and the entry/exit of states, which support variable handling on
the basis of imperative code constructs (e.g., if-else constructs, for loops and function calls);

• (potentially hierarchical) state refinement, i.e., states can contain one or more (orthogonal) re-
gions (composite states), each of which may contain additional states - during execution, an
active region shall have a single active state;

• composite transitions to synchronize orthogonal regions or describe different choices during
state changes; and

• memory to store the last active states (history) in a region.

Abstract syntax Figure 2.1 depicts an excerpt of the modeling elements and their possible inter-
relations (metamodel excerpt disregarding different types of triggers, expressions and pseudo states)
used to define statechart components in this work (see Section 3.2 for the statechart language of the
Gamma framework).

A statechart can contain variable declarations to store values of different types (e.g., boolean,
integer and enumeration) and timeout declarations to capture time lapse and generate events that
may trigger changes in the model.

Regarding hierarchy-related constructs, a statechart can contain one or more (orthogonal) top-
level regions (top regions) as root elements for “static” state node constructs in the model. State nodes
can either be states that represent stable “situations” in themodel, or pseudo states, e.g., fork, join,merge
and choice states or different entry nodes, which can be used to (de)compose transitions during state
changes. States may execute certain actions upon entering (entry action) or leaving (exit action) the
particular state, e.g., setting a timeout. In order to support the hierarchical decomposition of operation,
composite states can contain one or more (orthogonal) regions that can contain additional state nodes.
Each region has a single entry node, which defines the active state upon activation: in the case of an
(1) initial state, the single outgoing transition determines the active state; in addition, regions may
have (2) shallow or (3) deep history states that store/restore the last active state configuration upon
deactivation/activation – shallow history states consider states only in the contained region, whereas
deep history also considers the internal regions of contained composite states.

10

2.2. Statecharts

Figure 2.1: Elements of statechart components used in this dissertation (statechart language meta-
model excerpt).

As for elements describing dynamic changes, events can be received via well-defined ports and as-
sociated to transitions as triggers, which describe atomic changes between stable states in the model.
The enabledness of transitions (in addition to triggering events) can be controlled by guard expressions
(boolean expressions); the effects of transitions can comprise event raisings, as well as variable and
timeout handling and potentially additional constructs, e.g., branching and function calls, in accor-
dance with the featured action language.

Complex transitions can be defined using pseudo states: join and fork states are used to syn-
chronize between orthogonal regions (simultaneous deactivation and activation of their states, re-
spectively), merge states syntactically merge incoming transitions with a single outgoing transition,
whereas choice states describe possible outcomes (distinct choices) based on boolean (guard) expres-
sions.

Concrete syntax Statechart models are generally represented graphically, even though some lan-
guages support their textual representation (e.g., the statechart language of Gamma, presented in
Section 3.2). In the following, we present the generally used graphical syntax of statecharts.

Event, parameter, timeout and variable declarations are represented using a textual syntax, declar-
ing their names (identifiers) and types.

Regions (both top regions of statecharts and regions contained by states) are graphically repre-
sented by coherent areas with dashed lines as delimiters. States are represented by rounded rectan-
gles, their entry and exit actions are defined using a textual syntax according to the supported action
language inside the corresponding rectangle after the entry and exit keywords and a slash symbol,
respectively. Initial states are represented by black circles, whereas history states are represented by a
circle with a H or H* label inside (shallow history and deep history, respectively).

11

2. Preliminaries

Transitions are represented by arrows, connecting the source and target state nodes, with labels
representing the trigger (name of the triggering event), the guard expression inside square brackets
and effects (statements according to the featured action language) after a slash symbol.

Regarding complex transition related pseudo nodes, fork and join states are represented as rect-
angles, merge states are represented as circles and choices states are represented as diamonds.

Semantics Subsequent sections (see Sections 3.2 and 3.4) propose contributions closely related to
the semantics of statecharts. Therefore, in the following, we overview the operational semantics of
UML/SysML statecharts in a structured, semi-formal way, which can be considered as the de facto
standard for statechart semantics. Note that there exist several formalizations of the operational se-
mantics of statecharts, e.g., [Czi+17; Pin07]; accordingly, giving a formal operational semantics to our
framework’s statechart language is out of the scope of this work. Instead, we aim at giving a deno-
tational semantics for statecharts by means of model transformations in Section 3.4, which build on
the semantics-related rules presented below and, as a novelty, also extend them by proposing cus-
tomizable semantic variation points (denoted by SVP-* below to facilitate their later identification) to
various model elements. The model transformations build on the XSTS formalism, necessitating the
introduction of the extensions in the formalism to support high-level statechart models. In particu-
lar, the model transformations allow for the description of statechart behavior on the basis of XSTS
models, and this way, capture the low-level state machine behavior (steps and execution traces, see
Section 2.1) via the STS mapping (see Section 2.4).

In order to describe the operational semantics of statecharts, in addition to the state machine
whose behavior is described by the statechart, we consider a “runtime environment” that comprises
an event queue that stores incoming events, and a scheduler that retrieves events from the queue and
passes them to the state machine. In general, the operational semantics defines the behavior of the
state machine when it processes an event, i.e., a single step of the state machine that comprises the
firing of enabled transitions. The basic properties of the semantics are as follows:

• Events are processed one by one, i.e., the scheduler passes a new event only if the previous event
has been completely processed.

• A complete processing of events is conducted (run to completion): a maximal set of (noncon-
flicting) transitions fires, i.e., every enabled transition fires unless prevented by a conflict. The
next event is passed only after every firing has completed.

Based on the above properties, the four phases of event processing are as follows.

Phase 1 In the first phase, the scheduler retrieves an event from the event queue and passes it to
the state machine, which is followed by the evaluation of the transitions’ enabledness of the state
machine: a transition is enabled, if

• its source state is active,
• the passed event triggers the transition, and
• the guard condition evaluates to true (SVP-1).

Based on the number of enabled transitions, the event processing can continue in one of the following
ways: in case (1) no transition is enabled, then the step finishes and a new event is processed; (2) one
transition is enabled, then this transition is fired (see Phase 3); (3) multiple transitions are enabled, a
set of firing transitions has to be selected based on conflict and conflict-resolution (see Phase 2); after
that, a maximal set of nonconflicting transitions fires.

12

2.3. Running examples

Phase 2 Two transitions are conflicting if the sets of states (including the child states of composite
states) that they leave are not disjoint. Conflicts are resolved based on priority: the priority of a tran-
sition is higher if its source state is lower in the refinement hierarchy (SVP-2). At the same hierarchy
level (i.e., for states leaving the same state), conflict-resolution is conducted nondeterministically, i.e.,
one transition is selected (SVP-3).

Phase 3 Next, the selected (nonconflicting) transitions fire in a nondeterministic order (SVP-4).
Note that, as a result, the order of the action’s execution is also nondeterministic. A single transition
is fired in the following way:

1. The source states are exited, starting from the lower hierarchies first, while executing their exit
actions.

2. The effects (actions) of the transition are executed.
3. The target states are entered, starting from the higher hierarchies first, while executing their

entry actions.

Phase 4 As a last step, a new stable state configuration is entered according to the target state(s) of
the firing transition(s):

• If the target state is simple (not composite), then it will be part of the new configuration (will be
activated), while its parent states (in which it is a child state) will also be activated. Activated
parent states will activate a child state in each of their regions in a nondeterministic order
(SVP-4) determined by the initial state.

• If the target state has a single region, then a single child state will be activated.
• If the target state has multiple orthogonal regions, then a single child state will be activated
in each region in a nondeterministic order (SVP-4 – same SVP as above as both rules target
orthogonal regions).

• If the target is a history state, then the most recent state configuration is restored considering
only a single hierarchy level (shallow history) or also every contained region (deep history). At
the first activation of the region, the default state is activated.

• If the target state is a pseudo state, then one of its outgoing transitions is fired by iterating
Phases 1-4.

2.3 Running examples

The following paragraphs introduce a model from the aerospace domain (simple space mission), a
simplified elevator system and a railway interlocking subsystem which we use as running examples in
the rest of the dissertation to demonstrate the applicability of our framework’s modeling languages
and functionalities in the context of composite state-based models.

Simple space mission The simple space missionmodel was originally proposed by NASA based on
SysML in the context of the OpenMBEE1 framework. Previously, we used the model in the context of
a case study in [j1] where we investigated how SysMLmodels comprising hierarchical state machines
and activity diagrams can be mapped into the statechart and composition languages of the Gamma
framework to capture communication between a spacecraft and a ground station component.2 The

1https://www.openmbee.org/
2The initial SysML models can be found at: https://github.com/Open-MBEE/OMGSpecifications.

13

https://www.openmbee.org/
https://github.com/Open-MBEE/OMGSpecifications

2. Preliminaries

Figure 2.2: Spacecraft component of the simple space mission.

emergent spacecraft and ground station statechart models are visualized in Figures 2.2 and 2.3, respec-
tively. Figure 2.4 shows an abstract version of the spacecraft component to allow for the simpler and
more concise demonstration of modeling elements and features in subsequent sections.

The modeled system operates as follows. The ground station receives control events from its en-
vironment (start and shutdown) via its control port, and can ping the spacecraft (ping event) to initiate
incoming data transmission. The component has several timeouts to handle the absence of incoming
events. The spacecraft starts the data transmission upon the reception of a ping event, transmitting

Figure 2.3: Ground station component of the simple space mission.

14

2.3. Running examples

Figure 2.4: Abstract version of the spacecraft component model in the simple space mission.

data in packets via the connection port (variable data stores the number of remaining packets). Data
transmission for the spacecraft requires energy, denoted by the battery variable. If the battery goes too
low, the spacecraft enters a recharging state where energy is restored. Similarly to the ground station,
the spacecraft has timeouts to measure time lapse and handle idleness.

Elevator system The simplified elevator system consists of two state-based components first pre-
sented in [SP10]. The components of the system are modeled in Yakindu (see Figure 2.5), comprising
a cabin controller that, in addition to an idle state, can initiate the movement of the elevator cabin up
and down in accordance with external commands (Cabin.up and Cabin.down events) and control the
cabin door controller to open or close (Door.open and Door.close events) the cabin door.

Railway interlocking subsystem The railway interlocking subsystem (RIS) model (depicted in Fig-
ure 2.6) altogether consists of 38 states, 118 transitions and 23 variables (including timeout declara-

Figure 2.5: Cabin controller and cabin door controller models of the elevator system.

15

2. Preliminaries

Control center Object handlerDispatcher

Figure 2.6: Railway interlocking subystem (RIS) topology.

tions) and represents the realization of an industrial communication protocol (called Rigel) used in
interlocking systems. It comprises three components defined in the proprietary XSML language (inte-
grated [e16] to the Gamma framework), namely controlCenter, dispatcher and objectHandler. The com-
ponents are executed sequentially, and communicate with their messages stored in message queues;
the controlCenter and objectHandler can communicate only via the dispatcher. For additional details,
we direct the reader to [e16].

2.4 EXtended Symbolic Transition Systems

The symbolic transition systems (STS) formalism [HM00] is a commonly used low-level representation,
e.g., for hardware model checking. As a main feature, STS models consist of two Satisfiability Modulo
Theories (SMT) [BT18] formulas that describe the set of initial states and the transition relation. As
STS serves as a foundation for our intermediate formalism to capture reactive behavior in the Gamma
framework, we present its formal definition in the following paragraphs.

Symbolic transition system A symbolic transition system is a tuple STS = (V, T, I) where:
• V = {v1, · · · , vn} is the set of variables with domains Dv1 , · · · , Dvn .
• T is the transition formula over V ∪V ′ that describes the transition relation between the values
of variables corresponding to the current state v ∈ V and the next state v′ ∈ V ′. The result of
the iterative application of T on V is denoted by V (i) where i denotes the number of iterations.
Accordingly, V = V (0) and V ′ = V (1).

• I is the initial state formula over V that describes the values of the variables in the initial states.
A concrete state s ∈ S ⊆ Dv1 × · · · × Dvn is an interpretation that assigns a value s(v) ∈ Dv

to each variable v ∈ V of its domain Dv . A concrete state can also be regarded as a tuple of values
s(v1), · · · , s(vn). A state with an index s(i) assigns values to the elements of V (i). Given an SMT
formula ϕ let s |= ϕ denote that assigning the variables in ϕ with the values in s evaluates to true.

The set of initial states is {s | s |= I}. A transition exists between two states s and s′ if (s, s′) |= T .
The behavior of a symbolic transition system, that is, the operational semantics of the formalism,

is defined by the maximal set of concrete paths. A concrete path is a finite sequence of concrete states
σ = s0, s1, · · · , sn, for which {s0 |= I} and (s

(1)
1 , · · · , s(n)n) |=

∧
0≤i<n T

(i), where T (i) denotes the
transition formula over V (i) ∪ V (i+1) i.e., the path starts in an initial state, and the successor states
satisfy the transition relation. A concrete state s is reachable if a path σ = s1, · · · , sn exists with
s = sn for some n.

Interrelations with state machines Note that the STS formalism is expressive enough to cap-
ture behaviors modeled by a state machine:

• The state machine’s set of states S is represented by a vs variable (corresponding to the ac-
tive state during execution); S = Dvs = {ls1 , · · · , lsn} where si is represented by literal lsi ;
accordingly, initial state s0 is represented by ls0 .

16

2.4. EXtended Symbolic Transition Systems

• The state machine’s set of input and output events I and O are represented by variable sets VI

and VO , respectively, such that VI ∩ VO = ∅ and ∀v ∈ VI ∪ VO : Dv = {⊥,⊤}, i.e., each input
i and output event o is represented by boolean variables vi and vo, respectively.

• The state machine’s fully defined transition function T is represented by the transition formula
(VI ∪ vs) ∪ (v′s ∪ V ′

O) that describes the transition relation between the values of variables
corresponding to the input event vi ∈ VI and source state vs, as well as the target state v′s and
output event v′o ∈ V ′

O .
Regarding execution, a step (i, s, s′, o) of an execution trace is represented by an SMT formula of

the concrete path (vi∧vs = ls∧∀v ∈ (VI \{vi}) : ¬v)∧(v′s′ = ls′∧v′o∧∀v′ ∈ (VO\{v′o}) : ¬v′). The
initial state of the state machine is represented by the I SMT formula vs = ls0 ∧ ∀v ∈ VI ∪ VO : ¬v.

EXtended Symbolic Transition Systems The EXtended Symbolic Transition Systems3 (XSTS) is
intended to serve as a formal intermediate representation for verifying reactive systems. The language
offers an imperative layer (set of control structures) above the SMT formulas of STS models, enabling
(1) the efficient transformation of high-level design models into XSTS, (2) the mapping of XSTS into
the input languages of various model checker back-ends, such as UPPAAL or Spin, while (3) being
expressible as SMT formulas using STS constructs and thus, verifiable by SMT-based model checkers
such as Theta. The mapping of XSTS elements into STS formulas is described in Appendix A.

We introduce the elements of the XSTS language in Figure 2.7 based on the abstract example
spacecraft statechart model depicted in Figure 2.4. Note that the example XSTS model, besides the be-
havior of the spacecraft component that features message queue based communication, also includes
the explicit description of its environment in a separate transition, i.e., the handling of variables corre-
sponding to input events and their parameters before considering themodel behavior (seeTransitions
paragraph below).

Type declarations The textual representation of an XSTSmodel (see Figure 2.7) begins with custom
type declarations (type keyword), which are similar to enum types in programming languages. For
instance, the literals of a type declaration can be used to represent the states of a region in a statechart.

Variable declarations Type declarations are followed by global variable declarations (var key-
word) with integer, boolean, and the previously discussed custom types (see the set of variables V
in the STS definition). The language also supports array types, which are mathematical SMT arrays,
similar to the map data structure of programming languages (see Line 12). Variable declarations can
optionally contain an initial value (Line 8). Variables annotated with the ctrl keyword (Lines 6-7) are
control variables, indicating that these variables contain control information, which can be exploited
during verification, e.g., in Theta when using different abstraction algorithms.

Transitions Model behavior and the behavior of the environment (needed to allow for formal ver-
ification) are defined by three transitions. The init transition (Lines 48-50) can be used to initialize the
model (initial state formula I of an STS). The model’s internal behavior is described by the trans tran-
sition (Lines 14-47), while the behavior of the model’s environment is described by the env transition
(Lines 51-61); these transitions can be considered as the sequential decomposition of the transition
formula T of an STS. In our example, the init transition sets the component’s initial state, while the
env transition places a random event (more precisely, its identifier) in its message queue, which is
popped by the trans transition and processed in both regions of the component.

3The formalism is the result of joint work with Vince Molnár and Milán Mondok.

17

2. Preliminaries

� �
1 type Status : { TRANSMIT, ... }

2 type Communication : { _Inactive_, WaitingPing, Transmitting }

3 type Battery : { _Inactive_, Recharging, NotRecharging }

4 var ping : boolean = false

5 var ping_types : Status = TRANSMIT

6 ctrl var _communication : Communication = _Inactive_

7 ctrl var _battery : Battery = _Inactive_

8 var battery : integer = 0

9 var recharge, transmit, consume : clock

10 // Message queue related variables

11 var size : integer

12 var eventQueue : [integer] -> integer

13 var argumentQueue : [integer] -> Status

14 trans {

15 if (size > 0) {

16 local var id : integer := eventQueue[0];

17 eventQueue[0] := 0; // Event pop

18 if (id == 1) {

19 ping := true;

20 ping_types := argumentQueue[0];

21 argumentQueue[0] := 0; // Argument pop

22 } ... // Potentially other eventIds

23 size := size - 1; ... // Output event clearing

24 par {

25 if (_communication == WaitingPing && ping && ping_types == TRANSMIT) {

26 _communication := Transmitting;

27 } else if (...) {...} // Second transition

28 else if (_communication == Transmitting && 1500 <= transmit) {

29 _communication := WaitingPing;

30 for i from 0 to 7 do { data[i] := 0; }

31 }

32 } and {

33 choice {

34 assume (_battery == NotRecharging && 1000 <= consume && battery < 80);

35 _battery := Recharging;

36 recharge := 0;

37 } or {... // Second transition

38 assume (_battery == Recharging && 1000 <= recharge && battery < 100);

39 battery := battery + 1;

40 } or {

41 assume (_battery == Recharging && 10000 <= recharge && battery == 100);

42 _battery := NotRecharging;

43 } or {

44 assume !(...); // Else branch

45 }

46 } ... // Input event clearing

47 } }

48 init { ... // Variable initializations

49 _communication := WaitingPing; // Initial sates

50 _battery := NotRecharging; ... } // Entry actions

51 env {

52 if (size <= 0) {

53 local var eventId : integer;

54 havoc eventId;

55 if (0 < eventId && eventId <= 1) {

56 eventQueue[size] := eventId;

57 local var argument : Status;

58 havoc argument;

59 argumentQueue[size] := argument;

60 size := size + 1;

61 } } }� �
Figure 2.7: XSTS representation of the spacecraft component of Figure 2.4 with additional elements
capturing message queue based communication and its nondeterministic environment.

18

2.5. Composite reactive modeling

Basic statements The detailed behavior of transitions is captured via statements.Assign statements
(see Line 19) assign a value of its domain to a single variable.Assume statements (Line 34) act as guards;
they can be executed only if their condition holds. Havoc statements assign a nondeterministically
selected value of its domain to a variable (Line 54). Local variable declarations can be used to create
transient variables that are accessible only in the scope they were created in and are not part of the
model’s state vector (Line 53).

Composite statements Composite statements contain other statements (operands), and can be
used to describe complex control structures. Sequences are lists of statements that are executed sequen-
tially; each statement of the sequence operates on the result of the previous statement. Choice state-
ments (see Line 33) model nondeterministic choices between multiple statements; only one branch is
selected for execution, which cannot contain failing assumptions, i.e., if every branch contains failing
assumptions, then the choice statement also fails. Parallel statements support the parallel execution
of the operands (see Lines 24-46). If-else statements are deterministic choices based on a condition
(see Lines 25-31) with an optional else branch. The language also supports deterministic for loops over
ranges (see Line 30).

As syntactic sugar, the language supports unordered and orthogonal statements (unord and ort
keywords, respectively). Unordered statements define the execution of operands in a nondeterminis-
tic way; note that such statements can be mapped into choice statements with sequences as operands,
containing the operands of the unordered statement in every possible permutation. In turn, orthogo-
nal statements define the “independent” execution of their operands, i.e., when the potential effects
(assign and havoc statements) of an operand do not affect the execution of the sibling operands. Such
a behavior procures a constraint on the operands: they shall not write the same (global) variable. Note
that orthogonal statements can be mapped into (1) a set of local variables that hold the values of the
variables read by the operands (initialized at the beginning of the orthogonal statement) and (2) a
sequence of the contained operands while changing the variable read references to the corresponding
created local variables.

Semantics The behavior of an XSTS model, that is, the semantics of the formalism, is defined by
mapping its structures into the STS formalism (see Appendix A for the mapping of statements). Re-
garding transitions, the init transition corresponds to the initial state formula I of STS, whereas the
sequential composition of the env and trans transitions corresponds to the T transition formula of
STS. Accordingly, regarding their execution order, the init transition is executed first (entering the
initial state), after which the env and trans transitions alternate (generating successor states). The
transitions are atomic in the sense that they are either executed in their entirety or not at all (recall
the semantics of assume statements).

2.5 Composite reactive modeling

The systematic integration of state-based components (see Section 2.1) requires precise composition
modes, which define the characteristics of their execution and interaction. Section 2.5.1 outlines the
features of the asynchronous-reactive and scheduled asynchronous-reactive modes for asynchronous
systems, and Section 2.5.2 overviews the synchronous-reactive and cascade modes for synchronous
systems, which we support in our framework’s composition language. Accordingly, the syntax and
precise semantics of the language is presented in Section 3.3. The characteristics of the composition
modes are illustrated graphically in Figures 2.8 and 2.9.

19

2. Preliminaries

Component 3Component 1 Component 2
Component 3Component 1 Component 2

Figure 2.8: Sequence diagrams illustrating the execution and communication characteristics of the
asynchronous-reactive and scheduled asynchronous-reactive composition modes, respectively.

Component 3Component 1 Component 2
Component 3Component 1 Component 2

Figure 2.9: Sequence diagrams illustrating the execution and communication characteristics of the
synchronous-reactive and cascade composition modes, respectively.

2.5.1 Asynchronous systems

In asynchronous systems [LP95], components represent concurrent entities that communicate with
each other using message queues. Writing to a queue succeeds instantly, whereas reading from an
empty queue blocks the reader (nonblocking-write, blocking-read approach). Message delivery is as-
sumed to be reliable and thus, the sender does not receive nor expect any confirmation (send and
forget approach). Messages arrive in the target message queue in the same order they were sent.4 A
read operation always retrieves a single message from the queue. As an extension, prioritized queues
can be introduced to reorder the incoming messages and prefer the urgent ones in the read operation.

Asynchronous-reactive The asynchronous-reactive mode describes continuously and parallelly
running components that react to events (messages) independently. This way, the execution frequency
of system components is nondeterministic, but may be restricted with timing constraints. As an ex-
ample, distributed controllers are most naturally modeled with this semantics, as different hardware
and network topologies will most probably cause a different execution/delivery time in every case. In
this context, synchronization of the components has to be ensured by communication protocols.

Scheduled asynchronous-reactive The scheduled asynchronous-reactive mode is the variant of
the asynchronous-reactive mode that is restricted in terms of component execution: components are

4These guarantees shall be achieved by proper control over the network and the appropriate protocols, which are
considered as middleware that is not taken into account in the semantics. If this is not the case, other (unreliable) channel
models can be considered by explicitly modeling the channel as a component for verification purposes.

20

2.5. Composite reactive modeling

executed sequentially, but they still communicate with immutable messages stored in message queues.
This variant is suitable for the deterministic (sequential) execution of components with serialized
(one by one) event processing, e.g., to avoid reacting to multiple events at the same time (in the
same execution cycle; see Section 2.5.2). This mode can be suitable for modeling the integration of
independent components whose execution and communication are driven by a central controller, e.g.,
control token in a local network.

2.5.2 Synchronous systems

The synchronous domain has a notion of logical time and follows the semantics of synchronous pro-
gramming languages [BB91; Hal+91; EL03]. In such systems, components communicate with each
other using signals, which are transmitted and received through ports. The execution of components
is driven by a clock that emits ticks. System components are executed in response to these ticks, the
execution of all components in a system is called a cycle. When a component is executed, it samples
the signals from its incoming ports and transmits signals through its outgoing ports. Generally, com-
ponents can be considered as functions mapping values from their incoming ports to their outgoing
ports depending on their current state. The output signals of components are sustained until the next
tick. As the input signals are sampled only at the beginning of execution, changes of signals during
the executions are ignored. Contrary to the asynchronous domain, the components are also able to
react to the absence of signals and even to a combination of signals.

Synchronous-reactive The synchronous-reactive mode describes components that are executed
in a lock step fashion upon every tick, that is, they all sample their input signals at the beginning of the
cycle and process them concurrently. Thus, communication between components during a single cycle
is not possible, receiver components can process transmitted signals only in the next cycle (initiated
by the subsequent tick). For example, logical functions of a controller may communicate like this, as
the program running them has sufficient control to implement an explicit scheduling. Other cases,
such as implementations in hardware or as PLC programs also call for this variant.

Cascade The cascade model supports the execution of components in a linear way (one after an-
other in a specific order during a cycle) in contrast to the concurrent, lock step execution of compo-
nents of synchronous-reactive models. The execution of a cycle is also initiated by a tick; however,
components sample their input signals right before they are executed and not at the beginning of the
cycle, enabling communication between components during a cycle in a feed-forward way. In addi-
tion, repeated execution of components during a single cycle is supported. For example, a single logical
controller may implement filters on its inputs and outputs, inducing an execution order. Pipeline-like
software or hardware implementations are best modeled with this variant.

21

Chapter3

Mixed-semantic composition and

verification of reactive components

Statecharts [Har87] are an expressive and widely used modeling formalism to model the dynamic
behavior of reactive components, i.e., components that process external stimuli and react to them ac-
cording to their internal states. However, there exist several statechart language variants that support
slightly different operational semantics for the samemodel elements, e.g., the execution of orthogonal
regions. Accordingly, different tools and environments may interpret the same statechart models dif-
ferently (considering different operational semantics), hindering information exchange and opening
the way for inconsistencies in the system design.

In order to mitigate the design of complex reactive systems, different platform- or component-
based design techniques [Nuz+15] can be applied by means of the hierarchical integration of stan-
dalone components. Nevertheless, existent modeling standards poorly support the integration (com-
position) of components while considering semantic constraints, especially if different execution and
interaction semantics have to be employed at different integration levels of the system. For instance, a
hardware-related controller may be decomposed into several subcomponents executed concurrently
that communicate synchronously via signals (e.g., on a microcontroller’s bus), whereas the emergent
controller component is integrated into a distributed system where components run in parallel and
interact with queued messages. Thus, the design and verification of the composite system necessitate
precise modeling languages both at component level and integration level.

The goal of this chapter is to provide a common foundation for the component-based design and
formal verification of reactive systems in the form of a configurable and extensible modeling frame-
work. Accordingly, the chapter presents the Gamma Statechart Composition Framework. The frame-
work provides a configurable statechart language with semantic variation points to capture various
dynamic behaviors (statechart variants) based on the same set of model elements. It also supports
mixed-semantic hierarchical integration of heterogeneous statechart components based on different
execution and interaction modes (synchronous and asynchronous semantics) based on a composition
language. The automated formal verification of the created functional design models are realized by
semantic-preserving model transformations into the input languages of hidden model checker tools
and the verification results are automatically back-annotated to the source models.

The rest of the chapter is structured as follows. Section 3.1 gives an overview of the Gamma State-
chart Composition Framework, which serves as a common foundation for the results presented in this
dissertation. Section 3.2 presents the framework’s statechart language, focusing on the supported se-
mantic variation points of statecharts. Section 3.3 formally presents the composition modes of the

23

3. Mixed-semantic composition and verification of reactive components

framework’s composition language. Section 3.4 introduces the model transformations that map the
high-level composition and statechart models into low-level analysis models to support their formal
verification. Section 3.5 presents the component integration and formal verification workflow in the
Gamma framework, which incorporates the modeling languages and verification functionalities pre-
sented in the previous sections and thus, enables model checking of integrated state-based models as
a reusable functionality. Section 3.6 presents a case study with the framework. Section 3.7 presents
related work. Finally, Section 3.8 closes the chapter with concluding remarks and outlines potential
directions for future work.

3.1 Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework is our open source integrated tool suite that supports
model-based design, validation, formal verification and code generation for component-based reactive
systems. It has been developed at the Critical Systems Research Group since 2016. Its goal is to provide
a common but extensible foundation for the component-based development of composite reactive
systems. Accordingly, its elements and extensions are defined by the contributions presented in this,
and subsequent chapters (Chapters 4 and 5). As a general overview of the framework, Figure 3.1
depicts its model transformation chains, the input and output models of these model transformations,
as well as the languages in which they can be defined, and the relations between these models.

Statechart language The Gamma Statechart Language (GSL – also referred to as the framework’s
statechart language) is a UML/SysML-based modeling language that supports the definition of (from
a composition point of view) atomic components in the form of statecharts. The language plays a
central role in supporting the design of components in a flexible way as it enables the import of
component models (so-called engineering models) from integrated modeling tools (modeling front-
ends), e.g., Yakindu, MagicDraw or SCXML; thus, it can also be regarded as a common formalism
into which external models can be transformed. GSL features a textual syntax, as well as a powerful
action language and semantic variation points that specify and enable the configuration of different
semantics for model elements (see Section 3.2).

Composition language Composite components can be created by composing atomic components
and other composite components based on well-defined interfaces using the textual Gamma Com-
position Language (GCL – also referred to as the framework’s composition language). Components
communicate with events via well-defined ports, which can be connected in a composite component
using channels. In addition, port bindings can be used to map the ports of a composite component
to the ports of contained components (component instances). As a special feature, the language sup-
ports different composition modes (see Section 2.5 for their informal introduction and Section 3.3 for
formalization) to control the execution and interaction of contained components.

To put these modeling languages into context and highlight the motivations for their design and
formal semantics, below we summarize the automated functionalities provided by the framework.

Model validation Validation of models takes place at the level of atomic components as well as at
integration level by evaluating well-formedness constraints. Altogether, around 240 well-formedness
constraints are supported that describe, e.g., nondeterminism between transitions in the statecharts,
the checking of model imports, port bindings, values bound to parameters of components, channel
constructions, as well as event references in message queues in asynchronous models.

24

3.1. Gamma Statechart Composition Framework

G
am

m
a

Statech
art

Lan
gu

age

Gamma
statechart

Gamma
statechart

G
am

m
a

C
o

m
p

o
sitio

n

Lan
gu

age

Gamma composite model

Statechart language
(frontend)

Engineering
statechart

Statechart language
(frontend)

Engineering
statechart

Property

Property

Analysis language
(backend)

··Analysis
model

EX
ten

d
ed

Sym
b

o
lic

Tran
sitio

n

System
s

XSTS model

Property

Property

Analysis language
(backend)

··Analysis
model

G
en

eral-p
u

rp
o

se
p

ro
gram

m
in

g lan
gu

age

…
..

Statechart
implementation

Statechart
implementation

V
alid

atio
n

G
am

m
a

G
en

m
o

d
el

Lan
gu

age

G
am

m
a

P
ro

p
erty

Lan
gu

age

Config.

Property

Property

··

G
am

m
a

Trace
Lan

gu
age

Execution
trace

Property

Property

Analysis language
(backend)

··Analysis
model

Back-annotation

Figure 3.1: Model transformation chains and languages of the framework. Rectangles represent mod-
els: solid border represents an atomic model, whereas dashed border represents a composite model.
Dotted rectangles represent a set of models belonging together to fulfill a more general purpose. Rect-
angles with moderately rounded corners represent languages. Rectangles with extensively rounded
corners represent functionalities related to the usability of the language. Solid lines without a base
symbol represent model transformations. Solid lines with a diamond symbol represent model compo-
sition. Dashed lines represent data transformation between the source and target models.

Code generation Once the entire system is modeled as a composition of statechart-based compo-
nents, the framework can generate implementation for standalone statecharts, as well as composition
code that wraps and connects (based on port bindings and channels) the existing (autogenerated)
source code of atomic components based on well-defined interfaces. Accordingly, external code gen-
erators (e.g., Yakindu) for statechart components can be integrated by implementing a plugin for the
code generator that wraps the external code behind the interfaces generated by Gamma. Currently,
the framework supports the generation of Java code [Gra18].

In order to support the step-by-step simulation of component implementations in a type- and
interface-independent way, the framework supports a reflective API via which the encapsulated ob-
jects and functionalities of the component implementations can be accessed using string parameters.
The functions of the API are summarized in Table 3.1 The API supports the input of scheduling calls
and input events from the environment in addition to retrieving raised output events, variable values
and state configurations of the underlying implementations to show internal state. For the flexible and
precise simulation of time, a virtual timer implementation supporting multiple interfaces is generated.

25

3. Mixed-semantic composition and verification of reactive components

Table 3.1: Functions of the reflective API for component implementations and their support in terms
of component type; atomic statechart components (AS), composite components (CC) or both (BC).

API function (ReflectiveInterface) Support
String[] getPortNames() BC
String[] getInputEventNames(String portName) BC
String[] getOutputEventNames(String portName) BC
String[] getParameterNames(String portName, String eventName) BC
String[] getContainedComponentNames() CC
String[] getRegionNames() AS
String[] getStateNames(String regionName) AS
String[] getVariableNames() AS
boolean isEventRaised(String portName, String eventName) BC
Object getParameterValue(String portName, String eventName, String parameterName) BC
ReflectiveInterface getContainedComponent() CC
Object getVariableValue(String variableName) AS
boolean isStateActive(String regionName, String stateName) AS
void reset() BC
void schedule() BC
void raiseEvent(String portName, String eventName, Object[] arguments) BC

Formal verification Formal verification of composite models is provided by model checking
[Cla+18], a technique that explores the behavior of the givenmodel exhaustively with respect to prop-
erties specified in mathematical logic (e.g., to check that unsafe states are not reachable). In order to
assist engineers, the framework hides the inherent complexity of formal verification by (1) offering
a pattern-based approach to specify the required properties [DAC99], (2) using automated semantic-
preservingmodel transformations via the XSTS formalism to the analysis models and queries of verifi-
cation back-end tools, e.g., UPPAAL, Theta and Spin, and (3) back-annotating [Heg+10] the execution
traces retrieved by the model checker (i.e., witnesses or counterexamples for the checked properties)
to the composite model to aid their interpretation.

3.2 GSL and its semantic variation points

The Gamma Statechart Language (GSL) serves as a common representation language for component
statecharts and supports different semantic variation points (statechart semantics) by means of anno-
tations. As abstract syntax of GSL, the model elements and their possible interrelations (which are
based on the elements of UML/SysML statecharts) are given by the metamodel in Figure 2.1. The
concrete syntax of the language is presented in Tables 3.2, 3.3, 3.4, 3.6 and 3.5 as grammar rules, and
illustrated in Figure 3.2, which describes the spacecraft component of Figure 2.4 in GSL.

GSL, like every modeling language in Gamma, organizes models into packages and supports their
import using a relative path, e.g., interfaces, serving as realizable communicational contracts in the
form of ports (see details in Section 3.3), constant declarations and user-defined types (enumerations
and records). The language features variable declarations of type boolean, integer, double and custom
type (enumeration) which can be organized into records and arrays, as well as timeout declarations.
Regarding the description of hierarchy-based behavior, the language supports (orthogonal) regions
with (potentially hierarchical) states, as well as fork, join, choice and merge states (pseudo sates) to
support defining composite transitions.

26

3.2. GSL and its semantic variation points

Table 3.2: Textual concrete syntax of GSL statecharts.

Model element Syntax rule

Package
’package’ ID
Import
Statechart*

Import ’import’ STRING

Statechart

StatechartAnnotation* // Sets semantic variation points (SVP-*)
’statechart’ ID ’(’ ParameterDeclaration* ’)’ ’[’ Port* ’]’ ’{’
VariableDeclaration*
TimeoutDeclaration*
Region*
Transition*
’}’

ParameterDeclaration ID ’:’ Type
Port ’port’ (’requires’ | ’provides’) ID // Interface reference
VariableDeclaration VariableDeclarationAnnotation* ’var’ ID ’:’ Type (’=’ Expression)?
VariableDeclarationAnnotation ’@Resettable’ | ’@Transient’
TimeoutDeclaration ’timeout’ ID (’,’ ID)*

Region
’region’ ID ’{’
StateNode*
’}’

StateNode State | PseudoState

State

StateAnnotation // Supports language extensions: see Section 4.3
’state’ ID ’{’
(’entry’ ’/’ Action+)?
(’exit’ ’/’ Action+)?
Region*
’}’

PseudoState ’initial’ ID | ’shallow history ID | ’deep history’ ID | ’choice’ ID |
’merge’ ID | ’fork’ ID | ’join’ ID

Transition (’@(’ ID ’)’ /* Transition id */)? ’transition’ (’(’ Expression // Priority ’)’)?
’from’ ID ’to’ ID /* StateNodes */ ’when’ Trigger (’[’ Expression ’]’)? (’/’ Action*)?

Type SimpleType | ArrayType
SimpleType ’boolean’ | ’integer’ | ’double’ | ID // Enumeration or record reference
ArrayType Type ’[’ Expression ’]’ // Capacity

In order to facilitate the flexible handling of event parameters, the language supports transient
(default) and persistent events (see Table 3.3). In the former case, the parameter values of a received
event are stored only for a single execution cycle (step); after that, the values are reset and cannot be
retrieved in the following cycles. In the latter case, the parameter values are stored indefinitely until
the parameter of a new received event overwrites them.

In order to support verification, the language features resettable and transient variables by means
of annotations. Resettable variables are reset to the default value of their type at the beginning of the
execution of the statechart component, which is useful to limit the validity of a variable value to a sin-
gle execution cycle (step). Transient variables are reset to the default value of their type at the end of
the execution of the statechart component (before entering a permanent system state), which is use-
ful in the case of (temporary) auxiliary variables holding no information in permanent states. These
options can be set using the@Resettable and@Transient variable annotations either manually (by the
user) in the GSL model or by specific (pre)processing steps (see Section 3.5.2). Note that, contrary to
event parameters where the transient and persistent settings affect the handling and availability of

27

3. Mixed-semantic composition and verification of reactive components

Table 3.3: Textual concrete syntax of custom type, record, interface and event declarations.

Model element Syntax rule
CustomTypeDeclaration ’type’ ID ’:’ ’enum’ ’{’ ID* /* Literals */ ’}’
RecordTypeDeclaration ’record’ ID ’:’ ’record’ ’{’ (ID ’:’ Type)* /* Fields */ ’}’

InterfaceDeclaration
’interface’ ID (’extends’ Interface*)? ’{’
EventDeclaration*
’}’

EventDeclaration (’transient’ | ’persistent’)? (’in’ | ’out’ | ’inout’ | ’internal’)
’event’ ID (’(’ ParameterDeclaration* ’)’)?

parameter values via the component’s public interface (ports) and thus, inter-component communi-
cation, these options are set using annotations, highlighting them as an additional, useful feature in
the language targeting internal variables to reduce the state space of components and facilitate formal
verification.

GSL features a powerful action language that can be utilized to handle variables in the effects
of transitions, as well as entry and exit events of states (see Table 3.4). In addition to the raising
(sending) of events and assignment statements, the language supports the declaration of local variables,
as well as the sequential execution of statements organized into blocks. Deterministic branching can be
expressed by if-else and switch statements, while the language also supports nondeterministic choices.
For loops can be used to express iterative behavior (e.g., array handling) while reusable code can be
organized into functions and called from multiple places.

As a special feature, the language offers various annotations to select semantic variation points
to define the semantics of certain modeling elements (see Table 3.5). The informal overview of the
semantic variation points (corresponding to the SVP-* notations in Section 2.2) are as follows (see
Section 3.4 for the detailed handling of SVP):

• SVP-1: the evaluation of enabled transitions (guard expressions) in orthogonal regions, which
can take place before executing any action in the orthogonal regions (default case in the case
of UML/SysML semantics as presented in Section 2.2) or on the fly, i.e., the evaluation occurs
one by one for each orthogonal region before executing any action in the orthogonal region

Table 3.4: Textual concrete syntax of GSL actions.

Model element Syntax rule
Action Block | Statement
Block ’{’ Action* ’}’

Statement
VariableDeclarationStatement | IfStatement | SwitchStatement |
ChoiceStatement | ForStatement | FunctionCallStatement |
AssignmentStatement | RaiseEventStatement

VariableDeclarationStatement ’var’ ID ’:’ Type (’=’ Expression)?
IfStatement ’if’ ’(’ Expression ’)’ Action (’else’ Action)?
SwitchStatement ’switch’ ’{’ (’case’ Expression ’:’ Action)* ’}’
ChoiceStatement ’choice’ ’{’ (’branch’ Expression ’:’ Action)* ’}’
ForStatement ’for’ ’(’ ParameterDeclaration ’in’ Expression ’)’ Action
FunctionCallStatement ID /* Function declaration reference */ ’(’ Expression* ’)’
AssignmentAction ID /* Variable declaration reference */ ’:=’ Expression
RaiseEventAction ’raise’ ID /* Port */ ’.’ ID /* Event */ (’(’ Expression*’)’)? // Arguments

28

3.2. GSL and its semantic variation points

Table 3.5: Textual concrete syntax of GSL annotations (semantic variation points).

Model element Syntax rule

StatechartAnnotation GuardEvaluation | RegionSchedule |
TransitionPriority | OrthogonalRegionSchedule

GuardEvaluation ’@GuardEvaluation’ = ’beginning-of-cycle’ | ’on-the-fly’
RegionSchedule ’@RegionSchedule’ = ’bottom-up’ | ’top-down
TransitionPriority ’@TransitionPriority’ = ’off’ | ’order-based’ | ’value-based’
OrthogonalRegionSchedule ’@OrthogonalRegionSchedule’ = ’sequential’ | ’unordered’ | ’parallel’

but (potentially) after the execution of other actions in other orthogonal actions in accordance
with the order specified in SVP-4;

• SVP-2: conflict resolution between transitions in the case of parent and child regions of hier-
archical states, which can be bottom-up (default) or top-down resolution;

• SVP-3: priority between enabled transitions leaving the same state: the absence of priority leads
to nondeterministic choices between enabled transitions during execution (default), whereas
the order-based and value-based settings define priorities between them in accordance with
their definition order (an “earlier” definition means a higher priority) or their assigned priority
value (a higher value means a higher priority), respectively;

• SVP-4: the execution of actions in orthogonal regions of a composite state, which can be se-
quential, i.e., in the order of the declaration of regions, unordered, i.e, any region permutation
(without interleavings) is considered valid, and parallel, i.e., actions in orthogonal regions can
interleave in any way (default).

In order to allow for the description of synchronous systems (e.g., hardware-related controllers or
hardware descriptions based on sequential networks), the statechart language supports signal-based
event handling (synchronous execution) introduced in [Wag92] by means of complex triggers, i.e., the
logical combination (Not, as well as And, Or and Xor) of sampled signals represented by input events
(see Table 3.6). Accordingly, transitions can be directly triggered by the ticks of the global execution
clock (on-cycle trigger) or timeouts in addition to events received via ports. As a syntactic sugar, the
language also supports referencing all event sources using a single trigger (any trigger). Nevertheless,
in addition to supporting synchronous semantics, statechart components can be adapted by means of
composition techniques (see asynchronous adapters in Section 3.3.7) to conform to the message-based
(asynchronous) execution semantics present, for example, in UML/SysML statecharts.

The language is given a formal (denotational) semantics by means of model transformations that

Table 3.6: Textual concrete syntax of GSL triggers.

Model element Syntax rule
Trigger BinaryTigger | NotTrigger | ParenthesesTrigger | SimpleTrigger | OnCycleTrigger
BinaryTigger Trigger (’&&’ | ’||’ | ’^’) Trigger
NotTrigger ’!’ Trigger
ParenthesesTrigger ’(’ Trigger ’)’
SimpleTrigger PortEventTrigger | TimeoutTrigger | AnyTrigger
PortEventTrigger ID /* Port */ ’.’ ID // Event declaration
TimeoutTrigger ’timeout’ ID // Timeout declaration
AnyTrigger ’any’
OnCycleTrigger ’cycle’

29

3. Mixed-semantic composition and verification of reactive components

� �
package spacecraft

import "Interface/Interface.gcd" // Importing interfaces to reference them in port declarations

// Annotations for setting semantic variation points (SVP-*)

...

statechart Spacecraft [

port Connection : provides DataSources // Ports for communication

] {

// Variable and timeout declarations

var battery : integer := 100

var data : integer[8]

timeout recharge, consume, transmit

// Regions and contained state nodes (potentially with entry and exit actions in states)

region Main {

entry MainEntry

state Spacecraft {

region Communication {

initial CommunicationEntry

state WaitingPing {

entry / for (i : integer in 0 .. 7) { data[i] = 0; }

}

state Transmitting

}

region BatteryManagement {

initial BatteryManagementEntry

state NotRecharging

state Recharging

}

}

}

// Transitions with source and target nodes, (a combination of) triggers, guards and effects

transition from MainEntry to Spacecraft

transition from CommunicationEntry to WaitingPing

transition from WaitingPing to Transmitting when Connection.ping [Connection.ping::types == ::TRANSMIT]

transition from Transmitting to WaitingPing when timeout consume [battery < 40]

transition from Transmitting to WaitingPing when timeout transmit [allTransmitted(data) or battery < 40]

transition from BatteryManagementEntry to NotRecharging

transition from NotRecharging to Recharging when timeout consume [battery < 80]

transition from Recharging to Recharging when timeout recharge /

if (battery < 100) { battery := battery + 1; }

transition from Recharging to NotRecharging when timeout recharge [battery = 100]

}� �
Figure 3.2: GSL representation of the spacecraft component presented in Figure 2.4.

map GSLmodels into the XSTS formalism (see Section 3.4). This way, the transition function belonging
to GSL components (i.e., atomic GCL components) is given in terms of XSTSmodel elements (see trans
element in Figure 2.7), i.e., the execution of components is mapped into the level of state machines
(see Section 2.2) by these model transformations.

As a demonstration of the language’s flexibility, we integrated Yakindu in the framework as a
modeling front-end for state-based components via a semantic-preserving automatedmodel transfor-
mation that maps Yakindu statecharts into the statechart language [Gra16][e12]. Namely, the state-
chart language of Yakindu also builds on UML/SysML but has different execution semantics as it relies
on top-down conflict resolution between parent and child regions, the sequential execution of actions
in orthogonal regions, distinct priorities between transitions leaving the same state and on the fly
evaluation of enabled transitions in orthogonal regions; each of which can be handled without any
limitation by our framework’s statechart language.

30

3.3. GCL and the formal semantics of its composition modes

3.3 GCL and the formal semantics of its composition modes

This section presents the formal structures and semantics of the Gamma Composition Language
(GCL), distinguishing it from other informal and semi-formal modeling languages. In addition to the
overview of the supported model elements, the subsections include short discussions about additional
practical and theoretical aspects, design decisions and consequences on formal verification and code
generation.

The section starts with an overview of the syntax of GCL (Section 3.3.1), focusing on asynchronous
adapters and composite components. Section 3.3.2 formally defines events and related structures, then
the syntactic definition of synchronous components (Section 3.3.3) is introduced. Next, synchronous
composite components and cascade composite components are formalized both syntactically and se-
mantically (Sections 3.3.4 and 3.3.5). After defining asynchronous components (Section 3.3.6), asyn-
chronous adapters and their semantics are presented (Section 3.3.7). The section proceeds with the
definition of asynchronous composite components (Section 3.3.8) and their semantics in terms of their
environment, as well as received and sentmessages, occurrences and execution traces. Finally, the sec-
tion concludes with the definition of scheduled asynchronous composite components (Section 3.3.9).
In order to help the reader find their way through the following pages, Appendix B lists the symbols
used in the definitions along with a short description.

3.3.1 GCL syntax

GCL features asynchronous adapters and various composite components to build synchronous and asyn-
chronous systems based on the (hierarchical) composition of atomic statechart components defined in
GSL (see Section 3.2). As a special feature, GCL also supportsmessage demultiplexing in asynchronous
adapters to provide additional configurability options for communication during component compo-
sition.

Asynchronous adapters Figure 3.3 depicts an excerpt of the model elements regarding asyn-
chronous adapters and their possible interconnections supported by GCL (metamodel excerpt dis-
regarding triggers, which are detailed in Table 3.6); the related textual syntax is presented in Table 3.7.

Figure 3.3: Elements of asynchronous adapters in GCL (metamodel excerpt).

31

3. Mixed-semantic composition and verification of reactive components

� �
adapter AynchronousSpacecraft of component spacecraft : Spacecraft [

// Additional control port on the adapter

port control : Control

] {

// Clock emitting a tick every millisecond

clock millisecClock(rate = 1 ms)

// Run wrapped component upon any kind of received event

when any / run

// Connection messages are placed in a higher priority queue

queue protocolMessages (priority = 2, capacity = 4, discard = incoming) {

connection.any

}

// Other control messages are placed in a lower priority queue

queue controlMessages (priority = 1, capacity = 2, discard = oldest) {

control.any, millisecClock

}

}� �
Figure 3.4: Asynchronous adapter wrapping the synchronous spacecraft statechart component.

Each synchronous adapter (see an example in Figure 3.4) wraps a single synchronous compo-
nent instance, turning it into an asynchronous component. An adapter implicitly has all ports of the
wrapped component, and can optionally define additional ones to receive control messages (see be-
low).

As a primary feature, asynchronous adapters can have one or more message queues, which store
incoming messages and have multiple attributes:

• Capacity specifies the maximum number of messages that can be stored in the particular queue.
If a queue is full and an additional message is received, then the situation is handled according
to the message discard strategy attribute.

• Message discard strategy can be either incoming or oldest, specifying that in case a message is
sent to an already full queue, the incoming message, or the one that has been in the queue for
the longest period (at index 0) shall be discarded.

• Priority of a queue specifies the order in which the contents of message queues are retrieved
during the execution of the asynchronous component (a greater value means higher priority).

Table 3.7: Textual concrete syntax of GCL asynchronous adapters.

Model element Syntax rule

AsynchronousAdapter

’adapter’ ID ’of’ ’component ID : ID /* Adapter synchronous component */ ’(’
ParameterDeclaration* ’)’ ’[’ Port* ’]’ ’{’

ClockDeclaration*
ControlSpecification*
MessageQueue*
’}’

ClockDeclaration ’clock’ ID ’(’ ’rate’ ’=’ Expression (’s’ | ’ms’)’)’
ControlSpecification ’when’ Trigger ’/’ (’run’ | ’reset’)’)’

MessageQueue

’queue’ ID ’(’ ’priority’ ’=’ Expression ’,’ ’capacity’ ’=’ Expression
(’,’ ’discard’ ’=’ (’incoming’ | ’oldest’))? ’)’ ’{’
(ID /* Clock reference */ | ID.ID /* Port event reference */ |
ID.’any’ /* Any port event reference */)+

’}’

32

3.3. GCL and the formal semantics of its composition modes

• Event references specify the types of messages that can be stored in the particular message queue
(demultiplexing incoming messages into message queues).

During execution, messages are retrieved from the message queues one by one (message processing).
A message is always taken from the highest priority non-empty queue. If the particular message was
received on a port that is implicitly derived from the wrapped component, the message is converted
to a signal (as synchronous components communicate with signals) and transmitted to the wrapped
synchronous component (potentially overwriting previously sent signals). If it was received on a port
explicitly defined on the adapter component, the message is not transmitted.

An asynchronous adapter also has one or more control specifications, which specify the messages
that trigger different execution of the wrapped component (recall that any triggers are a shortcut to
refer to every incoming message): if a specified message arrives, the wrapped component is executed
or reset to its initial state according to the specified setting. Note that signals derived from messages
are transmitted to the wrapped component before execution, so a triggered execution will process the
signal even if the control specification is specified for the corresponding message.

Finally, asynchronous adapters can contain clocks, which emit tick events at defined timed inter-
vals based on a rate attribute. Tick events also have to be assigned to a queue and can be handled in
control specifications similarly to regular events received from ports.

As an example, Figure 3.4 describes an asynchronous adapter wrapping the synchronous space-
craft statechart component (presented in Figure 2.4) by introducing another control port, a clock with
a rate of 1 ms, an any control specification and two message queues with different attributes.

Composite components Figure 3.5 depicts an excerpt of the model elements regarding composite
components and their possible interconnections supported by GCL (metamodel excerpt disregarding
concrete composite component types); the related textual syntax is presented in Table 3.8.

Every composite component (synchronous, cascade, asynchronous and scheduled asynchronous)
consists of component instances (also referred to as constituent components), which communicate via
well-defined ports (identical to statechart ports) and thus, define the emergent behavior of the com-
posite component. Ports can realize interfaces either in provided or required mode (see the Port entry
in Table 3.2): in the former case, the transmission of events is in accordance with the declared direction
(see the EventDeclaration entry in Table 3.3), whereas in the latter case, the directions are “inverted.”
Ports that realize the same interface in different modes (provided and required) can be connected

Figure 3.5: Elements of composite components in GCL (metamodel excerpt).

33

3. Mixed-semantic composition and verification of reactive components

� �
[sync / cascade / async / scheduled-async] SimpleSpaceMission [

port control : requires StationControl

] {

// Declaring the station and spacecraft component instances

component station : GroundStation

component spacecraft : Spacecraft

// Exporting the station’s control port (port binding)

bind control -> station.control

// Connecting the ports of the spacecraft and the station

channel [spacecraft.connection] -o)- [station.connection]

}� �
Figure 3.6: GCL model of the simple space mission with a ground station and a spacecraft component.

by simple channels (one-to-one port connections between component instances using instance port
references) or broadcast channels, which support the distribution of events from a single source port
to multiple connected ones. In order to “export” the ports of a component instance to the environ-
ment (i.e., the boundary of the composite component), the language features port bindings, this way,
allowing for the hierarchical composition of the components.

Figure 3.6 describes the textual GCL model of the simple space mission (presented in Section 2.3)
including every supported composition mode. As illustrated, the definition of composite models in
different composition modes differ only in a single keyword (sync, cascade, async or scheduled-async);
the definition of ports, component instances, port bindings and internal channels are identical in each
composition mode. Therefore, users can tailor the integration and verification process according to
their needs and expectations about their system’s behavior in a flexible way.

Table 3.9 summarizes the component types supported by the GCL in terms of synchrony and
compositeness.

Table 3.8: Textual concrete syntax of GCL composite components.

Model element Syntax rule

AbstractCompositeComponent

SynchronousCompositeComponent |
CascadeCompositeComponent |
ScheduledAsynchronousCompositeComponent |
AsynchronousCompositeComponent |

SynchronousCompositeComponent ’sync’ CompositeComponent
CascadeCompositeComponent ’cascade’ CompositeComponent
ScheduledAsynchronousCompositeComponent ’scheduled-async’ CompositeComponent
AsynchronousCompositeComponent ’async’ CompositeComponent

CompositeComponent

ID ’(’ ParameterDeclaration* ’)’ ’[’ Port* ’]’ ’{’
ComponentInstance*
PortBinding*
Channel*
ExecutionList? // For cascade and scheduled-async
’}’

ComponentInstance ’component’ ID ’:’ ID ’(’ Expression* ’)’ // Component type reference

PortBinding ’bind’ ID /* Composite component port */ ’->’
ID ’.’ ID // Component instance’s port

Channel ’[’ ID.ID ’]’ ’-o)-’ ’[’ ID.ID (ID.ID)* ’]’ // Component instances’ ports
ExecutionList (ID.ID)* // Sequence of component instances

34

3.3. GCL and the formal semantics of its composition modes

Table 3.9: Component types supported by GCL.

Atomic Composite

Synchronous Statechart Synchronous composite component
Cascade composite component

Asynchronous Asynchronous adapter Scheduled asynchronous composite component
Asynchronous composite component

Message demultiplexing in asynchronous adapters and composite components In order to
supportmessage queues shared among multiple components, GCL featuresmessage demultiplexing in
asynchronous adapters to allow for defining what signals a message is converted into during mes-
sage processing. The risGlobalQueue component in Figure 3.7 shows an excerpt of the asynchronous
adapter that wraps the components of the RISmodel (presented in Section 2.3) and demultiplexes mes-
sages in the globalQueue, e.g., from the Out port of the control center to the In port of the dispatcher.
As depicted, demultiplexing is defined using the -> operator in the body of a queue definition: its
left hand side specifies a message type (asynchronous event received via an adapter port) the mes-
sage queue stores, whereas the right hand side defines a set of signals (synchronous events via the
wrapped component’s port) that the message is converted into during its processing; multiple sig-
nals can be specified using & symbols. Note that the events of the left and right hand side must have
parameter declarations with the same type. As syntactic sugar, GCL supports the any keyword to
reference each event of a port. Also, the -> operator and its right hand side can be omitted if the two
sides are equal.

� �
adapter risGlobalQueue of component ris : RIS { // Wrapped component

// Single control specification: execute once upon any incoming message

when any / run

// Shared global queue

queue globalQueue(priority = 2, capacity = 6, discard = incoming) {

controlCenterOut.rigel -> dispatcherIn.rigel, // Demultiplexing a single message

dispatcherOut.any -> objectHandler.any, // Demultiplexing all messages of a port

...

}

}

// Cascade composite component (CCC)

cascade RIS [

// Internal ports of the CCC

port controlCenterIn : requires Rigel

port controlCenterOut : provides Rigel

... // Additional in and out ports of other components

] {

// Statechart components of the RIS model

component controlCenter : ControlCenter

component dispatcher : Dispatcher

component objectHandler : ObjectHandler

// Binding component ports to the ports of the CCC

bind controlCenterIn -> controlCenter.In

bind controlCenterOut -> controlCenter.Out

...

}� �
Figure 3.7: RIS model (depicted in Figure 2.6) variant excerpt with a shared global queue that utilizes
message demultiplexing.

35

3. Mixed-semantic composition and verification of reactive components

Message demultiplexing provides configurability options for component integration and allows
for capturing structure-related aspects (port connections). For example, the feature can be utilized to
define a shared global message queue for a composite component that stores messages sent among
contained components (as depicted in Figure 3.7). Such a solution can be modeled featuring message
demultiplexing in GCL as follows:

1. a single cascade composite component (CCC) is defined that contains every necessary com-
ponent while also specifying their execution order (channels between the components are not
defined);

2. the CCC declares internal ports for each component, i.e., ports that transform raised events into
received events for inter-component communication;

3. the CCC is wrapped by an asynchronous adapter that defines a single message queue with the
required attributes and message demultiplexing for the internal ports: the left hand side will
contain the sender port, whereas the receivers will be on the right hand side.

3.3.2 Events, event vectors and event sequences

This section formally defines events, as well as event vectors used by synchronous components, and
event sequences used by asynchronous components.

3.3.2.1 Events

The following definitions consider individual events only, since ports and interfaces are syntactic
sugar that facilitate the structuring of syntactic contracts. The event definition belowmodels a specific
event of a specific port on a specific component instance.

Definition 3.1. An event is an observable phenomenon that can occur, e.g., message reception
or the change of situation (state). Given a set of eventsE, the finite domains of event parameters
are defined by the domain function D : E → 2{d1,...,dn}. The domain of an event e ∈ E is D(e),
a set of possible parameter values for event e. We say that an event e ∈ E is parameterized
if |D(e)| > 1. An instance of an event is (e, p), i.e., the event with a specific parameter value
p ∈ D(e). The set of all event instances for a given event e is denoted by inst(e) = {(e, p) | p ∈
D(e)}. In case the absence of an event is of interest, inst⊥(e) is defined as inst(e) ∪ {(e,⊥)},
where (e,⊥) is the “null” instance that denotes the absence of the event. Finally, the set of event
instances for events in a set E is inst(E) =

⋃
e∈E inst(e) (and inst⊥(E) similarly). �

Discussion An event represents a declaration only. Furthermore, an event instance is not an event
occurrence, as there may be several occurrences of a single event instance.

3.3.2.2 Event vectors

Synchronous components communicate via signals. The formal structure describing signals is the
event vector. An event vector can be regarded as a set of cells that can be filled with event instances, at
most one instance in every cell. Event vectors are the inputs and outputs of synchronous components.

Definition 3.2. Given a set of eventsE, an event vector vE is a function that assigns a (possibly
“null”) event instance to every event e ∈ E such that vE(e) ∈ inst⊥(e). The set of all possible
event vectors is denoted by VE . �

36

3.3. GCL and the formal semantics of its composition modes

Discussion Event vectors needmemory to be represented at runtime. Event vectors can be regarded
as “nullable” variables dedicated to each event holding the occurrence and the parameters of that
particular event (if any). The number of events and their parameter domains’ size thus directly affect
the state vector’s size in formal verification or the memory requirements of an implementation.

3.3.2.3 Event sequences

In asynchronous systems, event vectors are substituted by event sequences.

Definition 3.3. An event sequence q = ⟨(e1, p1), . . . , (en, pn)⟩ is a finite, possibly empty (de-
noted by ε) sequence of event instances. The set of all possible event sequences for a set of events
E is denoted by inst(E)∗, while |q| denotes the length of the sequence. The ith event instance
in the sequence is denoted by q[i] = (ei, pi). Finally, a permutation of a set of event instances A
is a sequence denoted by σ(A) and all possible permutations of A is denoted by Sσ(A). �

3.3.3 Synchronous component

The following definition specifies the formal syntactic contract of synchronous components. A syn-
chronous component shall have a set of states, a well-defined initial state, a set of input and output
events (collected from ports of the component) along with their parameter domains (i.e., data type),
and a deterministic transition function that describes the behavior of the component, which can be
specified arbitrarily.

Definition 3.4. A synchronous component is a tuple −⃝ = (S, s0, I, O,D, T):
• S is the set of potential states, with s0 ∈ S being the initial state.
• I is the set of input events and O is the set of output events such that I ∩O = ∅. The set
of all events is denoted by E = I ∪O.

• D : E → {d1, . . . , dn} is the domain function of the events.
• T : S × VI → S × VO is the transition function determining the component’s next state
and the output event vector when executing it in a given state with an input event vector.
Note that this definition requires the component to have a deterministic behavior.a �

aNaturally, the definitions could be extended to nondeterministic models.

If −⃝ is a timed component, we allow S to track the values of clock variables [BY04], assuming that
whenever a clock variable in any component of the whole system is increased by (a positive)∆t, all other
clock variables in any component of the whole system is also increased by the same ∆t. Also, elapsing
time may not trigger an internal execution of the component, i.e., the state of the component apart
from the values of the clock variables may only change in accordance with T . Finally, we require the
execution of transitions to be atomic and instantaneous, i.e., time may not elapse during the execution
of a single transition (regardless of whether the component is atomic or composite).

Semantics As a main feature of their semantics, synchronous components take an event vector
as an input and generate an event vector as an output. Considering that the synchronous compo-
nent is a statechart, the definition is closest to the Virtual Finite State Machine formalism introduced
in [Wag92]. We use this formalism as it harmonizes with the synchronous-reactive domain – as com-
ponents are executed in a lock-step fashion, there may be a need to react to multiple events or a
combination of events at the same time, which can be handled by complex triggers (included in the

37

3. Mixed-semantic composition and verification of reactive components

GSL). Also, as events can occur at the same time, interleavings introduced by the often arbitrary order
of sequential message passing do not have to be analyzed. Nevertheless, the more widespread Event-
Driven Finite State Machine, which is the basis of most commonly used statechart formalisms, e.g.,
UML/SysML, is also suitable to describe a component. However, those components may be triggered
by event vectors with a single “non-null” event instance only, and it must be ensured that they are
executed every time a signal arrives (see the asynchronous adapter in Section 3.3.7).

Discussion As a main feature, this definition describes an abstract behavioral contract that can be
implemented by multiple formalisms, and this way, the framework can support the integration of ex-
ternal tools (modeling front-ends) and formalisms. Accordingly, an atomic statechart defined in GSL
is considered as an atomic synchronous component. In addition, the XSTS formalism presented in
Section 2.4 allows for formally defining different semantic variations for reactive behavior, provid-
ing an intermediate-level behavior representation. The rest of the section is about the semantics of
scheduling components, which is one of the main focuses of this work.

3.3.4 Synchronous composite component

A synchronous composite component is defined by instantiating a set of constituent components
(component instances), exporting input and output ports (events in the formal case) by port bindings
and defining channels (connecting events instead of ports in the formal case).

Definition 3.5. A synchronous composite component is a tuple s⃝ = (C, I, O,⇌):
• C = {−⃝1, . . . , −⃝K} is the set of synchronous components constituting the composite
component, each component being −⃝k = (Sk, s

0
k, Ik, Ok,Dk, Tk).

• I ⊆ Î is the set of exported input events, where Î =
⋃K

k=1 Ik.
• O ⊆ Ô is the set of exported output events, where Ô =

⋃K
k=1Ok.

• ⇌ : Î \ I → Ô is the channel function that assigns an output as the source of events
to every input, with the restriction that it must not be defined for elements of I , that is,
an input is either linked to an output or is an exported input. We demand that for each
e ∈ Î \ I , D(e) = D(⇌(e)). �

Discussion Note that port binding elements are not present in the definition, instead exported events
are defined. This implies that events bound together in a composite model are handled as if they were
the same, they are not differentiated in any way as they represent the same occurrence.

Semantics To understand the semantics of synchronous composite components, i.e., its behavior as
a synchronous component, recall that output signals produced by a component are sampled by other
components in the next execution cycle only. To describe this behavior, we extend the combined state
space of the constituent components with the last output event vector of all constituent components.
An execution cycle is described by the emergent transition relation of the composite component.

Definition 3.6. A synchronous composite component s⃝ is itself a synchronous component
s⃝⟩−⃝ = (S, s0, I, O,D, T):

• S = S1× . . .×SK ×VÔ is the set of potential states, derived as all possible combinations
of the potential states of the constituent components and the last output event vector of
every component.

38

3.3. GCL and the formal semantics of its composition modes

• s0 = (s01, . . . , s
0
K ,⊥Ô) is the initial state, where every constituent component is in its

initial state and the last output event vector ⊥Ô ∈ VÔ assigns ⊥ to every output event
(∀e ∈ Ô : ⊥Ô(e) = ⊥).

• I is the set of exported input events and O is the set of exported output events as defined
in Definition 3.5 (remember that we denote I ∪O by E).

• D is implicitly defined by Dk, as D̂ =
⋃K

k=1Dk and D(e) = D̂(e) for all e ∈ E.
• The transition function is defined as T

(
(s1, . . . , sK , vÔ), vI

)
=

(
(s′1, . . . , s

′
K , v′

Ô
), vO

)
,

where:
– For each input event e ∈ Î of any constituent component let vÎ(e) = vI(e) if e ∈ I

or vÎ(e) = vÔ(⇌(e)) otherwise. Note that vÎ implicitly defines every vIk as well,
because vÎ =

⋃K
k=1 vIk .

– The next state s′k of every component corresponds to the transition function Tk such
that Tk(sk, vIk) = (s′k, v

′
Ok

).
– v′

Ô
=

⋃K
k=1 v

′
Ok

is the new vector of last output events.
– The output of the composite component for each exported output e ∈ O is defined

by the output of the constituent components: vO(e) = v′
Ô
(e). �

Discussion When executing a synchronous composite component, its constituent components ei-
ther react to an external input (in the case of exported inputs) or to the output of a constituent compo-
nent (including themselves) from the previous execution cycle. This prevents any interaction between
the components during a single execution cycle, allowing to execute the components in an arbitrary
order, essentially performing partial order reduction statically. This key feature greatly reduces the size
of the state space, making the synchronous-reactive domain suitable for formal verification. Addition-
ally, the definition enables to connect a single output to multiple inputs of components, however, an
input can be connected only to a single output.

3.3.5 Cascade composite component

The syntactic definition of cascade composite components is the same as that of synchronous compos-
ite components, apart from the additional definition of the execution order of constituent components.

Definition 3.7. A cascade composite component is a tuple c⃝ = (C, X, I,O,⇌):
• C = {−⃝1, . . . , −⃝K} is the set of synchronous components constituting the composite
component, each component being −⃝k = (Sk, s

0
k, Ik, Ok,Dk, Tk).

• X ∈ C∗ is a finite ordered sequence (with potential repetitions) of synchronous com-
ponents called the execution sequence specifying the components to be executed in an
execution cycle.

• I ⊆ Î is the set of exported input events, where Î =
⋃K

k=1 Ik.
• O ⊆ Ô is the set of exported output events, where Ô =

⋃K
k=1Ok.

• ⇌ : Î \ I → Ô is the channel function that assigns an output as the source of events
to every input, with the restriction that it must not be defined for elements of I , that is,
an input is either linked to an output or is an exported input. We demand that for each
e ∈ Î \ I , D(e) = D(⇌(e)). �

Semantics Cascade composite components do not delay the internal signals between constituent
components executed after each other (feed-forward signals); thus, the effect of an event is computed

39

3. Mixed-semantic composition and verification of reactive components

in a single run. Signals sent to components that are not executed anymore in the current execution
cycle (feedback signals) are saved for the next cycle, just like in synchronous composite components.

Definition 3.8. A cascade composite component c⃝ is itself a synchronous component c⃝⟩−⃝ =
(S, s0, I, O,D, T):

• S = S1× . . .×SK ×VÔ is the set of potential states, derived as all possible combinations
of the potential states of the constituent components and the last output event vector of
every component.

• s0 = (s01, . . . , s
0
K ,⊥Ô) is the initial state, where every constituent component is in its

initial state and the last output event vector ⊥Ô ∈ VÔ assigns ⊥ to every output event
(∀e ∈ Ô : ⊥Ô(e) = ⊥).

• I is the set of exported input events and O is the set of exported output events as defined
in Definition 3.7 (recall that I ∪O is denoted by E).

• D is implicitly defined by Dk, as D̂ =
⋃K

k=1Dk and D(e) = D̂(e) for all e ∈ E.
• The transition function is T

(
(s1, . . . , sK , vÔ), vI

)
=

(
(s′1, . . . , s

′
K , v′

Ô
), vO

)
, computed

iteratively for every X[i] (1 ≤ i ≤ n, n = |X|):
– Let (s(0)1 , . . . , s

(0)
K , v

(0)

Ô
) = (s1, . . . , sK , vÔ) (the source state).

– Assume that X[i] = −⃝k. To obtain (s
(i)
1 , . . . , s

(i)
K , v

(i)

Ô
), we apply Tk(s

(i−1)
k , vIk)

= (s
(i)
k , vOk

) to compute s(i)k and vOk
, where for all e ∈ Ik,

vIk(e) =

vI(e) if e ∈ I and this is
the first execution of −⃝k,

⊥ if e ∈ I and it is not
the first execution, and

v
(i−1)

Ô
(⇌(e)) if e /∈ I.

The state of other components −⃝j ∈ C (j ̸= k) remains the same (s(i)j = s
(i−1)
j).

The last output event vector is updated with vOk
: for all e ∈ Ô, v(i)

Ô
(e) = vOi(e) if

e ∈ Ok, and v
(i)

Ô
(e) = v

(i−1)

Ô
(e) otherwise.

– Finally, s′k = s
(n)
k for every −⃝k ∈ C and vO(e) = v

(n)

Ô
(e) for every e ∈ O. �

Discussion The raison d’etre of the cascade composite semantic variant is twofold. First, even
though it requires the same amount of memory to represent as synchronous composite components
(see the definition of S), the effect of an input event on output events is computed in a single step, fur-
ther compressing the state space (assuming that a composite component is stimulated to observe an
output). Second, it is sometimes desired to “decorate” a component with auxiliary components such
as adapters or monitors without introducing a delay in the observable effect of an event. Moreover, it
is convenient to think in terms of pipelines, which is best expressed with cascade components.

One drawback of using cascade composite components is that the outputs of constituent com-
ponents may overwrite each other if a particular component is executed multiple times in a single
cycle (but this is still deterministic), and all outputs of all components are emitted in a single event
vector. If the temporal unfolding of the different reactions is relevant, it may be more beneficial to use
a synchronous composite component. Note that this difference is enhanced in timed systems, as the

40

3.3. GCL and the formal semantics of its composition modes

atomic and instantaneous execution of a cycle implies that feed-forward signals are sent and received
at the same instance of time, while feedback signals may be delayed in a timed sense as well.

3.3.6 Asynchronous component

Asynchronous components are syntactically very similar to synchronous components. The only dif-
ference is the definition of transitions: it is now not a function but a relation, and instead of taking and
producing an event vector, it takes a single event instance and produces an event sequence selected
from the potential output sequences nondeterministically.

Definition 3.9. An asynchronous component is a tuple =⃝ = (S, s0, I, O,D, T):
• S is the set of potential states, with s0 ∈ S being the initial state.
• I is the set of input events and O is the set of output events such that I ∩O = ∅. The set
of all events is denoted by E = I ∪O.

• D : E → {d1, . . . , dn} is the domain of the events.
• T ⊆ S× inst(I)×S× inst(O)∗ is the transition relation, which determines the possible
next states and the possible sequences of output events of the component (inst(O)∗) when
executing it in a given state with a given input event. Note that this definition does not
require deterministic behavior. �

Semantics Contrary to synchronous components, the semantics of asynchronous components is
closest to Event-Driven Finite State Machines or the variant of statecharts defined in UML/SysML.
Although currently not supported by GSL, asynchronous components could be described directly by
statecharts. In Gamma, the current means of defining an asynchronous statechart component is to
define a synchronous component containing a statechart, and wrap it in an asynchronous adapter.

Discussion Similarly to synchronous components, this definition also describes an abstract behav-
ioral contract that can be implemented by multiple formalisms. Note that allowing a nondeterministic
transition relation is necessary because the order of output events may not always be specified, e.g., in
the case of orthogonal regions. In the case of synchronous components, the order of events does not
matter as they are collected in an event vector. The event sequence, however, can be different depend-
ing on the internal order of event raisings. This phenomenon poses challenges to both verification and
code generation, and hinders the reproducibility of test cases and counterexamples. Nondeterminism,
however, is inherent in asynchronous systems anyway.

3.3.7 Asynchronous adapter

An asynchronous adapter wraps a single synchronous component and converts it into the asyn-
chronous domain. To do this, a trigger predicate with a set of trigger specifications must be defined.
Asynchronous adapters may also introduce ports in addition to the ports of the wrapped component.
Formally, the opportunity to define multiple additional ports and events on them is only a syntactic
sugar, as all of them are mapped to the control event introduced in the definition below.

Definition 3.10. An asynchronous adapter for a synchronous component is defined as a tuple
⊏−⃝ = (−⃝, ec, trig):

• −⃝ = (Ss, s
0
s, Is, Os,Ds, Ts) is the wrapped synchronous component.

• ec is the control event.

41

3. Mixed-semantic composition and verification of reactive components

• C = {ct11 , · · · , ctnn } is the set of clocks, where ctii produces ec periodically after every ti.
• trig : Is∪{ec} → {⊤,⊥} is the trigger predicate that given an input event, returnswhether
the wrapped synchronous component must be executed or not. �

Semantics The semantics of asynchronous adapters is defined in terms of an asynchronous com-
ponent. Observed from the environment of the component, an adapter processes input events one by
one (just like asynchronous components in general), but may not always produce an output. The role
of the adapter is to “collect” messages for the wrapped synchronous component, and when a message
triggers execution, that is, trig(e) is ⊤, feed the collected messages and emit messages created from
the resulting output event vector.

Definition 3.11. An asynchronous adapter ⊏−⃝ for a synchronous component is itself an asyn-
chronous component ⊏−⃝⟩ =⃝ = (S, s0, I, O,D, T):

• S = Ss × vI is the set of potential states; each state consists of the wrapped synchronous
component’s state and a buffer input event vector collecting the incoming event instances.

• s0 = (s0s,⊥I), where ⊥I is the empty input vector.
• I = Is ∪ {ec} is the set of input events including the input events of the wrapped syn-
chronous component and the control event. From an input vector vI we can derive vIs as
vIs(e) = vI(e) for every e ∈ Is.

• O = Os is the set of output events defined in the wrapped synchronous component.
• D = Ds ∪ (ec → {⊤}) is the domain function of the wrapped synchronous component
extended with a mapping that assigns a singleton set to the control event indicating that
it is not parameterized.

• The transition relation is defined as a (nondeterministic) transition function
T
(
(ss, vI), (e, p)

)
= {(s′s, v′I)} × Ω, such that:

– If trig(e) = ⊥, then the buffer input event vector is updated such that v′I(e) = (e, p)
and v′I(e

′) = vI(e
′) for every other e′ ∈ I (e ̸= e′), and s′s = ss, while Ω = {ε} (as

the set of possible output sequences) is the empty sequence in this case.
– If trig(e) = ⊤, then the buffer input event vector is updated such that v′′I (e) = (e, p)

and v′′I (e′) = vI(e
′) for every e′ ∈ I (e ̸= e′), and s′s should be such that Ts(ss, v

′′
I) =

(s′s, vO), and v′I = ⊥I . Ω = Sσ({(e, p) | vO(e) = p, p ̸= ⊥}) (as the set of possible
output sequences) is every possible permutation of the “non-null” elements of the
output vector. �

Discussion The order of messages between two execution-triggering messages is not relevant as
long as they do not overwrite each other, so the adapter may store an event vector as a buffer instead
of a message queue. In practice, the memory allocated for the input vector of the wrapped component
can be reused.

The definition of asynchronous adapters is very flexible. Components like an Event-Driven Finite
State Machine may be implemented by a synchronous component by declaring no additional control
events, but returning ⊤ from the trigger predicate for any event. With the help of the control event,
however, it is also possible to promote the “ticks” of the wrapped synchronous component to its
syntactic contract, allowing the environment to execute the component, which is the preferred way
of handling even a single synchronous system in Gamma. The definition also allows mixed solutions,
e.g., a component may be triggered by any external control event or by any event on one of its ports.

Note that according to the definition, the sequence of output events may be any permutation of
the “non-null” events in the output vector of the wrapped component. Although consistent with the

42

3.3. GCL and the formal semantics of its composition modes

definition of asynchronous components, this is rather an underspecification than real nondeterminism
– most implementations would raise output events in a fixed order, e.g., when wrapping a cascade
composite component.

Finally, note that clocks are not directly handled in the semantics, as the synchronous layer has a
notion of logical time only. Nevertheless, clocks are considered as a special source of events occurring
spontaneously after every ti, sending a tick message to the containing component received through
the control event ec (see Section 3.3.8.2).

3.3.8 Asynchronous composite component

The syntactic definition of an asynchronous composite component differs from synchronous com-
posite components only in the definition of channels. Since asynchronous components operate with
event sequences, it is not a problem anymore if an input event has multiple sources, so there is no
restriction on channels other than parameter compatibility.

Definition 3.12. An asynchronous composite component is a tuple a⃝ = (C, I, O,⇌):
• C = { =⃝1, . . . , =⃝K} is the set of asynchronous components constituting the composite
component, each component being =⃝k = (Sk, s

0
k, Ik, Ok,Dk, Tk).

• I ⊆ Î is the set of exported input events, where Î =
⋃K

k=1 Ik.
• O ⊆ Ô is the set of exported output events, where Ô =

⋃K
k=1Ok.

• ⇌ ⊆ Ô×Î is the set of channels that connects inputs and outputs with no restriction apart
from parameter compatibility. The set of inputs connected to an output e is denoted by
⇌(e) = {e′ | (e, e′) ∈ ⇌}. We demand that for each e ∈ Î and e′ ∈ ⇌(e),D(e) = D(e′).
Note that ⇌(e) used as a function maps from outputs to inputs, contrary to the notation
used in synchronous components, where it mapped from inputs to outputs. �

Semantics In asynchronous composite components, events are transferred in messages and pro-
cessed one by one. We assume that components have a message queue where sent but unprocessed
messages are stored. Accordingly, the semantics of asynchronous composite components is defined
in terms of their communication with their environment usingmessages, as well as the valid execution
traces of their constituent components.

3.3.8.1 Environment of the component

The environment of an asynchronous composite component is modeled as follows.

Definition 3.13. Given an asynchronous composite component a⃝ = (C, I, O,⇌), its envi-
ronment is a tuple e⃝ = (Eenv

I , Eenv
O):

• Eenv
I = O is the input events of the environment that consume the output events of the

asynchronous composite component.
• Eenv

O = I is the output events of the environment that serve as the input events of the
asynchronous composite component. �

Discussion The behavior of the environment is considered nondeterministic. Note that its behavior
can be restricted during verification, e.g., by scenario-based contracts (see Section 5.3.1).

43

3. Mixed-semantic composition and verification of reactive components

3.3.8.2 Messages and execution traces

The semantics of asynchronous composition can be defined in terms of messages and occurrences. A
message is defined in terms of its source and target events and its parameter.

Definition 3.14. Given an asynchronous composite component a⃝with its environment e⃝, an
asynchronous message is a tuplem = (eO, p, EI):

• eO ∈ Ô ∪ Eenv
O ∪ C is the source output event of the message, possibly coming from the

environment or a clock of an asynchronous adapter in the system.
• p ∈ D(eO) is the content of the message.
• EI ⊆ Î ∪ Eenv

I is the set of target input events of the message, possibly targeting the
environment.

• If eO ∈ Eenv
O then EI ⊆ I and if EI ⊆ Eenv

I then eO ∈ O, i.e., external messages may
arrive through exported input events, while external targets may be messaged from ex-
ported output events. If eO ∈ C for some asynchronous adapter ⊏−⃝ thenEI = {ec}, where
ec is the control event of ⊏−⃝. Otherwise, ⇌(eO) = EI , that is, if the message is sent to
another component in the same asynchronous composite component, the corresponding
inputs and outputs are connected with a channel. �

Definition 3.15. Given a messagem = (eO, p, EI), let send(m) denote the occurrence of cre-
ating the message in response to its source output event and recv(m, eI ,) the occurrence of
consuming the message on input event eI ∈ EI , thus, raising event eI . The source component
of a message is denoted by src(m) = =⃝k ∈ C when eO ∈ Ok or src(m) = e⃝ if eO ∈ Eenv

O .
Furthermore, let t = (s, eI , s

′, ω) ∈ Tk be a transition of a constituent component =⃝k. An
occurrence of transition t is a tuple [t] = (mI , t,MO), where:

• mI = (eO, p, EI) is the message triggering the transition, where eI ∈ EI .
• t is the triggered transition.
• MO is the sequence of raised messages such that |MO| = |ω| and for every 1 ≤ i ≤ |MO|,
MO[i] = (e′O, p

′, E′
I) such that ω[i] = (e′O, p

′) and E′
I obeys Definition 3.14. �

Discussion A message is a runtime object, i.e., it has “object identity.” Occurrences, such as mes-
sage sending, receiving and firing transitions constitute the observable behavior of an asynchronous
system, e.g., sending message m is an observable happening at a specific point in time. Occurrences
enable us to define an execution trace, describing the behavior of asynchronous systems.

Definition 3.16. Given a totally ordered sequence of transition occurrences and message send-
ing and receiving (that is, an execution trace), let #[t], #send(m) and #recv(m, eI) denote
the position of the corresponding occurrence in the ordering. The execution trace of an asyn-
chronous composite component must obey the following rules (defining a partial order):

1. (causality) #send(m) < #recv(m, eI) for every message m = (eO, p, EI) appearing in
the execution trace and for every eI ∈ EI .

2. (causality) #recv(mI , eI) < #send(mO) for every transition occurrence [t] =
(mI , t,MO) appearing in the trace wheremO ∈ MO .

3. (message order) If #send(m) < #send(m′) such that src(m) = src(m′), then
recv(m, eI) < #recv(m′, e′I) for every eI and e′I belonging to the same component =⃝k

(eI ∈ Ik and e′I ∈ Ik) and assigned to message queues with the same priority.

44

3.3. GCL and the formal semantics of its composition modes

4. (message order) For every transition occurrence [t] = (mI , t,MO) and for each 1 ≤ i, j ≤
|MO| if i < j then #send(MO[i]) < #send(MO[j]).

Furthermore, let τ([t]), τ(send(m)) and τ(recv(m, eI)) denote the timestamp of the corre-
sponding occurrence according to a common global clock. We require that:

5. (direction of time) If #occi < #occj then τ(occi) ≤ τ(occj) and if τ(occi) < τ(occj) then
#occi < #occj .

6. (periodic ticks) For each clock ctii , there is an infinite number of messages m =
(ctii ,⊥, {ec}) such that τ(send(m)) = n · ti for all n > 0. �

Discussion The first two rules enforce causality: an occurrence cannot happen before another oc-
currence that caused it to happen. Rule 3) is a constraint on the implementation of asynchronous
systems of the GCL: the communication is demanded to be reliable not only in terms of losing mes-
sages (implicitly forbidden by Rule 1), but also in terms of the order of messages. Rule 4, on the other
hand, describes the natural mapping between output event sequences and the generated message se-
quences. These rules are satisfied when assuming reliable and order preserving message passing in
the modeled communication; nevertheless, unreliable communication can be explicitly modeled us-
ing additional components (e.g., unreliable channels, see Section 3.6) or as part of the behavior of the
communication-related components.

Regarding time, Rule 5 specifies that timestamps are assigned in a monotonic way (but not strictly,
i.e., we can force an order on two occurrences with the same timestamp). Finally, Rule 6 defines that
clocks emit ticks every ti time units starting from a designated 0 point of time. Note that (1) whenever
the timestamp of a transition occurrence [ti] differs from the previous transition occurrence [tj] of
the same component, any internal clock variables are assumed to be increased with the same ∆t =
τ([ti])−τ([tj]) as described in Section 3.3.3 and (2) tick emit messages in a fixed time, but consuming
the message can occur anytime later in accordance with the lack of guarantees for execution time and
frequency of asynchronous components.

3.3.9 Scheduled asynchronous composite component

The syntactic definition of a scheduled asynchronous composite component differs from asyn-
chronous composite components only in the definition of an additional execution sequence of con-
stituent components.

Definition 3.17. A scheduled asynchronous composite component is a tuple ‘s’⃝ =
(C, X, I,O,⇌):

• C = { =⃝1, . . . , =⃝K} is the set of asynchronous components constituting the composite
component, each component being =⃝k = (Sk, s

0
k, Ik, Ok,Dk, Tk).

• X ∈ C∗ is a finite ordered sequence (with potential repetitions) of asynchronous compo-
nents called the execution sequence specifying the execution order of components.

• I ⊆ Î is the set of exported input events, where Î =
⋃K

k=1 Ik.
• O ⊆ Ô is the set of exported output events, where Ô =

⋃K
k=1Ok.

• ⇌ ⊆ Ô×Î is the set of channels that connects inputs and outputs with no restriction apart
from parameter compatibility. The set of inputs connected to an output e is denoted by
⇌(e) = {e′ | (e, e′) ∈ ⇌}. We demand that for each e ∈ Î and e′ ∈ ⇌(e),D(e) = D(e′).
�

45

3. Mixed-semantic composition and verification of reactive components

Semantics The scheduled asynchronous composite component is the restricted variant of the asyn-
chronous composite component: the execution sequence restricts the valid set of execution traces as
follows.

Definition 3.18. Let Et = R∗ denote the valid execution traces of scheduled asynchronous
composite components projected to a sequence of transition occurrences, where R =
|t′1|, . . . , |t′n|, n = |X|) denotes the ordered sequence of transition occurrences (or their ab-
sence if no transition is triggered) conforming to the execution sequence of the contained asyn-
chronous composite components: t′k ∈ Tk ∪ ⊥. �

Discussion The scheduled asynchronous composite component can be considered as the restriction
of asynchronous composite components using the characteristics of cascade composite components
as the defined execution sequence limits the possible execution orders of the constituent components.
From another perspective, it can also be regarded as the extension of cascade composite components
by introducing event sequences and messages in place of the event vectors. Accordingly, this com-
ponent can be used in cases where the execution order of the asynchronous components is known
(can be guaranteed) and one by one message processing is required. As an added value, these features
can greatly reduce the potentially large state space of asynchronous components, enabling formal
verification even when it would not be feasible with asynchronous composite components.

Note that as the execution sequence limits the execution of constituent components, scheduled
asynchronous composite components may be composed of only asynchronous adapters or other
scheduled asynchronous composite components (valid constituent components).

3.4 Model transformations for formal verification

The role of model transformations that map integrated state-based (statechart) models into analysis
models is twofold. First, they allow for the formal verification of these functional models with re-
spect to formalized properties using model checkers, i.e., they integrate verification back-ends to the
framework. In addition, they implicitly give denotational semantics to the modeling languages of the
framework bymapping the structures of the the statechart language (GSL, see Section 3.2) and compo-
sition language (GCL, see Section 3.3) into low-level analysis constructs with well-defined semantics.
Recall that Section 3.3 defined the semantics of GCL on the basis of abstract behavioral contracts with
respect to synchronous and asynchronous components as composite component semantics build on
these definitions. Accordingly, these model transformations adopt the GSL language, considering its
semantics with the supported semantic variation points, to the formal behavioral contracts of the
framework.

The framework currently features four fundamentally different model transformations that map
compositemodels (including the atomic statechartmodels) into different analysis languages processed
by different model checkers. This multitude of model transformations gives flexibility to the frame-
work as the integrated back-ends can complement each other and support different types of input
models, e.g., models with different characteristics, such as timed models, models with many inputs or
parallel behavior, as well as different verifiable properties, such as CTL* [EH86], or its subsets, LTL
or CTL. The currently supported model transformations with an overview of their characteristics are
as follows.

46

3.4. Model transformations for formal verification

• DU (direct-UPPAAL) models are derived by directly mapping composite models [Gra16] into
the timed automata formalism of the UPPAAL model checker1 [Beh+06]. The resulting model
forms a network of automata, where atomic components (modeled as separate automata) com-
municate via shared variables and synchronization constructs (channels) supported by the lan-
guage. System execution is conducted by auxiliary scheduler automata, controlling the execu-
tion of instantiated components.

• The DX (direct-XSTS) transformation directly maps composite models into the EXtended
Symbolic Transition System (XSTS) [Mon20] [j5] formalism, supported by the Theta model
checker2 [Tót+17]. XSTS, as presented in Section 2.4, is an analysis language with low-level
constructs that serves as an intermediate representation for reactive behavior in the frame-
work, enabling the low-effort integration of different model checker back-ends.

• XU (XSTS-UPPAAL) models are derived by mapping composite models into an XSTS model
in the same way as in the DX transformation, which is then mapped into the timed automata
formalism of UPPAAL. In contrast to DU models, which are based on control locations and re-
semble the structure of statecharts, these models can be considered as control flow automata
(CFA) [LNN] where locations are used to describe the logical structure of transitions (contained
actions) and do not hold explicit information about the state of the system.

• The XP (XSTS-Promela) transformation, similarly to XU, builds on and extends the results of
the DX transformation, which is then mapped into the Promela (process algebra) language of
the Spin model checker3 [Hol11; Hol05] . Contrary to XU, the structure of the resulting models
is analogous to that of the source XSTS models as Promela features low-level modeling struc-
tures (resembling the elements of imperative programming languages, e.g., C) with semantics
close to that of the elements of XSTS. As a special feature, the XP transformation supports
two different approaches to handle message queues of asynchronous adapters, namely using
the native asynchronous channel constructs of Promela (XP-N), or using arrays (XP-A) [j5].

In the following, the section details the DX model transformation, which has a central role in the
framework due to its reusability in the other model transformations and thus, the integration of model
checker back-ends. As for the other model transformations, the transformation rules mapping GSL
and GCL models into UPPAAL automata can be found in [Gra16], whereas the XP transformation is
detailed in [j5].

The DX transformation comprises two major parts, namely mapping atomic components (GSL
statecharts) and the constructs of the composition (GCLmodel elements) into XSTS,which are covered
in Sections 3.4.1 and 3.4.2, respectively, in the context of the spacecraft component excerpt presented
in Figures 2.4 and 2.7.

3.4.1 Mapping statecharts into XSTS

Mapping GSL statecharts (whose informal semantics is presented in Section 2.2 with extended seman-
tic variations points introduced in Section 3.2) into XSTS models comprises six major parts, namely,
mapping (1) variable and timeout declarations, (2) events contained by ports, (3) control structures
(regions and states) and (4) transitions, in addition to (5) defining model initialization and (6) the
behavior of its environment.

1http://www.uppaal.org/
2http://theta.inf.mit.bme.hu/
3https://spinroot.com/

47

http://www.uppaal.org/
http://theta.inf.mit.bme.hu/
https://spinroot.com/

3. Mixed-semantic composition and verification of reactive components

� �
// Original record types

record CompositeRecord {

// Record array type

recordArrayField : SimpleRecord[8]

}

record SimpleRecord {

integerField : integer,

booleanField : boolean

}

// Corresponding "unrolled" record

record UnrolledCompositeRecord {

// Arrays of the contained fields

integerFields : integer[8],

booleanFields : boolean[8]

}� �
Figure 3.8: Unrolling of composite record types.

Variable and timeout declarations GSL and XSTS support the same primitive variable types
(boolean, integer and double), as well as custom (enum) types (see Line 1 in Figure 2.7) in addition
to array structures. In such cases, the mapping of the variables is trivial: for a GSL variable, an XSTS
variable is created with the corresponding type (see Line 8 in Figure 2.7). In addition, GSL supports
the definition of records (structures of encapsulated data) that have to be “unrolled” (“separation” of
the contained fields) potentially in a hierarchical way (record fields), i.e., a (potentially one-element)
sequence of variables is created for each contained field. Note that the definition of recursive data
structures (e.g., linked lists) is not supported. In addition, the unrolling can also handle fields with a
record array type (see Figure 3.8): the array of a record is handled as the record of the arrays of the
contained fields in the emergent hierarchical type structure, which can be handled during unrolling
in the aforementioned way.

Timeout declarations are mapped into clock variables (see Line 9) to indicate that they measure
time and have to be handled differently during verification.

Events Each event (input and output) of each port is mapped into a boolean variable (see Line 4) that
stores whether the corresponding event is present (true) or not (false). The parameter declarations of
events are mapped in the same way as variable declarations (see Line 5).

Control structures Each region is mapped into (1) a custom type with an inactive literal (repre-
senting the inactivity of the corresponding state), and additional literals representing the contained
states (see Lines 2-3) and (2) a variable with a ctrl annotation and as type, the corresponding custom
type (see Lines 6-7). In addition, if the region has history, the custom type is extended with a literal
(history literal) for each state, representing that the last active state in the region before deactivation
was the corresponding state.

Transitions During the mapping of transitions, (1) every transition in the statechart is mapped into
a sequence of statements, which are (2) composed according to the control structure hierarchy and the
selected semantic variations (see Section 3.2) to model a single execution cycle (step) of the statechart
(see Phases 1-4 of the statechart semantics presented in Section 2.2). The emergent structure serves
as the transition function of the state machine captured in the form of a statechart using GSL.

48

3.4. Model transformations for formal verification

The (potentially composite) trigger of a transition is mapped into (the combination of) references
to the corresponding boolean variables (event references), and its guard expression (if any) is di-
rectly mapped into a boolean expression. The conjunction of the two parts, along with a reference
to the source of the transition (i.e., to check whether the corresponding variable is set to the literal
corresponding to the source state), is wrapped in an assume statement (see e.g., Lines 25 and 34) in
accordance with Phase 1 of the statechart semantics in Section 2.2 (transition enabledness).

The effects of the transition (Part 2 of transition firing defined in Phase 3) are mapped directly into
XSTS statements in accordance with Table 3.10 (see Line 39) with the exception of function calls; as
XSTS does not (yet) support functions, function calls are inlined and mapped accordingly.

With the trigger, guard and effects being mapped, the corresponding sequence is extended with
the handling of state configuration changes, including regions, states (also considering history) and
the corresponding entry and exit events (Phases 2-4 in Section 2.2). The mapping distinguishes simple
transitions where both the source and target are stable states, and complex transitions, consisting of a
sequence of transition elements connected by merge, join, fork and choice states.

Simple transitions In general, GSL and thus, the mapping follows the operational semantics of
UML/SysML in terms of handling state configuration changes. Accordingly, the state configuration
changes defined in Phase 3 of Section 2.2 are captured as follows.

• Exiting from states is mapped into an assign action that sets the variable corresponding to the
parent region to contain the inactive literal or the corresponding history literal in case the region
has history. Exit actions are also considered, procuring the creation of actions as described in
Table 3.10.

• Entering to states is mapped into an assign action that sets the variable corresponding to the
region to contain the corresponding state literal (entry actions are also handled according to
Table 3.10). The new state configuration (considering history) is identified according to the
rules defined by Phase 4 in Section 2.2.

The statements corresponding to exiting from states are inserted before, while the ones corresponding
to state entries are inserted after the statements corresponding to the effects of the transition (in
accordance with Phase 3 in Section 2.2).

Complex transitions In the case of complex transitions, join and merge, as well as fork and choice
states are handled.

Table 3.10: Mapping of GSL statements into XSTS statements.

GSL statement XSTS statement
Assignment Assignment
Local variable Local variable
Event raise Assignment (set event boolean variable to true)

Block Sequence
If-else If-else
Switch If-else
Choice Choice
For loop For loop

Function call Body of the function (inline)

49

3. Mixed-semantic composition and verification of reactive components

• Join states are mapped into parallel statements that contain the statements corresponding to
the incoming transitions. The statements corresponding to outgoing transition of the join state
are appended to the created parallel statement.

• Merge states are mapped into choice statements that contain the statements corresponding to
the incoming transitions. The statements corresponding to outgoing transition of the merge
state are appended to the created choice statement.

• Fork states are also mapped into parallel statements that contain the statements corresponding
to the outgoing transitions. Note that, contrary to join states, the created parallel statement is
inserted after the effect of the incoming transition (and does not contain it).

• Choice states are mapped into choice statements that contain the statements corresponding to
the outgoing transitions. Similarly to fork states, the created statement is inserted after the
effect of the incoming transition.

Transition composition according to SVP-* The semantic variation points (SVP-*) of GSL are
considered when the created statements corresponding to the transitions of the statecharts are com-
posed according to the rules of Phase 2 in Section 2.2 as follows:

• SVP-2: conflict resolution between parent and child regions of hierarchical states In
case top-down conflict resolution is selected, the created statements corresponding to the tran-
sitions are composed into a sequence of if-else statements starting from the topmost region(s)
and continuing with the nested ones, hierarchy level by hierarchy level (see the details of com-
position for a single hierarchy level in the following points). The conditions of the statements’
assume actions (corresponding to the trigger and guard conditions of the particular region) are
used as conditions of the if-else statements. In turn, in the case of bottom-up conflict resolution,
the composition of if-else statements starts from the lowermost regions. However, a composite
state may have multiple (orthogonal) child regions, each of which has a higher priority over
the parent regions. Thus, in this case, a local boolean variable is introduced, which is set to
true if any transition in the composite state’s child regions fires; this variable is referenced in a
negated form and connected in conjunction to the if condition corresponding to the parent’s
region, i.e., the transitions of the (parent) region may fire only if none of the nested regions’
transition fired.

• SVP-4: execution of orthogonal regions As discussed above, the statements corresponding
to the regions of transitions are composed hierarchy level by hierarchy level. In case a state has
multiple child regions, the statements corresponding to the orthogonal regions’ transitions are
wrapped into either a sequence, unordered or parallel composite statement, corresponding to the
sequential, unordered or parallel (see the par element at Line 24) execution of the orthogonal
regions.

• SVP-3: priority for transitions leaving the same state The statements corresponding to a
certain regions’ transitions are composed according to this semantic variation point. In case
priorities are defined, then a sequence of if-else statements (with the corresponding assume
statements’ conditions used as if conditions) are created in accordance with the transition pri-
orities (see Lines 25-31). In case priorities are absent, then the corresponding statements are
wrapped into a choice statement (see Lines 33-45).

• SVP-1: evaluation of guard expressionsAfter the composition of the statements correspond-
ing to the transitions, the “place” of evaluating guard expressions can be considered. In case
on-the-fly evaluation is selected, then the emergent trans structure needs no modification (as

50

3.4. Model transformations for formal verification

depicted in Figure 2.7). In case, before execution is selected, then the conditions of the corre-
sponding if and assume statements are extracted into local boolean variables declared at the
beginning of the trans structure, which are referenced from the original condition.

Model initialization The initialization of the model comprises two steps: (1) every variable is set to
its initial value (default value of its type or initial expression of the variable declaration) and (2) enter-
ing the statechart, i.e., setting the variables corresponding to regions based on the initial states of the
statechart while executing the corresponding entry actions of entered states. The created statement
is used as the init transition of the XSTS model (see Lines 48-50).

Environment description By default, the mapping considers a fully nondeterministic environ-
ment, i.e., every boolean variable corresponding to an input event of the statechart is havoced, and in
case the variable is true (if statement), the variables corresponding to the parameters of the event are
also havoced (note that Lines 51-61 depict the handling of message queues of an asynchronous state-
chart, and not the input events directly). In addition, the variables corresponding to outputs events
are set to false (as raised event values are valid for a single execution cycle) while setting the variables
corresponding to its parameters to their default values in case the event is transient (thus, the values
of persistent event parameters are retained). The created statement is used as the env transition of the
XSTS model. Note that the framework supports the explicit definition of the environment as a GSL
or GCL model; in this case, the env transition captures the behavior of this model.

In addition, the elapse of time is modeled by a special delay statement targeting the clk variables.
Note that every clock measures time at the same rate.

3.4.2 Mapping composition constructs into XSTS

The mapping of composite components is conducted in a bottom-up way, starting from statecharts
(synchronous components). According to the composition rules (see Section 3.3), first synchronous
and cascade composite components are handled, which can be adapted to the asynchronous domain
using asynchronous adapters, and potentially composed by scheduled asynchronous and asynchronous
composite components.

Note that the model initialization and the environment description of these component models is
analogous to that of statecharts, the difference is that nowmultiple components have to be considered
and the events considered input and output from the system’s perspective have to be identified based
on port bindings.

Synchronous composite components In essence, the synchronous-reactive compositionmode in
XSTS can be modeled using an orthogonal statement, containing the corresponding trans transitions
of the constituent synchronous components as operands. This way, it is ensured that signals produced
by a component are sampled by other components in the next execution cycle only (see Definition 3.6).
Regarding channels, the connection of outputs events to input events of the constituent components
is modeled by introducing assign statements that (1) set the corresponding input event variable to
true and (2) assign the parameter values to the corresponding input parameter variables. Recall that
an orthogonal statement ensures the independent execution of the operands (corresponding to the
execution of constituent components), i.e., event transmission does not occur during the execution of
the orthogonal statement, only at the beginning of the next execution (see Section 2.4).

51

3. Mixed-semantic composition and verification of reactive components

� �
var eventQueue : [integer] -> integer // Storing event ids

var size : integer = 0; // Size variable

// Append

eventQueue[size] := eventId;

size := size + 1;

// Peek

var peekVariable : integer = eventQueue[0];

... // Referencing peekVariable

// Pop

eventQueue[0] := eventQueue[1]; ...

eventQueue[size - 1] := 0; // Modeling an "empty cell"

size := size - 1;� �
Figure 3.9: Append, peek and pop message queue functions modeled in XSTS.

Cascade composite components The mapping of cascade composite components is similar to
that of synchronous composite components, but as a difference, (1) a sequence is used instead of an
orthogonal statement that contains as operands the trans transition of every component according
to the specified execution sequence (note that it can reference the same particular component mul-
tiple times, see Definition 3.7) and (2) the trans transition is prepended with assign statements that
reset the input event variables and in the case of transient events, also the input parameter variables.
This way, in-cycle communication between components in a single execution cycle is ensured (see
Definition 3.8).

Asynchronous adapter As their most important feature, asynchronous adapters introduce mes-
sage queues to support the storage and serialization (one by one processing) of input event instances.
In XSTS, a message queue is modeled as a set of arrays, depending on whether the queue has to store
only non-parameterized events (eventQueue array, see Line 12) or also parameter values (one or more
argumentQueue array for every parameter type to allow for storing each parameter value of each
event – the number is determined by the maximum number of parameters of the same type for a sin-
gle event; see Line 13) in addition to integer variables storing the number of contained elements (size,
see Line 11). As a primary idea, every event type is assigned an integer identifier that is appended
to the eventQueue array, modeling the append of the event instance to the corresponding message
queue. In case the event is parameterized, the parameter value is appended to the corresponding ar-
gumentQueue array. Figure 3.9 summarizes how the supported append, peek and pop message queue
functions are mapped into XSTS array handling constructs.

The adaptation of the referenced synchronous component is carried out in four steps.
1. An if statement is created that checks if any of the eventQueue arrays corresponding to the

message queues is nonempty (0 < size condition, see Line 15) and if so, it retrieves the stored
event identifier of the highest priority nonempty queue (peek and pop, see Lines 16-17) and
based on it, sets the corresponding input event variable to true (Line 19) and potentially, also
loads the parameter values from the argumentQueues to the corresponding input parameter
variables (peek and pop, Lines 20-21).

2. If the event initiates an execution (trigger predicate, see Definition 3.10), then the adapted com-
ponent’s trans function is wrapped into the created if statement; the following steps (Phases 3-
4) are conducted only in this case.

3. The resulting transition is appended with an unordered sequence (see the discussion in regard
to event permutations in Section 3.3.7) of if statements for every output event that checks if

52

3.5. Component integration and verification workflow

� �
if (outEvent) { // OutEvent is raised

if (size >= CAPACITY) {

// Pop

eventQueue[0] := eventQueue[1]; ...

eventQueue[size - 1] := 0;

size := size - 1;

}

// Appending to the connected message queue

eventQueue[size] := outEventId;

size := size + 1;

}� �

� �
if (outEvent && size < CAPACITY) {

// Appending only if the connected message queue

is not full

eventQueue[size] := outEventId;

size := size + 1;

}� �
Figure 3.10: XSTS construct for handling message transmission to message queues with the discard
oldest and discard incoming message discard strategy.

the particular event is raised (corresponding event variable is set to true) and if so, appends
the corresponding event identifier and parameter values to the eventQueue and argumentQueue
arrays corresponding to every connected message queue (if any). Message queues support two
discard strategies if they are full (see Section 3.3.1): discard the incoming message or the oldest
one (at index 0) stored in the message queue – these strategies are also modeled in the second
step with if statements and a potential pop function (see Figure 3.10).

4. Finally, the input and output event variables (and potentially the corresponding parameter vari-
ables in the case of transient events) are reset (i.e., the event vector is cleared) at the end (Line 46)
and beginning (Line 23) of the trans transition, respectively.

The clocks of asynchronous adapters are mapped into clock variables, which are handled at the
beginning of the env transition: if the value of the clock variable is greater than or equal to the
specified rate, then it is reset and the eventQueue array corresponding to themessage queue for storage
is appended with a control event instance (i.e., its identifier).

Scheduled asynchronous composite component Scheduled asynchronous composite compo-
nents simply wrap the trans transitions corresponding to the constituent asynchronous components
into a sequence statement according to the specified execution sequence (see Definition 3.17).

Asynchronous composite component Asynchronous composite components wrap the trans
transitions corresponding to the constituent asynchronous components into a choice statement. This
way, an execution cycle corresponds to the execution of a single constituent asynchronous component
(scheduled asynchronous or asynchronous adapter). As asynchronous components do not share inter-
nal states (e.g., shared variables), this mapping models every possible behavior of the asynchronous
composite component apart from the potential interleaving of messages sent by components running
in parallel (see Section 3.3.8.2). Thus, at the beginning of trans, the arrays corresponding to the com-
ponents’ message queues are saved to store the original order of messages, which are then used to
create every possible permutation of messages (original and newly sent) at the end of trans. Note
that this step may greatly increase the state space of the model.

3.5 Component integration and verification workflow

This section overviews the general workflow according to which components can be integrated and
verified in the Gamma framework, incorporating the modeling languages and formal verification

53

3. Mixed-semantic composition and verification of reactive components

functionalities presented in previous sections. This workflow also serves as a foundation for the in-
tegration of high-level state-based components4 and their formal verification, which can be reused
and extended to support additional design and verification functionalities, e.g., test generation as
presented in Chapter 4 and contract-based verification as presented in Chapter 5. We introduce the
workflow in the context of the simplified elevator system presented in Section 2.3. The workflow is
built on top of the model transformation chain depicted in Figure 3.1. In the following, we overview
the used modeling languages.

• TheGamma Statechart Language (GSL) is a UML/SysML-based statechart language support-
ing different semantic variants of statecharts (presented in Section 3.2).

• TheGamma Composition Language (GCL) is a composition language for the formal hierar-
chical composition of state-based components according to multiple execution and interaction
semantics (presented in Section 3.3).

• The Gamma Genmodel Language (GGL) is a configuration language for configuring model
transformations in the framework.

• The Gamma Property Language (GPL) is a property language supporting the definition of
CTL* [EH86] properties and thus, the formal specification of requirements regarding (compos-
ite) component behavior.

• The Gamma Trace Language (GTL) is a high-level description language for execution traces
of (composite) components with synchronous and asynchronous communication (to be pre-
sented in detail in Section 4.1).

The following sections outline the consecutive steps of the general component integration and
verificationworkflow in the Gamma framework. As the first (optional) step in theworkflow, statechart
models defined in integrated modeling tools (front-ends) are imported into Gamma, which can be
hierarchically integrated using well-defined composition modes (see Section 3.5.1). The emergent
composite model is processed and transformed into the input formalisms of integrated model checker
back-ends for formal verification (Section 3.5.2). The back-ends provide witnesses (diagnostic traces)
based on specified properties, which are back-annotated into abstract execution traces (Section 3.5.3)

3.5.1 Creating functional component and system designs

Optionally, the import of an external component model, i.e., a statechart created in an external model-
ing tool (currently Yakindu, MagicDraw and SCXML are supported), is realized by executing a model
transformation that maps this model into a GSL statechart (see Section 3.2 and [e12], as well as [Gra16]
for the integration of Yakindu). Alternatively or complementarily, statechart models can be defined
directly in GSL. GSL serves as a common representation language for component statecharts with dif-
ferent operational semantics configurable by annotations (semantic variation points, see Section 3.2).
Validation also takes place on Gamma statecharts by evaluating well-formedness constraints.

The GSL models generated from the cabin controller and cabin door controller Yakindu models are
presented in a textual format in Figures C.1 and C.2 in the Appendix, respectively.

Next, GSL models can be hierarchically integrated according to various precise execution and
interaction semantics in GCL to create synchronous or asynchronous systems using the synchronous-
reactive, cascade, asynchronous-reactive and scheduled asynchronous-reactive composition modes (see
Section 3.3); the resulting composite models are also validated against well-formedness constraints.

The GSL models of our elevator example can be integrated in GCL to create composite models
conforming to different composition semantics as presented in Figure C.3.

4Even though, the Gamma framework currently supports statechart models as input, its modeling language family
supports the integration of other formalisms, e.g., there is ongoing work on integrating activity diagrams [Zav21].

54

3.5. Component integration and verification workflow

3.5.2 Processing composite models

Model checkers can carry out exhaustive analysis on a formal (analysis) model based on a formal
property and determine if the property holds while potentially providing a diagnostic trace (coun-
terexample or witness) as proof [CHV18]. Gamma facilitates deriving both the analysis model (see
Section 3.4) and the property using automated semantic-preserving model transformations.

In order to derive analysis models, the composite models (see Section 3.5.1) are preprocessed and
transformed into the input languages of integrated model checker back-ends (see Section 3.4). The
transformation can be configured in GGL in a textual format, e.g., the following snippet specifies that
the Elevator composite model is to be transformed into Promela (input formalism of Spin).� �

component : Elevator

language : Promela� �
Gamma facilitates the specification of CTL* properties in GPL using a textual syntax. GPL supports

referencing certain elements of the composite model, i.e., states, variables, events and event parameters,
as well as transitions annotated with an identifier. Note that whether the specified properties can
actually be checked depends on the selected model checker back-end as most model checkers support
only a subset of CTL* as an input property language.

In the elevator example, we can specify two properties for the cabin door controller component to
check the execution of the transitions between the Open and Closed and the Closed and Open states.
Note that a transition can be referred to in GPL if it is assigned an annotation specifying an identifier
(see Transition entry in Table 3.2).� �

@("Covering the transition going from state ’Open’ to ’Closed’ in the ’main’ region")

E F (var main_open__main_closed)

@("Covering the transition going from state Closed’ to ’Open’ in the ’main’ region")

E F (var main_closed__main_open)� �
Both the composite model and the properties are automatically transformed into the input lan-

guages of the selected model checker back-ends in accordance with the internal components and the
characteristics of the used composition modes. In order to reduce the state space of the model, the
transformations exploit optimization techniques based on variables that store resettable or transient
data (see Section 3.2).

The transformation of GPL properties into the property languages of model checkers is carried
out based on the traceability links defined in the composite model transformation, as in this context,
only the identifiers of the target model elements are required.

3.5.3 Formal verification and back-annotation

As a key feature, Gamma offers multiple model checker back-ends to complement each other and
facilitate efficient verification of different models and properties. Currently, UPPAAL, Theta and Spin
are integrated as back-ends, but the integration of additional model checkers is allowed by the frame-
work, e.g., by building on the DX transformation (see Section 3.4).

Gamma supports the tuning of the model checking process in GGL, e.g., the specification of search
strategies, such as breadth-first search (BFS) or depth-first search (DFS), or the selection of abstraction
techniques. The framework also provides generally well-functioning default settings for the back-
ends. Model checking itself is viewed as a black-box process with the generated analysis models and
properties as inputs and diagnostic traces as outputs. Diagnostic traces specify the steps (active states
and output events of the model in response to input events coming from the environment) that lead

55

3. Mixed-semantic composition and verification of reactive components

to the satisfaction of a certain property in case the property is satisfiable. Model checkers can also
prove that certain properties are impossible to satisfy, which can be essential information during
verification. The diagnostic traces are automatically back-annotated and abstract execution traces are
created in GTL (see Section 4.1) in a textual format5 based on the traceability links defined in the
corresponding composite model transformation.

As an example, the snippets in Figures 4.2 and 4.3 describe GTL execution traces derived on the
basis of the E F (var main open main closed) and E F (var main closed main open)GPL
properties defined in the previous section.

3.6 Case study – Orion protocol

This section demonstrates a formal analysis approach for communication protocols using the Gamma
framework. This approach supports (1) the construction of protocol participant models, as well as
channel models with different failure modes, (2) the composition of protocol participant and channel
models to form composite system models and (3) formal verification on the system models with auto-
matic back-annotation of the results. The process is presented in the context of Orion, a master-slave
communication protocol under design targeted to be used in the railway industry.6

In this case study, we demonstrate the practical usability of the Gamma framework in the con-
text of an industrial problem. The case study highlights the differences between composition modes
to support different potential execution platforms, and provides measurement results regarding the
verification of the robustness properties of the modeled protocol.

3.6.1 Modeling of the communication protocol

This section presents themodeling process of the proposed analysis approach in the context of Orion,
including the modeling of protocol participants (Section 3.6.1.1), channel models (Section 3.6.1.2) and
the integrated system models (Section 3.6.1.3).

3.6.1.1 Protocol participants

Orion is a master-slave communication protocol where the establishment of a connection between
two participants is always initiated by a master and the connection request is either accepted or
rejected by a slave. Both themaster and the slave participants were designed on the basis of statecharts
in MagicDraw and have the same events (commands and messages).

The initial state of themaster statechart (depicted on the left of Figure 3.11) is Closed. When initi-
ating a connection with the slave, it goes to state Connecting and waits for a response. Upon a positive
response, it goes to state Connected whereas upon a negative one or after a certain timeout (TConn
sec), it goes to state Closed. Communication can take place in state Connected. The slave statechart
(depicted on the right of Figure 3.11) is similar to the master.

The models can be automatically transformed into GSL using the model transformers of Gamma,
and validated based on statechart-related well-formedness rules [Gra16]. According to the model val-
idators of the framework, the presented statechart models are well-formed.

5The framework also supports the visualization of GTL execution traces using PlantUML.
6Every Gamma model presented in this case study can be found at https://github.com/ftsrg/gamma/tree/v2.9.0/

examples/hu.bme.mit.gamma.industrial.protocol.casestudy.

56

https://github.com/ftsrg/gamma/tree/v2.9.0/examples/hu.bme.mit.gamma.industrial.protocol.casestudy
https://github.com/ftsrg/gamma/tree/v2.9.0/examples/hu.bme.mit.gamma.industrial.protocol.casestudy

3.6. Case study – Orion protocol

Figure 3.11: Statechart models describing the behavior of the master and slave components.

3.6.1.2 Channel models

During the modeling of communication between protocol participants, several failure modes of event
transmission can be considered [PF20]. In this case study, we defined five channel models in Yakindu:
one ideal channel, three models describing loss of events failure modes (bursty message losing channel,
arbitrary message losing channel and timed message losing channel) and one model related to delay of
events failure mode (delay channel). They are introduced in [e14] in detail, here we present only the
simplified version of the bursty message losing channel model.

Figure 3.12 depicts an excerpt of the bursty message losing channel model, which models a channel
that can lose a given amount (LOST_MESSAGE_MAX) of subsequent incoming events. The model has
two states, Operating (initial state) and MessageLosing. If the model receives a certain event in state
Operating, it either forwards the event to its output, or (if there has been no failure before) enters
stateMessageLosing without forwarding it. In stateMessageLosing, the specified amount of events are
absorbed before going back to state Operating. Note the nondeterministic nature of this model: the
loss of subsequent events can start upon any incoming event. Moreover, this model excerpt includes
behavior only for a single event (OrionConnReq); nonetheless, additional events in the complete model
are handled analogously.

3.6.1.3 System models

Weanalyzed the behavior of theOrion protocol considering different channel failuremodes and differ-
ent compositionmodes of the participants. Therefore, for each channel model we defined synchronous,
cascade and asynchronous composite Gamma models, which differ only in the composition mode; the
components and their connections are the same. We focused on the time-driven behavior and the
events of the Orion protocol in the master and slave components.

Figure 3.12: Excerpt from the statechart model of the bursty message losing channel.

57

3. Mixed-semantic composition and verification of reactive components

� �
[sync / cascade / async] OrionSystem [] {

// Declaration of components

component master : OrionMaster

component m2S : Channel

component slave : OrionSlave

component s2M : Channel

// Connecting component ports via channels

channel [master.SendOrion] -o)- [m2S.Input]

channel [m2S.Output] -o)- [slave.ReceiveOrion]

channel [slave.SendOrion] -o)- [s2M.Input]

channel [s2M.Output] -o)- [master.ReceiveOrion]

}� �
Figure 3.13: GCL model variants of protocol participants and channel models.

Figure 3.13 describes the GCL model the variations of which were used with different channel
models and composition modes. It consists of a master component, a slave component, and two chan-
nel components that connect the output and input ports of the protocol participants. The concrete
models differ only in the first keyword of the model that can be either sync, cascade or async. All in all,
fifteen composite models were defined, five (as there are five channel models) for each composition
mode. In the asynchronous composite models, message queues with capacity two were used.

3.6.2 Analysis of the communication protocol

We analyzed liveness properties of the system models, that is, the reachability of system states with
different channel models using the integrated UPPAALmodel checker via the DU transformation (see
Section 3.4). The analyzed properties (formalized in CTL [CE81]) are the following:
P1 The system can reach a state in which both the master and the slave are in state connected: EF

master.Connected && slave.Connected.
P2 The system must eventually reach a state in which both the master and the slave are in state

connected: AF master.Connected && slave.Connected.
P1 describes the reachability of the desired operational state from the initial state in the system

and means that the master and slave models do not contain fundamental design faults that hinder
the correct operation of the protocol. P2, as a strong robustness property, means that the protocol
(examined from the initial state) is always able to recover despite the channel’s specified failure mode.

According to the verification executed in Gamma, P1 holds in the case of every systemmodel. How-
ever, the analysis results regarding P2 revealed important constraints on the execution frequency of
components in each composition mode: since the protocols have (real-time) timeouts, the satisfaction
of the property depends on the execution frequency of the system components in the case of each
channel model and each compositionmode. Using themodel checking and automatic back-annotation
functionalities of the framework, we analyzed the necessary scheduling order and frequency of com-
ponents with several parameters of the channel models. The property held in every system model
with adequate execution characteristics. The detailed constraints on the execution characteristics to
satisfy the property can be found in [e14].

In order to provide additional insight into the verification capability of Gamma, we measured the
time (see Table 3.11) and the memory consumption (see Table 3.12) of verifying P2 with respect to
the defined system models. In the cases of the bursty and arbitrary message losing channel models the
value of the LOST_MESSAGE_MAX parameter was 5. In the case of the timed message losing channel
the values of the S and E parameters were 4 and 9, and for delay channel the value of the T parameter

58

3.6. Case study – Orion protocol

Table 3.11: Average time of verifying P2 in different system models.

Channel model Synchronous (s) Cascade (s) Asynchronous (s)
Ideal 0.01 0.01 0.4

Bursty message losing 0.4 0.3 1.0
Arbitrary message losing 2.0 1.7 140.4
Timed message losing 0.02 0.02 0.1

Delay 4.3 4.1 7.3

was 1. The execution frequencies were set in accordance with the constraints mentioned above. We
ran and averaged 10 measurements for each system model.

3.6.3 Results

The measurement results show that both verification time and memory consumption in the case of
cascade models is slightly less than in the case of synchronous models. This is the result of the model
transformation implementation, as in synchronous models, each event is mapped to two variables,
whereas in cascade models, a single variable is used. Also, in the case of synchronous models, event
transmission between the master and slave components requires multiple cycles contrary to cascade
components, which can also result in higher memory consumption and verification time.

As expected, asynchronous models are significantly harder to verify than synchronous and cas-
cademodels due to the additionalmessage queue structures and scheduler components. The difference
is remarkable in the case of the arbitrary message losing channel where there is a 70-fold difference in
verification time compared to the synchronous model.

3.6.4 Conclusion

This case study demonstrated that the composition modes proposed by Gamma can indeed be used
in practice: even though the semantics introduced in Section 3.3 assumes instantaneous, reliable and
order-preserving message passing, the language is applicable to practical problems by introducing
(fault) models describing physical phenomena, e.g., the loss or delay of events.

The three applied composition modes cover diverse execution and communication modes of the
composed components, which could be used to model different execution platforms in the case study.
As Gamma supports the automatic import of models defined in integrated modeling front-ends, we
did not have to manually transform the already existing component models, which greatly reduced

Table 3.12: Average resident/virtual memory peaks during the verification of P2 in different system
models.

Channel model Synchronous (Mb) Cascade (Mb) Asynchronous (Mb)
Ideal 10/48 9/47 12/53

Bursty message losing 13/55 12/53 23/72
Arbitrary message losing 16/60 14/56 143/314
Timed message losing 11/50 11/50 12/53

Delay 76/172 61/143 100/220

59

3. Mixed-semantic composition and verification of reactive components

Table 3.13: Features of the Gamma framework and its “competitors.”✓= full support;✓–= experimental

Na
tiv
e s
tat
ech

art
s

Mi
xed

-se
ma
nti
c c
om
po
siti
on

Fo
rm
al s
em
an
tic
s

Sy
nch

ron
iza
tio
n-b
ase
d

Ev
en
t-b
ase
d

Sto
c. p

roc
ess

alg
ebr
a b
ase
d

Fo
rm
al v

eri
fic
ati
on

Mo
del
-ba
sed

tes
t g
en
era
tio
n

Co
de
gen

era
tio
n

Sim
ula
tio
n

Gamma ✓ ✓ ✓ ✓ ✓ ✓ ✓

SystemC ME ✓ ✓ ✓ ✓ ✓

Æmilia ✓ ✓ ✓ ✓

CHESS ✓ ✓ ✓ ✓ ✓

Ptolemy II ✓ ✓ ✓ ✓ ✓– ✓– ✓

BIP ✓ ✓ ✓ ✓ ✓

UML-RT ✓ ✓– ✓ ✓ ✓ ✓ ✓ ✓

AutoFOCUS 3 ✓ ✓– ✓ ✓ ✓ ✓ ✓ ✓

xtUML ✓ ✓ ✓ ✓

COMDES-II ✓ ✓ ✓ ✓ ✓

ProCom ✓ ✓ ✓ ✓ ✓

the effort required for the approach. Also, the measurement results show that the formal verification
capabilities of the framework are applicable in practice.

Moreover, the case study revealed the need for potential platform-specific constraints in the case of
timed component models where the execution frequencies of the component(s) under verification can
be specified. Thus, we have extended the verification capability of the framework with this feature.

3.7 Related work

As related work, we cover in detail languages and tools that provide (1) a composition language
for component-based design with (2) precise formal semantics and (3) formal verification support for
behavioral properties. There are similar approaches to ours, such as [Szt+14; Sim+13], where a general
CPS modeling language was developed to semantically integrate the models coming from various
CPS design tools. The introduced modeling language was formalized, however, the tool lacks formal
verification support. The RoboChart modeling tool is introduced in [Miy+19] that uses statechart
models tailored to the robotic application domain. In RoboChart, a formal semantics helps engineers
verify the designed systems. RoboChart was omitted from the comparison as it primarily targets a
special domain. Stateflow is a commercial state-based modeling tool: authors in [Jia+18] developed
a tool based on UPPAAL to formally verify behavioral models. The commercially available Simulink
tool can generate source code from the verified Stateflow models. We omitted this solution from the
comparison due to the fact that the modeling tool is commercial. Nevertheless, Stateflowmodels could
also be represented in the Gamma Statechart Language.

Clafer [Juo+18] is a tool for modeling structure, behavior and variability of systems. Clafer has a
formal core modeling language to represent the system design and specification patterns. However,
it does not provide formal verification support. Another approach [Lug+16; AR16] uses SysML to
model the security aspects of systems and ProVerif is used to verify security properties: this approach
is omitted from the comparison due to the lack of generality.

60

3.7. Related work

Other languages and approaches, such as [HRR14; Chi+06; FGH06; Rei17; Bro97] capture the ar-
chitecture, mainly focusing on the interfaces, connectors and their relations in systems without defin-
ing the behavior of the components. In [GBC10], model-driven techniques and tools are integrated
successfully with standard-based, QoS-enabled component middleware to support the development
of safety-critical distributed systems. However, the approach lacks formal semantics.

The feature comparison of Gamma and the following tools can be found in Table 3.13: a SystemC
modeling environment (SystemCME) connected to the STATE tool, Æmilia ADL/TwoTowers, CHESS,
Ptolemy II, BIP, UML-RT, AutoFOCUS 3, xtUML, COMDES-II and ProCom.

In [Chh+15], a modeling environment is introduced that supports the graphical definition of Sys-
temC [Pan01] models. SystemC is a C++ library offering classes and macros, which provide an event-
driven simulation interface suitable for simulating concurrent processes. The basic building block of
a SystemC model is the module, which represents computational parts of the design. Modules are
composed of processes, ports, events, channels and variables. Processes, whose behavior can be de-
fined using a state machine formalism, are the main computation elements of the module; they are
concurrent and are used to describe functionality. Ports allow communication between the module
and its environment based on events declared by interfaces. Ports can be connected by channels. The
environment supports SystemC code generation from the created models. The supported part of the
SystemC language is given a formal semantics by connecting the modeling environment to the STATE
tool [Her10]. STATE maps the informal SystemC code to a formal timed automaton formalism, UP-
PAAL, thus provides formal verification capabilities. Contrary to Gamma, this modeling environment
currently does not support the hierarchical and mixed-semantic composition of modules.

Æmilia [BDC02] is an architecture description language (ADL) based on EMPAgr process alge-
bra, a compositional specification language of algebraic nature integrating process algebra theory
and stochastic processes. This language supports the modeling of component-based software sys-
tems at the software architecture level. Designers have to start the modeling process by defining the
behavior of the component types in the system and their interactions with the other components.
Stochastic aspects, e.g., component interaction time, of the software architecture targeted for func-
tional or extra-functional analysis (security and performance) have to be defined at this level. Next,
instances of component types have to be defined along with their interactions in order to enable their
communication. Based on the received composite models, integrated, functional and performance se-
mantic models can be generated automatically, which can undergo formal analysis executed by the
TwoTowers tool. The main difference between the Æmilia ADL and the languages of Gamma is that
Gamma puts the focus on discrete state-based composition instead of stochastic process algebra and
currently does not support the definition of stochastic behavior.7 Therefore, if stochastic processes
are necessary to model the system, Æmilia has a clear advantage over Gamma. However, while pro-
cess algebras generally focus on behavioral compositionality, Gamma prefers structural composition,
which can be convenient and expressive, especially if the development process requires discrete states,
mixed-semantic composition and related code generation.

CHESS [Maz+16] is an open source methodology and toolset that aims to address safety, reliabil-
ity, performance and other non-functional properties, while guaranteeing correctness of component
development and composition. The CHESS methodology relies on the CHESS Component Model,
which is built around the concept of components, containers and connectors. A component repre-
sents a purely functional unit, whereas the non-functional aspects control the infrastructure of the
component and delegated to the container and connectors. The container is a wrapper that envelopes
the component and is responsible for the realization of the non-functional properties. The connector

7However, an extension to Gamma introducing stochastic behavior is under development [c7].

61

3. Mixed-semantic composition and verification of reactive components

is responsible for the interactions between components. Non-functional attributes are specified by
annotating the interfaces of the component with non-functional properties, e.g., regarding real-time
concerns, the activation pattern (such as sporadic or cyclic) can be specified for each provided opera-
tion of the component. CHESS models can be defined in the CHESSModeling Language, which serves
as an extension of the UML, SysML and MARTE modeling languages. Contrary to Gamma, CHESS
does not focus on the mixed-semantic composition of components.

BIP [BBS06] (Behavior, Interaction, Priority) is a modeling framework supporting the formal def-
inition of heterogeneous systems. The BIP language supports the definition of hierarchical composite
systems in three layers. The lowest layer specifies the behavior of system components, atomic or com-
pound, using a variant of the Petri net formalism. The intermediate layer consists of a set of connectors
linking ports together, thus defining the interactions between transitions of components. Contrary
to Gamma, these interactions are based on synchronization. The top layer includes a set of dynamic
priority rules between interactions and can be used for the specification of scheduling policies. BIP
defines a clear operational semantics, which describes the behavior of both atomic and compound
components. The behavior of atomic components are based on a rigorous transition system model,
thus, formal verification of invariant properties and deadlock-freedom is also supported.

Ptolemy II [Eke+03] is a modeling framework supporting the definition of hierarchical compos-
ite systems with diverse component types and interaction semantics. Modeling components, called
actors in Ptolemy II, can be regarded as independent software modules. They are able to interact
with each other by sending messages through interconnected ports. Models are created by compos-
ing actors, which is supported at multiple hierarchy levels. The interactions of actors can be executed
with different semantic variations, defined by models of computation (MoC). Ptolemy II offers numer-
ous MoCs that rigorously define the interaction between actors, e.g., process network, synchronous
reactive and synchronous dataflow. The implementation of a MoC is called director. Each level of hi-
erarchy in a model must have a single director that specifies the MoC. Directors of various hierarchy
levels may have different types. Still, the composition of such heterogeneous components adheres to
a rigorous semantics, which is a very powerful facility of Ptolemy II. Nevertheless, Ptolemy II offers
only experimental formal verification capabilities [Bae+12].

The UML-RT [Sel98] is an UML profile (evolved from the ROOM language [SGW94]) used by IBM
Rational Software Architect RealTime Edition (RSA RTE) and alternatively by Papyrus RT[HDB17].
It facilitates the modular development of software systems. The language supports synchronous and
asynchronous communication, hierarchy and also provides various action languages, such as Java
or C++. The basic building block of an UML-RT model is a capsule, whose behavior can be defined
using statecharts. Additionally, UML-RT models describe connections to other capsules with the help
of structure diagrams. A capsule can contain parts, which are instances of other capsules, thus, hi-
erarchical modeling is supported. Capsules and parts communicate through ports. Source code gen-
eration from UML-RT models is also supported [HDB17]. UML-RT models can be transformed to a
rigorous state machine formalism, called CFFSM [Zur14; ZD17], which can be formally analyzed by
their model checker based on CTL expressions. Nevertheless, this tool does not fully support mixed-
semantic composition of components. Test generation is also supported in [RD12]. UML-RT models
could be integrated with other models in the Gamma framework as UML-RT components and their
composition can be expressed using the statechart language of Gamma.

In [Ara+15] a model-based tool and research platform for safety-critical embedded systems is
introduced. AutoFOCUS 3 (AF) supports the design, development and validation of safety-critical em-
bedded systems in many development phases, including architecture design, implementation, hard-
ware/software integration, and safety argumentation based on formal models. The formal semantics
of the approach is based on the FOCUS method defined in [BS12]. AF (similarly to Gamma) employs a

62

3.8. Summary and future work

multi-level transformation chain to produce formal models from high level design models. Moreover,
it has amodeling language based on the statechart formalism and the tool provides editor support, too.
As opposed to AF, our approach promotes to use a common formal representation (GSL) and integrate
the models of the different design tools: models developed in the AF tool could also serve as input for
Gamma. Consequently, Gamma could serve as an integration tool for AF models. AF provides verifi-
cation mainly for synchronously (according to weak or strong causality) composed software models
[KA17] as it is integrated with well-known symbolic model checkers, such as NuSMV/nuXmv, which
provide efficient verification capabilities for synchronous systems. Contrarily, Gamma uses UPPAAL,
Theta and Spin for model checking, which feature different algorithms (explicit-state and symbolic)
and are specialized to systems with different characteristics and use-cases.

xtUML (eXecutable and Translatable UML) [SM88] is an UML-based modeling language with a
special focus on executable semantics. State machines with an expressive action language are used to
define component behavior. BridgePoint xtUML is an xtUML design tool that supports code genera-
tion through model compilers and also provides simulation capabilities. xtUML is widely used in the
industry; however, there is no formal verification support for xtUML models.

COMDES-II (COMponent-based design of software for Distributed Embedded Systems) [KSA07]
is a design tool for layered component models where synchronous and asynchronous behavior is
explicitly separated into different layers. State machines and function block models (FBD) are used to
define behavior while an actor-based architecture modeling language is used to represent the static
aspects. The COMDES-II approach facilitates the development of real-time embedded systems by
providing rigorous design and analysis methods. Verification of COMDES-II models [Ke+08] is based
on the UPPAAL model checker.

ProCom [Bur+08] is a component model for real-time embedded systems that employs a layered
component model comprising two distinct, but related layers. At the upper layer (called ProSys) the
system is modeled as a number of active and concurrent subsystems, communicating by message
passing. The lower layer (ProSave) addresses the internal design of a subsystem that can be imple-
mented by code. ProCom has a formal semantics [Vul+09; BC11] that focuses on reactive and real-time
aspects and supports the co-existence of black-box and fully implemented system components.

3.8 Summary and future work

This chapter introduced the Gamma Statechart Composition framework, a modeling framework for
the component-based design and forma verification of reactive systems. It presented the framework’s
statechart language (GSL) featuring semantic variation points to support capturing the behaviors
of different statechart variants (operational semantics). It also formally presented the composition
language of the framework (GCL) to support the description of synchronous behavior with the
synchronous-reactive and cascade, as well as asynchronous behavior with the asynchronous-reactive
and scheduled asynchronous-reactive compositionmodes.Model transformations giving denotational
semantics to the GSL and GCL languages, as well as supporting the formal verification of integrated
statechart models by mapping them into the inputs of integrated model checker back-ends were also
presented.

The chapter also featured a case study, which demonstrated that the expressiveness and usabil-
ity of the introduced modeling languages are adequate to capture the functional behavior of real-life
component-based reactive systems. In particular, the case study also showed how the functional mod-
els can be extended to refine the ideal characteristics of message passing considered in the composi-
tion language to analyze the functional behavior of protocols in real-life scenarios. The feasibility of

63

3. Mixed-semantic composition and verification of reactive components

the framework’s formal verification capabilities, considering different composition modes, was also
demonstrated.

The contributions of this chapter were the following:

Contribution group 1 I developed a modeling framework for the component-based design
and formal exhaustive verification of composite reactive systems, which consists of the following
contributions:

1. I developed a statechart language with formal semantics featuring semantic variation
points to support different internal execution modes of statecharts (i.e., statechart vari-
ants). Accordingly, the statechart language allows for the extension of the framework
with additional modeling front-ends [j1].

2. I developed a composition language with formal semantics that supports the hierarchical
mixed-semantics composition of heterogeneous statechart components according to var-
ious well-defined (formal) execution and interaction semantics: asynchronous-reactive,
scheduled asynchronous-reactive, synchronous-reactive, and cascade [e12][e13][j1].

3. I developed semantic-preserving automated model transformations that map the high-
level composite models into the input formalisms of model checker back-ends, namely,
timed automata, transition systems and process models. They support the exhaustive
formal verification of composite models, providing flexibility for time-dependent, data-
oriented or parallel behavior, as well as the automated back-annotation of the results to
the source composite models [j1][j4][c8].

4. I developed an extensible workflow (component integration and verification workflow)
that incorporates modeling front-ends, the statechart language, the composition lan-
guage and the model transformations and back-annotation facilities of the framework
to allow for the black box (but also customizable) application of formal verification
(model checking) on high-level integrated state-based models as a reusable functional-
ity [j1][j4][c6][c8].

The framework’s statechart language (Contribution 1.1) was discussed in Section 3.2, whereas the
composition language (Contribution 1.2) was presented in Section 3.3. The model transformations
that allow for the formal verification of integrated models (Contribution 1.3) were introduced in Sec-
tion 3.4. The component integration and verification workflow (Contribution 1.4) was presented in
Section 3.5.

Subject to future work, we aim to integrate additional model checkers to the framework, for in-
stance, nuXmv [BB14; Cav+14], to provide even greater flexibility for verifying models with different
characteristics. We also plan to support the custom definition of composition (execution and interac-
tion) modes for component integration to aid engineers in experimenting with different composition
semantics during system design. In addition, we are working on integrating SysML v2 [Gro20] to the
framework to aid industrial parties in the semantically sound composition and verification of system
models.

64

Publications

Publications related to the contributions

Journal International Local
papers conference papers events

Contribution group 1 [j1],[j4] [c6],[c7],[c8],[c10] [e12], [e13], [e14], [e15]

Journal papers

[j1] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró. Mixed-semantics
composition of statecharts for the component-based design of reactive systems. Software and
Systems Modeling 19, 2020, pp. 1483–1517. doi: 10.1007/s10270-020-00806-5.

[j2] Bence Graics, Vince Molnár, and István Majzik. Integration test generation for state-based
components in the Gamma framework, 2022.

[j3] Bence Graics, Vince Molnár, and István Majzik. Component-based specification, design and
verification of adaptive systems. Systems Engineering n/a(n/a), 2023. doi: 10.1002/sys.21675.

[j4] BenedekHorváth, VinceMolnár,BenceGraics, ÁkosHajdu, István Ráth, ÁkosHorváth, Robert
Karban, Gelys Trancho, and Zoltán Micskei. Pragmatic verification and validation of industrial
executable SysML models. Systems Engineering, 2023. doi: 10.1002/sys.21679.

[j5] Bence Graics, Milán Mondok, Vince Molnár, and István Majzik. Test generation and formal
verification for asynchronously communicating distributed controllers, 2023.

International conference papers

[c6] VinceMolnár,BenceGraics, András Vörös, IstvánMajzik, andDániel Varró. TheGamma State-
chart Composition Framework. In: 40th International Conference on Software Engineering (ICSE),
pp. 113–116. Gothenburg, Sweden: ACM, 2018. doi: 10.1145/3183440.3183489.

[c7] Simon József Nagy,Bence Graics, Marussy Kristóf, and András Vörös. Simulation-based safety
assessment of high-level reliability models. In: 4th Workshop on Models for Formal Analysis of
Real Systems, pp. 240–260. 2020. doi: 10.4204/EPTCS.316.9.

[c8] Benedek Horváth,Bence Graics, Ákos Hajdu, ZoltánMicskei, Vince Molnár, István Ráth, Luigi
Andolfato, Ivan Gomes, and Robert Karban. Model checking as a service: towards pragmatic

161

https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1002/sys.21675
https://doi.org/10.1002/sys.21679
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.4204/EPTCS.316.9

Publications

hidden formal methods. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings, pp. 1–5. 2020. doi: 10.1145/
3417990.3421407.

[c9] Bence Graics, Vince Molnár, and István Majzik. Contract-based specification and test gener-
ation for adaptive systems. In: 16th International Conference on Dependability of Computer Sys-
tems (DepCoS-RELCOMEX), Advances in Intelligent Systems and Computing, vol. 1389, pp. 136–
145. Wrocław, Poland: Springer, 2021. doi: 10.1007/978-3-030-76773-0.

[c10] Danilo Pallamin de Almeida, Bence Graics, Ronan Arraes Jardim Chagas, Fabiano Luis de
Sousa, and Fatima Mattiello-Francisco. Towards simulation of CubeSat operational scenarios
under a cyber-physical systems view. In: 10th Latin-American Symposium on Dependable Com-
puting (LADC 2021), Florianópolis, Brazil: IEEE, 2021. doi: 10.1109/LADC53747.2021.9672594.

[c11] Bence Graics, MilánMondok, Vince Molnár, and IstvánMajzik. Configurable model-based test
generation for distributed controllers using declarative model queries and model checkers. In:
2023.

Local conference papers

[e12] Bence Graics and Vince Molnár. Formal compositional semantics for Yakindu statecharts. In:
Béla Pataki (ed.), 24th Minisymposium of the Department of Measurement and Information Sys-
tems, pp. 22–25. Budapest, Hungary, 2017.

[e13] Bence Graics and Vince Molnár. Mix-and-match composition in the Gamma framework. In:
Béla Pataki (ed.), 25th Minisymposium of the Department of Measurement and Information Sys-
tems, pp. 24–27. Budapest, Hungary, 2018.

[e14] Bence Graics and István Majzik. Modeling and analysis of an industrial communication proto-
col in the Gamma framework. In: Balázs Renczes (ed.), 27th Minisymposium of the Department
of Measurement and Information Systems, pp. 25–28. Budapest, Hungary, 2020.

[e15] Csanád Csuvarszki, Bence Graics, and András Vörös. Model-driven development of heteroge-
neous cyber-physical systems. In: Balázs Renczes (ed.), 28th Minisymposium of the Department
of Measurement and Information Systems, Budapest, Hungary, 2021.

[e16] Bence Graics and István Majzik. Integration test generation and formal verification for dis-
tributed controllers. In: Balázs Renczes (ed.), 30th Minisymposium of the Department of Mea-
surement and Information Systems, pp. 1–4. Budapest, Hungary, 2023. doi: 10.3311/minisy2023-
001.

162

https://doi.org/10.1145/3417990.3421407
https://doi.org/10.1145/3417990.3421407
https://doi.org/10.1007/978-3-030-76773-0
https://doi.org/10.1109/LADC53747.2021.9672594
https://doi.org/10.3311/minisy2023-001
https://doi.org/10.3311/minisy2023-001

Bibliography

[Adl+07] Rasmus Adler, Ina Schaefer, Tobias Schuele, and Eric Vecchié. From model-based de-
sign to formal verification of adaptive embedded systems. In: Michael Butler, Michael G.
Hinchey, and María M. Larrondo-Petrie (eds.), Formal Methods and Software Engineering,
pp. 76–95. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-76650-6_6.

[Adl+11] Rasmus Adler, Ina Schaefer, Mario Trapp, and Arnd Poetzsch-Heffter. Component-based
modeling and verification of dynamic adaptation in safety-critical embedded systems.
ACM Trans. Embed. Comput. Syst. 10(2), 2011. doi: 10.1145/1880050.1880056.

[AR16] L. Apvrille and Y. Roudier. Model-driven engineering and software development. In:
Springer International Publishing, 2016. Chap. Designing Safe and Secure Embedded and
Cyber-Physical Systems with SysML-Sec, pp. 293–308.

[Ara+15] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and Bernhard Schätz.
AutoFOCUS 3: tooling concepts for seamless, model-based development of embedded
systems. ACES-MB&WUCOR@ MoDELS 1508, 2015, pp. 19–26.

[Bae+12] Kyungmin Bae, Peter Csaba Ölveczky, Thomas Huining Feng, Edward A. Lee, and
Stavros Tripakis. Verifying hierarchical Ptolemy II discrete-event models using Real-
Time Maude. Science of Computer Programming 77(12), 2012, pp. 1235–1271. doi: https:
//doi.org/10.1016/j.scico.2010.10.002.

[Bas+11] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber,
Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous component-based system design us-
ing the BIP framework. 28, 2011, pp. 41–48.

[BB14] Armin Biere and Roderick Bloem, eds. Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings. Vol. 8559. Lecture Notes in Computer Science. Springer,
2014. doi: 10.1007/978-3-319-08867-9.

[BB91] Albert Benveniste and Gérard Berry. The synchronous approach to reactive and real-
time systems. Proceedings of the IEEE 79(9), 1991, pp. 1270–1282.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time com-
ponents in BIP. In: Software Engineering and Formal Methods (SEFM) 2006. Fourth IEEE
International Conference, pp. 3–12. 2006.

163

https://doi.org/10.1007/978-3-540-76650-6_6
https://doi.org/10.1145/1880050.1880056
https://doi.org/https://doi.org/10.1016/j.scico.2010.10.002
https://doi.org/https://doi.org/10.1016/j.scico.2010.10.002
https://doi.org/10.1007/978-3-319-08867-9

Bibliography

[BC11] Etienne Borde and Jan Carlson. Towards verified synthesis of ProCom, a component
model for real-time embedded systems. In: Proceedings of the 14th international ACM
Sigsoft symposium on Component based software engineering, pp. 129–138. 2011.

[BC14] JungHoBae andHeung SeokChae. Systematic approach for constructing an understand-
able state machine from a contract-based specification: controlled experiments. Software
& Systems Modeling, 2014, pp. 1–33.

[BDC02] Marco Bernardo, Lorenzo Donatiello, and Paolo Ciancarini. Stochastic process algebra:
from an algebraic formalism to an architectural description language. In: IFIP Inter-
national Symposium on Computer Performance Modeling, Measurement and Evaluation,
pp. 236–260. 2002.

[Beh+06] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson, Paul Pet-
tersson, Wang Yi, and Martijn Hendriks. Uppaal 4.0. IEEE Computer Society, 2006,
pp. 125–126.

[Ben+16] Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis, and
Rongjie Yan. Component-based verification using incremental design and invariants.
Software and System Modeling 15(2), 2016, pp. 427–451.

[BFS05] Axel Belinfante, Lars Frantzen, and Christian Schallhart. Tools for test case generation.
In: Model-Based Testing of Reactive Systems, pp. 391–438. Springer, 2005.

[BK11] Björn Bartels and Moritz Kleine. A CSP-based framework for the specification, verifi-
cation, and implementation of adaptive systems. In: Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’11,
pp. 158–167. Association for Computing Machinery, 2011. doi: 10.1145/1988008.1988030.

[BRG08] Philipp A Baer, Roland Reichle, and Kurt Geihs. The SPICA development framework-
model-driven software development for autonomous mobile robots. In: Intelligent Au-
tonomous Systems 10, pp. 211–220. IOS Press, 2008.

[Bri+04] Matthias Brill, Werner Damm, Jochen Klose, Bernd Westphal, and Hartmut Wittke. Live
Sequence Charts. In: Integration of Software Specification Techniques for Applications in
Engineering: Priority Program SoftSpez of the German Research Foundation (DFG), Final
Report. Ed. by Hartmut Ehrig,Werner Damm, Jörg Desel, Martin Große-Rhode,Wolfgang
Reif, Eckehard Schnieder, and Engelbert Westkämper. Springer Berlin Heidelberg, 2004,
pp. 374–399. doi: 10.1007/978-3-540-27863-4_21.

[Bro97] Manfred Broy. Compositional refinement of interactive systems. J. ACM 44(6), 1997,
pp. 850–891. doi: 10.1145/268999.269004.

[BS12] Manfred Broy and Ketil Stølen. Specification and development of interactive systems: focus
on streams, interfaces, and refinement. Springer Science & Business Media, 2012.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In: Handbook of model
checking, pp. 305–343. Springer, 2018.

[Bur+08] Tomáš Bureš, Jan Carlson, Ivica Crnkovic, Séverine Sentilles, and Aneta Vulgarakis. Pro-
Com – the progress component model referencemanual.Mälardalen University, Västerås,
Sweden, 2008.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: semantics, algorithms and tools. In:
pp. 87–124. Springer-Verlag, 2004.

164

https://doi.org/10.1145/1988008.1988030
https://doi.org/10.1007/978-3-540-27863-4_21
https://doi.org/10.1145/268999.269004

Bibliography

[Cal+18] Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar, Ibrahim
Habli, and Tim Kelly. Engineering trustworthy self-adaptive software with dynamic as-
surance cases. IEEE Transactions on Software Engineering 44(11), 2018, pp. 1039–1069.
doi: 10.1109/TSE.2017.2738640.

[Cav+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro
Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv
symbolic model checker. In: Armin Biere and Roderick Bloem (eds.), CAV, Lecture Notes
in Computer Science, vol. 8559, pp. 334–342. Springer, 2014. doi: 10.1007/978- 3- 319-
08867-9_22.

[CD05a] Michelle L. Crane and Juergen Dingel. On the semantics of UML state machines: Catego-
rization and comparision. In: In Technical Report 2005-501, School of Computing, Queen’s,
2005.

[CD05b] Michelle L. Crane and Juergen Dingel. UML vs. classical vs. Rhapsody statecharts: Not
all models are created equal. In: Lionel Briand and Clay Williams (eds.), Model Driven
Engineering Languages and Systems, pp. 97–112. Springer, 2005.

[CE81] EdmundM. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In:Workshop on Logic of Programs, pp. 52–71.
1981.

[Cha+19] Ronan AJ Chagas, Fabiano L de Sousa, Arcélio C Louro, and Willer G dos Santos. Mod-
eling and design of a multidisciplinary simulator of the concept of operations for space
mission pre-phase A studies. Concurrent Engineering 27(1), 2019, pp. 28–39. doi: 10.1177/
1063293X18804006.

[Che+09] Betty H. C. Cheng et al. Software engineering for self-adaptive systems: a research
roadmap. In: Software Engineering for Self-Adaptive Systems. Ed. by Betty H. C. Cheng,
Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee. Springer Berlin Hei-
delberg, 2009, pp. 1–26. doi: 10.1007/978-3-642-02161-9_1.

[Chh+15] Ajay Chhokra, Sherif Abdelwahed, Abhishek Dubey, Sandeep Neema, and Gabor Karsai.
From system modeling to formal verification. The 2015 Electronic System Level Synthesis
Conference, 2015.

[Chi+06] Adam Childs, Jesse Greenwald, Georg Jung, Matthew Hoosier, and John Hatcliff. Calm
and Cadena: metamodeling for component-based product-line development. Computer
39(2), 2006, pp. 42–50.

[Cho78] T.S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions
on Software Engineering SE-4(3), 1978, pp. 178–187. doi: 10.1109/TSE.1978.231496.

[CHV18] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduction to model
checking. In: Handbook of Model Checking. Ed. by Edmund M. Clarke, Thomas A. Hen-
zinger, Helmut Veith, and Roderick Bloem. Springer, 2018, pp. 1–26. doi: 10.1007/978-3-
319-10575-8_1.

[CL12] Javier Cámara and Rogério de Lemos. Evaluation of resilience in self-adaptive systems
using probabilistic model-checking. In: 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 53–62. 2012. doi: 10.
1109/SEAMS.2012.6224391.

165

https://doi.org/10.1109/TSE.2017.2738640
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1177/1063293X18804006
https://doi.org/10.1177/1063293X18804006
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1109/SEAMS.2012.6224391
https://doi.org/10.1109/SEAMS.2012.6224391

Bibliography

[Cla+18] EdmundM. Clarke Jr., Orna Grumberg, Daniel Kroening, Doron Peled, andHelmut Veith.
Model checking. MIT press, 2018.

[CLS00] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Efficient symbolic state-space
construction for asynchronous systems. In: Mogens Nielsen and Dan Simpson (eds.),
Application and Theory of Petri Nets 2000, pp. 103–122. Springer, 2000. doi: 10.1007/3-
540-44988-4_8.

[CS03] Gianfranco Ciardo and Radu Siminiceanu. Structural symbolic CTL model checking of
asynchronous systems. In: Warren A. Hunt and Fabio Somenzi (eds.), Computer Aided
Verification, pp. 40–53. Springer, 2003. doi: 10.1007/978-3-540-45069-6_4.

[Czi+17] Bence Czipó, Ákos Hajdu, Tamás Tóth, and István Majzik. Exploiting hierarchy in the
abstraction-based verification of statecharts using SMT solvers. Electronic Proceedings in
Theoretical Computer Science 245, 2017, pp. 31–45. doi: 10.4204/eptcs.245.3.

[DAC99] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002), pp. 411–420. 1999. doi: 10.1145/302405.302672.

[DH01] Werner Damm and David Harel. LSCs: breathing life into Message Sequence Charts.
Formal Methods in System Design 19(1), 2001, pp. 45–80. doi: 10.1023/A:1011227529550.

[Dor+05] R. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, and N. Yevtushenko. Experimental eval-
uation of FSM-based testing methods. In: Third IEEE International Conference on Software
Engineering and Formal Methods (SEFM’05), pp. 23–32. 2005. doi: 10.1109/SEFM.2005.17.

[Ebn07] Ali Ebnenasir. Designing run-time fault-tolerance using dynamic updates. In: Interna-
tionalWorkshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
’07), pp. 15–15. 2007. doi: 10.1109/SEAMS.2007.5.

[EH86] E. Allen Emerson and Joseph Y. Halpern. ‘‘Sometimes” and “not never” revisited: on
branching versus linear time temporal logic. J. ACM 33(1), 1986, pp. 151–178. doi: 10.
1145/4904.4999.

[Eke+03] Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Sonia
Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity - the Ptolemy
approach. Proceedings of the IEEE 91(1), 2003, pp. 127–144.url: http://chess.eecs.berkeley.
edu/pubs/488.html.

[EL03] Stephen A. Edwards and Edward A. Lee. The semantics and execution of a synchronous
block-diagram language. Science of Computer Programming 48(1), 2003, pp. 21–42. doi:
https://doi.org/10.1016/S0167-6423(02)00096-5.

[Eno+16] Eduard P Enoiu, Adnan Čaušević, Thomas J Ostrand, Elaine J Weyuker, Daniel Sund-
mark, and Paul Pettersson. Automated test generation using model checking: an indus-
trial evaluation. International Journal on Software Tools for Technology Transfer 18(3),
2016, pp. 335–353.

[Esh09] Rik Eshuis. Reconciling statechart semantics. Science of Computer Programming 74(3),
2009, pp. 65–99.

[FGH06] Peter H Feiler, David P Gluch, and John J Hudak. The architecture analysis & design lan-
guage (AADL): An introduction. Tech. rep. Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, 2006.

166

https://doi.org/10.1007/3-540-44988-4_8
https://doi.org/10.1007/3-540-44988-4_8
https://doi.org/10.1007/978-3-540-45069-6_4
https://doi.org/10.4204/eptcs.245.3
https://doi.org/10.1145/302405.302672
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1109/SEFM.2005.17
https://doi.org/10.1109/SEAMS.2007.5
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
http://chess.eecs.berkeley.edu/pubs/488.html
http://chess.eecs.berkeley.edu/pubs/488.html
https://doi.org/https://doi.org/10.1016/S0167-6423(02)00096-5

Bibliography

[Flo+10] J. Floch, C. Carrez, P. Cieślak, M. Rój, R.T. Sanders, and M.M. Shiaa. A comprehensive
engineering framework for guaranteeing component compatibility. Journal of Systems
and Software 83(10), 2010, pp. 1759–1779. doi: https://doi.org/10.1016/j.jss.2010.04.075.

[Fox11] Jorge Fox. A formal orchestration model for dynamically adaptable services with COWS.
In: International Conference on Adaptive and Self-Adaptive Systems and Applications, 2011.

[FWA09] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model checkers: a
survey. Software Testing, Verification and Reliability 19(3), 2009, pp. 215–261. doi: 10 .
1002/stvr.402.

[GBC10] Sebastien Gerard, Jean-Philippe Babau, and Joel Champeau. Model Driven Engineering
for Distributed Real-Time Embedded Systems. Wiley-IEEE Press, 2010.

[Gei13] Kurt Geihs. Self-adaptivity from different application perspectives. In: Software Engineer-
ing for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers. Ed. by Rogério de Lemos, Holger Giese,
Hausi A. Müller, and Mary Shaw. Springer Berlin Heidelberg, 2013, pp. 376–392. doi:
10.1007/978-3-642-35813-5_15.

[GLM18] Hubert Garavel, Frédéric Lang, and Laurent Mounier. Compositional verification in ac-
tion. In: Falk Howar and Jiří Barnat (eds.), Formal Methods for Industrial Critical Systems,
pp. 189–210. Springer International Publishing, 2018.

[Gra16] BenceGraics.Documentation of the Gamma Statechart Composition Framework v0.9. Tech.
rep. Budapest Univ. of Technology, Economics, Dept. of Measurement, and Information
Systems, 2016. url: https://tinyurl.com/yeywrkd6.

[Gra18] BenceGraics.Documentation of the Gamma Statechart Composition Framework v2.0. Tech.
rep. https://tinyurl.com/2xxyujtf. Budapest Univ. of Technology, Economics, Dept. of
Measurement, and Information Systems, 2018.

[Gro12] Object Management Group. Information technology – Object Management Group Unified
Modeling Language (OMGUML) – Part 2: Superstructure. Tech. rep. ISO/IEC 19505-2:2012.
Object Management Group, 2012. url: http://www.omg.org/spec/UML/ISO/19505-
2/PDF/.

[Gro18] Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-
els. Tech. rep. formal/2018-12-01. Object Management Group, 2018. url: https://www.
omg.org/spec/FUML/1.4/PDF.

[Gro19a] Object Management Group. Precise Semantics of UML Composite Structures (PSCS). Tech.
rep. formal/2019-02-01. Object Management Group, 2019. url: https://www.omg.org/
spec/PSCS/1.2/PDF.

[Gro19b] Object Management Group. Precise Semantics of UML State Machines (PSSM). Tech. rep.
formal/2019-05-01. Object Management Group, 2019. url: https://www.omg.org/spec/
PSSM/1.0/PDF.

[Gro20] Object Management Group. Systems Modeling Language Version 2 (SysML v2). Standard.
Object Management Group (OMG), 2020. url: http://www.omgsysml.org/.

[GS02] David Garlan and Bradley Schmerl. Model-based adaptation for self-healing systems. In:
Proceedings of the First Workshop on Self-Healing Systems, WOSS ’02, pp. 27–32. Associa-
tion for Computing Machinery, 2002. doi: 10.1145/582128.582134.

167

https://doi.org/https://doi.org/10.1016/j.jss.2010.04.075
https://doi.org/10.1002/stvr.402
https://doi.org/10.1002/stvr.402
https://doi.org/10.1007/978-3-642-35813-5_15
https://tinyurl.com/yeywrkd6
http://www.omg.org/spec/UML/ISO/19505-2/PDF/
http://www.omg.org/spec/UML/ISO/19505-2/PDF/
https://www.omg.org/spec/FUML/1.4/PDF
https://www.omg.org/spec/FUML/1.4/PDF
https://www.omg.org/spec/PSCS/1.2/PDF
https://www.omg.org/spec/PSCS/1.2/PDF
https://www.omg.org/spec/PSSM/1.0/PDF
https://www.omg.org/spec/PSSM/1.0/PDF
http://www.omgsysml.org/
https://doi.org/10.1145/582128.582134

Bibliography

[GT18] Havva Gulay Gurbuz and Bedir Tekinerdogan. Model-based testing for software safety:
a systematic mapping study. Software Quality Journal 26(4), 2018, pp. 1327–1372. doi:
10.1007/s11219-017-9386-2.

[Haj+16] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable CEGAR
framework with interpolation-based refinements. In: Elvira Albert and Ivan Lanese
(eds.), Formal Techniques for Distributed Objects, Components and Systems, Lecture Notes
in Computer Science, vol. 9688, pp. 158–174. Springer, 2016. doi: 10.1007/978- 3- 319-
39570-8_11.

[Hal+91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE 79(9), 1991, pp. 1305–
1320.

[Har87] David Harel. Statecharts: a visual formalism for complex systems. Sci. Comput. Program.
8(3), 1987, pp. 231–274. doi: 10.1016/0167-6423(87)90035-9.

[HDB17] N. Hili, J. Dingel, and A. Beaulieu. Modelling and code generation for real-time embedded
systems with UML-RT and Papyrus-RT. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), pp. 509–510. 2017.

[Hea+09] William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. A case study in goal-driven
architectural adaptation. In: Software Engineering for Self-Adaptive Systems. Ed. by Betty
H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee. Springer
Berlin Heidelberg, 2009, pp. 109–127. doi: 10.1007/978-3-642-02161-9_6.

[Hea63] B. R. Heap. Permutations by Interchanges. The Computer Journal 6(3), 1963, pp. 293–298.
doi: 10.1093/comjnl/6.3.293.

[Heg+10] Ábel Hegedüs, Gábor Bergmann, István Ráth, and Dániel Varró. Back-annotation of sim-
ulation traces with change-drivenmodel transformations. Proceedings of the Software En-
gineering and FormalMethods (SEFM) 2010, 2010, pp. 145–155. doi: 10.1109/SEFM.2010.28.

[Hei+04] Mats P. E. Heimdahl, Sanjai Rayadurgam, Willem Visser, George Devaraj, and Jimin
Gao. Auto-generating test sequences using model checkers: a case study. In: Alexan-
dre Petrenko and Andreas Ulrich (eds.), Formal Approaches to Software Testing, pp. 42–
59. Springer, 2004. doi: 10.1007/978-3-540-24617-6_4.

[Her10] Paula Herber. A Framework for Automated HW/SW Co-Verification of SystemC Designs
using Timed Automata. Logos Verlag Berlin GmbH, 2010.

[HLS01] HyoungHong, Insup Lee, and Oleg Sokolsky. Automatic test generation from statecharts
using model checking. Technical Reports (CIS), 2001.

[HM00] Thomas A. Henzinger and Rupak Majumdar. A classification of symbolic transition sys-
tems. In: Horst Reichel and Sophie Tison (eds.), STACS 2000, pp. 13–34. Springer Berlin
Heidelberg, 2000.

[HMR] Grégoire Hamon, Leonardo de Moura, and John Rushby. Generating efficient test sets
with a model checker. In: pp. 261–270. doi: 10.1109/SEFM.2004.1347530.

[HN04] Alan Hartman and Kenneth Nagin. The AGEDIS tools for model based testing. ACM
Sigsoft Software Engineering Notes 29, 2004. doi: 10.1145/1007512.1007529.

[Hoa21] C.A.R. Hoare. Communicating sequential processes. In: Theories of Programming: The Life
and Works of Tony Hoare. 1st ed. Association for Computing Machinery, 2021, pp. 157–
186. doi: 10.1145/3477355.3477364.

168

https://doi.org/10.1007/s11219-017-9386-2
https://doi.org/10.1007/978-3-319-39570-8_11
https://doi.org/10.1007/978-3-319-39570-8_11
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-642-02161-9_6
https://doi.org/10.1093/comjnl/6.3.293
https://doi.org/10.1109/SEFM.2010.28
https://doi.org/10.1007/978-3-540-24617-6_4
https://doi.org/10.1109/SEFM.2004.1347530
https://doi.org/10.1145/1007512.1007529
https://doi.org/10.1145/3477355.3477364

Bibliography

[Hol05] Gerard J. Holzmann. Software model checking with Spin. In: Advances in Computers,
vol. 65, pp. 77–108. Elsevier, 2005. doi: https://doi.org/10.1016/S0065-2458(05)65002-4.

[Hol11] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual. 1st. Addison-
Wesley Professional, 2011.

[HRR14] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - architectural modeling
of interactive distributed and cyber-physical systems. ArXiv abs/1409.6578, 2014.

[HU90] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages, And
Computation. 1st. Addison-Wesley Longman Publishing Co., Inc., 1990.

[IW14] M. Usman Iftikhar and Danny Weyns. ActivFORMS: active formal models for self-
adaptation. In: Proceedings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2014, pp. 125–134. Association for Com-
puting Machinery, 2014. doi: 10.1145/2593929.2593944.

[Jia+18] Yu Jiang, Houbing Song, Yixiao Yang, Han Liu, Ming Gu, Yong Guan, Jiaguang Sun, and
Lui Sha. Dependable model-driven development of CPS: from stateflow simulation to
verified implementation. ACM Trans. Cyber-Phys. Syst. 3(1), 2018, 12:1–12:31. doi: 10 .
1145/3078623.

[JM99] Thierry Jéron and Pierre Morel. Test generation derived from model-checking. In: Inter-
national Conference on Computer Aided Verification, pp. 108–122. 1999.

[Juo+18] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,
Krzysztof Czarnecki, and Andrzej Wasowski. Clafer: lightweight modeling of structure,
behaviour, and variability. The Art, Science, and Engineering of Programming 3(1), 2018,
pp. 2–1.

[KA17] Sudeep Kanav and Vincent Aravantinos. Modular transformation from AF3 to nuXmv.
In: MODELS (Satellite Events), pp. 300–306. 2017.

[Ke+08] X. Ke, P. Pettersson, K. Sierszecki, and C. Angelov. Verification of COMDES-II systems
using UPPAAL with model transformation. In: 2008 14th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pp. 153–160. 2008. doi:
10.1109/RTCSA.2008.32.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of probabilistic real-
time systems. In: G. Gopalakrishnan and S. Qadeer (eds.), Proc. 23rd International Con-
ference on Computer Aided Verification (CAV’11), LNCS, vol. 6806, pp. 585–591. Springer,
2011.

[Kru+15] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and
Christian Becker. A survey on engineering approaches for self-adaptive systems. Per-
vasive and Mobile Computing 17, 2015. 10 years of Pervasive Computing’ In Honor of
Chatschik Bisdikian, pp. 184–206. doi: https://doi.org/10.1016/j.pmcj.2014.09.009.

[KSA07] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: a component-based framework for
generative development of distributed real-time control systems. In: 13th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2007), pp. 199–208. 2007. doi: 10.1109/RTCSA.2007.29.

[KSH09] Frank Alexander Kraemer, Vidar Slåtten, and Peter Herrmann. Tool support for the rapid
composition, analysis and implementation of reactive services. Journal of Systems and
Software 82(12), 2009, pp. 2068–2080. doi: https://doi.org/10.1016/j.jss.2009.06.057.

169

https://doi.org/https://doi.org/10.1016/S0065-2458(05)65002-4
https://doi.org/10.1145/2593929.2593944
https://doi.org/10.1145/3078623
https://doi.org/10.1145/3078623
https://doi.org/10.1109/RTCSA.2008.32
https://doi.org/https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1109/RTCSA.2007.29
https://doi.org/https://doi.org/10.1016/j.jss.2009.06.057

Bibliography

[KTK09] M. Kadono, T. Tsuchiya, and T. Kikuno. Using the NuSMV model checker for test gener-
ation from statecharts. In: 15th IEEE Pacific Rim International Symposium on Dependable
Computing, pp. 37–42. 2009.

[Lam09] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to
Software Specifications. 1st. Wiley Publishing, 2009.

[LB13] Bruno Legeard and Arnaud Bouzy. Smartesting CertifyIt: model-based testing for enter-
prise it. In: 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation, pp. 391–397. 2013. doi: 10.1109/ICST.2013.55.

[LD01] Wayne Liu and P Dasiewicz. Component interaction testing using model-checking. In:
Canadian Conference on Electrical and Computer Engineering Conference Proceedings (Cat.
No. 01TH8555), vol. 1, pp. 41–46. 2001.

[Lem+13] Rogério de Lemos et al. Software engineering for self-adaptive systems: a second re-
search roadmap. In: Software Engineering for Self-Adaptive Systems II: International Semi-
nar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers. Ed.
by Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw. Springer Berlin
Heidelberg, 2013, pp. 1–32. doi: 10.1007/978-3-642-35813-5_1.

[Len20] Dénes Lendvai. Scenario-Based Modeling and Analysis of Reactive Systems. Tech. rep. Bu-
dapest Univ. of Technology, Economics, Dept. ofMeasurement, and Information Systems,
2020.

[Len22] Dénes Lendvai. Efficient Scenario-Based Verification of Reactive Systems in the Gamma
Framework. Tech. rep. Budapest Univ. of Technology, Economics, Dept. of Measurement,
and Information Systems, 2022.

[LLS18] Wenbin Li, Franck Le Gall, and Naum Spaseski. A survey onmodel-based testing tools for
test case generation. In: Vladimir Itsykson, Andre Scedrov, and Victor Zakharov (eds.),
Tools and Methods of Program Analysis, pp. 77–89. Springer International Publishing,
2018. doi: 10.1007/978-3-319-71734-0_7.

[LMM99] Diego Latella, István Majzik, and Mieke Massink. Towards a formal operational seman-
tics of UML statechart diagrams. In: Formal Methods for Open Object-Based Distributed
Systems, pp. 331–347. Springer, 1999.

[LNN] Tim Lange, Martin R Neuhauber, and Thomas Noll. IC3 software model checking on con-
trol flow automata. In: 2015 Formal Methods in Computer-Aided Design (FMCAD), pp. 97–
104.

[LP95] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE 83(5), 1995,
pp. 773–801. doi: 10.1109/5.381846.

[LSD08] Yang Liu, Jun Sun, and Jin Song Dong. An analyzer for extended compositional pro-
cess algebras. In: Companion of the 30th International Conference on Software Engineer-
ing, ICSE Companion ’08, pp. 919–920. Association for Computing Machinery, 2008. doi:
10.1145/1370175.1370187.

[Lug+16] F. Lugou, L. W. Li, L. Apvrille, and R. Ameur-Boulifa. SysML models and model trans-
formation for security. In: Conf. on Model-Driven Engineering and Software Development
(Modelsward’2016), 2016.

170

https://doi.org/10.1109/ICST.2013.55
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1109/5.381846
https://doi.org/10.1145/1370175.1370187

Bibliography

[Maz+16] Silvia Mazzini, John M. Favaro, Stefano Puri, and Laura Baracchi. CHESS: an open
source methodology and toolset for the development of critical systems. In: EduSym-
p/OSS4MDE@MoDELS, 2016.

[Miy+19] AlvaroMiyazawa, Pedro Ribeiro,Wei Li, AnaCavalcanti, Jon Timmis, and JimWoodcock.
Robochart: modelling and verification of the functional behaviour of robotic applications.
Software & Systems Modeling 18(5), 2019, pp. 3097–3149.

[MM19] Vince Molnár and István Majzik. Saturation enhanced with conditional locality: appli-
cation to Petri Nets. In: International Conference on Applications and Theory of Petri Nets
and Concurrency, pp. 342–361. 2019. doi: 10.1007/978-3-030-21571-2_19.

[Moh+14] Swarup Mohalik, Ambar A. Gadkari, A. Yeolekar, K. Shashidhar, and S. Ramesh. Auto-
matic test case generation from Simulink/Stateflowmodels using model checking. Softw.
Test. Verif. Reliab. 24, 2014, pp. 155–180.

[Mon20] Milán Mondok. Extended symbolic transition systems: an intermediate language for the
formal verification of engineering models. Tech. rep. Budapest Univ. of Technology, Eco-
nomics, Dept. of Measurement, and Information Systems, 2020. url: https://tinyurl.com/
2p8bvd96.

[Mor+15] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Proactive self-
adaptation under uncertainty: a probabilistic model checking approach. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pp. 1–12. Association for Computing Machinery, 2015. doi: 10.1145/2786805.2786853.

[MPS07] Radu Mateescu, Pascal Poizat, and Gwen Salaün. Behavioral adaptation of component
compositions based on process algebra encodings. In: Proceedings of the Twenty-Second
IEEE/ACM International Conference on Automated Software Engineering, ASE ’07, pp. 385–
388. Association for Computing Machinery, 2007. doi: 10.1145/1321631.1321690.

[Nag+21] Simon József Nagy, Richárd Szabó,Máté Levente Vajda, and András Vörös. Demonstrator
for dependable edge-based cyber-physical systems. In: 2021 10th Latin-American Sympo-
sium on Dependable Computing (LADC), pp. 1–8. 2021.

[Nuz+15] Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti, and
Tiziano Villa. A platform-based design methodology with contracts and related tools for
the design of cyber-physical systems. Proceedings of the IEEE 103(11), 2015, pp. 2104–
2132.

[Pan01] Preeti Ranjan Panda. SystemC: a modeling platform supporting multiple design abstrac-
tions. In: Proceedings of the 14th international symposium on Systems synthesis, pp. 75–80.
2001.

[PF20] Sam Procter and Peter Feiler. The AADL error library: an operationalized taxonomy of
system errors. Ada Lett. 39(1), 2020, pp. 63–70. doi: 10.1145/3379106.3379113.

[Pin07] Gergely Pintér. Model Based Program Synthesis and Runtime Error Detection for De-
pendable Embedded Systems. Ph.D. thesis. Budapest University of Technology and Eco-
nomics, Hungary, 2007.

[Qur+10] Nauman A. Qureshi, Anna Perini, Neil A. Ernst, and John Mylopoulos. Towards a
continuous requirements engineering framework for self-adaptive systems. In: 2010
First International Workshop on Requirements@Run.Time, pp. 9–16. 2010. doi: 10.1109/
RERUNTIME.2010.5628552.

171

https://doi.org/10.1007/978-3-030-21571-2_19
https://tinyurl.com/2p8bvd96
https://tinyurl.com/2p8bvd96
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/1321631.1321690
https://doi.org/10.1145/3379106.3379113
https://doi.org/10.1109/RERUNTIME.2010.5628552
https://doi.org/10.1109/RERUNTIME.2010.5628552

Bibliography

[Rad22] Bálint Radnai. Integration of SCXML State Machines to the Gamma Framework. Tech. rep.
Budapest Univ. of Technology, Economics, Dept. of Measurement, and Information Sys-
tems, 2022. url: https://tinyurl.com/4mmtsw7v.

[RD12] E. J. Rapos and J. Dingel. Incremental test case generation for UML-RT models using
symbolic execution. In: 2012 IEEE Fifth International Conference on Software Testing, Ver-
ification and Validation, pp. 962–963. 2012. doi: 10.1109/ICST.2012.205.

[Rei17] Wolfgang Reisig. Associative Composition of Reactive Systems. Tech. rep. Humboldt-
Universität zu Berlin, Institut für Informatik, 2017, pp. 1–18. url: https : / / pdfs .
semanticscholar.org/224e/8047fd7dd6394e0b0eb15e8328a814c3f5f1.pdf.

[RH] Sanjai Rayadurgam and Mats Per Erik Heimdahl. Coverage based test-case generation
using model checkers. In: Proceedings. Eighth Annual IEEE International Conference and
Workshop On the Engineering of Computer-Based Systems-ECBS 2001, pp. 83–91.

[Rou+09] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge
Lorenzo, Alessandro Mamelli, and Ulrich Scholz. MUSIC: middleware support for self-
adaptation in ubiquitous and service-oriented environments. In: Software Engineering for
Self-Adaptive Systems. Ed. by Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola
Inverardi, and Jeff Magee. Springer Berlin Heidelberg, 2009, pp. 164–182. doi: 10.1007/
978-3-642-02161-9_9.

[RS59] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of
Research and Development 3(2), 1959, pp. 114–125. doi: 10.1147/rd.32.0114.

[RW85] Sandra Rapps and Elaine Weyuker. Selecting software test data using data flow informa-
tion. IEEE Transactions on Software Engineering SE-11(4), 1985, pp. 367–375. doi: 10.1109/
TSE.1985.232226.

[Sal+17] Yasir Dawood Salman, Nor Laily Hashim, Mawarny Md Rejab, Rohaida Romli, and
Haslina Mohd. Coverage criteria for test case generation using UML state chart diagram.
AIP Conference Proceedings 1891(1), 2017, p. 020125. doi: 10.1063/1.5005458.

[Sel98] Bran Selic. Using UML for modeling complex real-time systems. In: Frank Mueller and
Azer Bestavros (eds.), Languages, Compilers, and Tools for Embedded Systems, pp. 250–
260. Springer Berlin Heidelberg, 1998.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time Object-oriented Modeling. John
Wiley & Sons, Inc., 1994.

[Sim+13] Gabor Simko, David Lindecker, Tihamer Levendovszky, Sandeep Neema, and Janos Szti-
panovits. Specification of Cyber-Physical Components with Formal Semantics – Integra-
tion and Composition. In: Ana Moreira, Bernhard Schätz, Jeff Gray, Antonio Vallecillo,
and Peter Clarke (eds.), Model-Driven Engineering Languages and Systems, pp. 471–487.
Springer, 2013.

[SK06] Elisabeth A. Strunk and John C. Knight. Dependability through assured reconfiguration
in embedded system software. IEEE Trans. Dependable Secur. Comput. 3(3), 2006, pp. 172–
187. doi: 10.1109/TDSC.2006.33.

[SL15] Muhammad Shafique and Yvan Labiche. A systematic review of state-based test tools.
International Journal on Software Tools for Technology Transfer 17(1), 2015, pp. 59–76.
doi: 10.1007/s10009-013-0291-0.

172

https://tinyurl.com/4mmtsw7v
https://doi.org/10.1109/ICST.2012.205
https://pdfs.semanticscholar.org/224e/8047fd7dd6394e0b0eb15e8328a814c3f5f1.pdf
https://pdfs.semanticscholar.org/224e/8047fd7dd6394e0b0eb15e8328a814c3f5f1.pdf
https://doi.org/10.1007/978-3-642-02161-9_9
https://doi.org/10.1007/978-3-642-02161-9_9
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1063/1.5005458
https://doi.org/10.1109/TDSC.2006.33
https://doi.org/10.1007/s10009-013-0291-0

Bibliography

[SM88] Sally Shlaer and Stephen J. Mellor. Object-Oriented Systems Analysis: Modeling the World
in Data. Yourdon Press, 1988.

[SP10] Francesca Saglietti and Florin Pinte. Automated unit and integration testing for
component-based software systems. In: Proceedings of the International Workshop on Se-
curity and Dependability for Resource Constrained Embedded Systems, pp. 1–6. 2010.

[SST06] Klaus Schneider, Tobias Schuele, and Mario Trapp. Verifying the adaptation behavior of
embedded systems. In: Proceedings of the 2006 International Workshop on Self-Adaptation
and Self-Managing Systems, SEAMS ’06, pp. 16–22. Association for Computing Machin-
ery, 2006. doi: 10.1145/1137677.1137681.

[Ste+08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: Eclipse Mod-
eling Framework. Pearson Education, 2008.

[SW07] Wilhelm Schafer andHeikeWehrheim. The challenges of building advancedmechatronic
systems. In: Future of Software Engineering (FOSE ’07), pp. 72–84. 2007.doi: 10.1109/FOSE.
2007.28.

[Szk22] Péter Szkupien. Step-by-step controllable simulation of component-based reactive systems
based on precise formal semantics. Tech. rep. Budapest Univ. of Technology, Economics,
Dept. of Measurement, and Information Systems, 2022.

[Szt+14] Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan Jackson. Open-
META: AModel- and Component-Based Design Tool Chain for Cyber-Physical Systems.
In: From Programs to Systems. The Systems perspective in Computing. ETAPS Workshop,
FPS 2014. Ed. by Saddek Bensalem, Yassine Lakhneck, and Axel Legay. Springer, 2014,
pp. 235–248.

[Tam+13] Gabriel Tamura et al. Towards practical runtime verification and validation of self-
adaptive software systems. In: Software Engineering for Self-Adaptive Systems II: Inter-
national Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and In-
vited Papers. Ed. by Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw.
Springer Berlin Heidelberg, 2013, pp. 108–132. doi: 10.1007/978-3-642-35813-5_5.

[Tót+17] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta: a
framework for abstraction refinement-based model checking. In: Daryl Stewart and
Georg Weissenbacher (eds.), Proceedings of the 17th Conference on Formal Methods in
Computer-Aided Design, pp. 176–179. 2017. doi: 10.23919/FMCAD.2017.8102257.

[Tra+07] Mario Trapp, Rasmus Adler, Marc Förster, and Janosch Junger. Runtime adaptation in
safety-critical automotive systems. In: Proceedings of the 25th Conference on IASTED In-
ternationalMulti-Conference: Software Engineering, SE’07, pp. 308–315. ACTAPress, 2007.
doi: 10.5555/1332044.1332094.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach. Else-
vier, 2007. doi: 10.1016/B978-0-12-372501-1.X5000-5.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability 22(5), 2012, pp. 297–312.
doi: 10.1002/stvr.456.

173

https://doi.org/10.1145/1137677.1137681
https://doi.org/10.1109/FOSE.2007.28
https://doi.org/10.1109/FOSE.2007.28
https://doi.org/10.1007/978-3-642-35813-5_5
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.5555/1332044.1332094
https://doi.org/10.1016/B978-0-12-372501-1.X5000-5
https://doi.org/10.1002/stvr.456

Bibliography

[Var+16] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and Zoltán
Ujhelyi. Road to a reactive and incremental model transformation platform: three gen-
erations of the VIATRA framework. Software & Systems Modeling 15(3), 2016, pp. 609–
629.

[VG14] Thomas Vogel and Holger Giese. Model-driven engineering of self-adaptive software
with EUREMA. ACM Trans. Auton. Adapt. Syst. 8(4), 2014. doi: 10.1145/2555612.

[Vul+09] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, and Paul Pet-
tersson. Formal semantics of the ProCom real-time component model. In: 2009 35th Eu-
romicro Conference on Software Engineering andAdvancedApplications, pp. 478–485. 2009.

[Wag92] F. Wagner. VFSM executable specification. In: CompEuro 1992 Proceedings Computer Sys-
tems and Software Engineering, pp. 226–231. 1992.

[Wey+12] DannyWeyns, M. Usman Iftikhar, Didac Gil de la Iglesia, and Tanvir Ahmad. A survey of
formal methods in self-adaptive systems. In: Proceedings of the Fifth International C* Con-
ference on Computer Science and Software Engineering, C3S2E ’12, pp. 67–79. Association
for Computing Machinery, 2012. doi: 10.1145/2347583.2347592.

[Wey20] Danny Weyns. An Introduction to Self-adaptive Systems: A Contemporary Software Engi-
neering Perspective. John Wiley & Sons, 2020.

[Wie+09] SebastianWieczorek, Vitaly Kozyura, Andreas Roth, Michael Leuschel, Jens Bendisposto,
Daniel Plagge, and Ina Schieferdecker. Applying model checking to generate model-
based integration tests from choreography models. In: Manuel Núñez, Paul Baker, and
Mercedes G. Merayo (eds.), Testing of Software and Communication Systems, pp. 179–194.
Springer Berlin Heidelberg, 2009.

[Zav21] Ármin Zavada. Formal Modeling and Verification of Process Models in Component-based
Reactive Systems. Tech. rep. Budapest Univ. of Technology, Economics, Dept. of Measure-
ment, and Information Systems, 2021.

[ZC06] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineering, ICSE
’06, pp. 371–380. Association for Computing Machinery, 2006. doi: 10 . 1145 /1134285 .
1134337.

[ZD17] Karolina Zurowska and Juergen Dingel. Language-specific model checking of UML-RT
models. Software & Systems Modeling 16(2), 2017, pp. 393–415.

[Zur14] Karolina Zurowska. Language Specific Analysis of State Machine Models of Reactive
Systems. Ph.D. thesis. Queen’s Univerity, Canada, 2014.

174

https://doi.org/10.1145/2555612
https://doi.org/10.1145/2347583.2347592
https://doi.org/10.1145/1134285.1134337
https://doi.org/10.1145/1134285.1134337

	2 Preliminaries
	2.1 State machines
	2.2 Statecharts
	2.3 Running examples
	2.4 EXtended Symbolic Transition Systems
	2.5 Composite reactive modeling

	3 Mixed-semantic composition and verification of reactive components
	3.1 Gamma Statechart Composition Framework
	3.2 GSL and its semantic variation points
	3.3 GCL and the formal semantics of its composition modes
	3.4 Model transformations for formal verification
	3.5 Component integration and verification workflow
	3.6 Case study – Orion protocol
	3.7 Related work
	3.8 Summary and future work

	Publications
	Bibliography

