
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Semantics of Stochastic Gamma
Composition Language

Author Author
Simon József Nagy Kristóf Marussy

October 24, 2022

Contents

1 Introduction 1

2 Mathematical background 5

2.1 Measure theory . 5
2.2 Probability measures . 5
2.3 Semantics of probabilistic programs . 7

3 Events 8

4 Semantics of stochastic synchronous components 9

4.1 Synchronous elementary stochastic components 12

5 Semantics of stochastic asynchronous components 13

5.1 Timing of events . 13
5.2 Stochastic asynchronous component . 13
5.3 Stochastic asynchronous adapter . 14
5.4 Stochastic asynchronous composite component 16
5.5 Semantics of elementary stochastic components 18

5.5.1 Stochastic event source . 18
5.5.2 Stochastic periodic event source . 18
5.5.3 Stochastic delay . 19
5.5.4 Stochastic sample . 20

6 Semantics of runs 21

6.1 Extended state of an asynchronous component 21
6.2 Earliest event in a stochastic component . 22
6.3 Paths of asynchronous components . 22
6.4 Traces of asynchronous components . 24
6.5 Continuous Stochastic Logic . 25

Chapter 1

Introduction

In this section the formal semantics of Stochastic Gamma Composition Language is pre-
sented. The semantics of the Stochastic Gamma Composition Language defines the math-
ematical behavior of the dependability models using the tools of measure and probability
theory. The structure and deterministic definitions in the SGCL semantics are based on
the semantics of GCL and broaden with stochastic modeling. The semantics of SGCL
can be interpreted as a refinement of the semantics of GCL, where the non-specified,
nondeterministic behavior is resolved with stochastic rules.
The stochastic definitions of the SGCL semantics are defined using the definitions within
the semantics of the Church probabilistic programming language and Gamma Composition
Language. As a result, the SGCL semantics can be viewed as probabilistic program
semantics, where the instructions are defined by statechart composition. The semantics of
stochastic composition extends the semantics of deterministic Gamma composition. Thus
a model transformation algorithm can construct a probabilistic program, which has the
same semantics as the SGCL model, as it can be seen in Chapter ??.
In this chapter, we use boxes to highlight and discuss theoretical questions which are
relevant to the development of SGCL semantics.

Meaning of nondeterminism

The usage of the word nondeterminism is different in different scientific works. In [?
], the nondeterminism defines a behavior, which is completely unknown. In this case,
nondeterministic models can specify optimization problems, worst-case scenarios,
or two games. Therefore nondeterminism cannot be used to describe stochastic
phenomenon since the stochastic phenomenon is determined by a measurable space
and a probability measure. Contrarily, in [?], nondeterminism is used to describe
stochastic phenomena. In this paper, we do not use nondeterminism for stochastic
phenomena, and we clearly distinguish stochastic and nondeterministic behavior.

1

Symbol Explanation
2X Power set of X is the set of subsets SX ⊆ X → SX ∈ 2X

X Set of possible outcomes of a random phenomena
F Sigma algebra

X × Y Product of two sets
X ⊎ Y Disjoint union of two sets

f : X → Y Function
f : X

m→ Y Measureable function
MX Measureable space MX = (X, F)
µ Probability measure µ ∈ D(X)

D(X) Set of all distributions on X.
εF Evaluation function of distributions: εF : D(X) → [0; 1]

δX(x) Dirac measure
µ × λ The product measure of two probability measure
f∗(µ) Pushforward, induced distribution f∗(µ) = µ ◦ f−1 : Y → R+

µ ≫= f Binding of distributions

Table 1.1: Symbols of probability theory

2

Symbol Explanation
e Event.

inst(e) Set of instances of an event.
ei Instance of an event ei ∈ inst(e)

Dom(e) Domain of the event parameters
Dom(e) = ⊤ e has no parameter

B Borel σ-algebra generated by the open subsets of the real numbers.
E Set of events.
⊥ Absence of an event instance, an event is not occurred.

⊥E Empty event vector.
vE Event vector. vE : E → ∩e∈EDom(e)
VE Set of all possible event vector.

F(VE) ∏
e∈E F(inst⊥(e))

v1 ▷ v2 Overlay of two event vectors: v2(e) if not null and v1(e) otherwise.
−⃝ Synchronous component.
π0 Initial state probability distribution.
S Measurable space of potential states

I and O Finite set of input and output events.
T Transition function.
s⃝ Synchronous composite component.
⇌ Channel function: Î \ I → Ô

Î Exported input event set.
Ô Exported output event set.
c⃝ Cascade composite component.

arm(e) Set of arming event instanve of an event R+ × inst(e).
aei Arming event instance aei ∈ arm(e)
av Arming vector av ∈ Arm(e)
⊥E Empty arming vector: ⊥E(e) = ⊥ for all e ∈ E
A Set of alert input events.

PrioA Alert input event sequence.
−⊏⃝ Asynchronous adapter.
=⃝ Asychronous component.

a⃝⟩ =⃝ Asynchronous composite component.
lifti(µ) Lift the distribution of a subcomponent to the component level.

step(s, av, q) A stochastic component processes an event and makes a step.

Table 1.2: Symbols of SGCL

3

Symbol Explanation
++ Operator of concatenating sequences.
q Queue of event instances q = ⟨ei1, ei2, . . . eiK⟩.

es = (s, avA, ei) Extended state of a stochastic asynchronous component.
SExt SExt = S × ArmA × O set of extended states of a =⃝ .

Fes ⊂ SExt Measurable set of extended states.
ρ Path of a component ρ = ⟨es0 . . . esK⟩.

Path=⃝ The set of all (finite or infinite) paths of a =⃝.
Path=⃝

≤L The set of all paths of a =⃝ with at most L states.
CylL(ρ) Cylinder set of a given path ⟨Ies 0 . . . Ies K⟩ = CylL(ρ) ⊆ Path=⃝

F(ρL) F(ρL) is the smallest σ-algebra of all traces with a given length.
tr Trace of a component: tr = ⟨ei0, τ1, . . . , τK , eiK⟩.

Trace=⃝ The set of all (finite or infinite) traces of a component =⃝.
Trace=⃝

≤L The set of all traces of a component =⃝ with at most L event instances.
CylL(tr) Cylinder set of a given trace with prefix CylL(tr) ⊆ Trace=⃝(O)
F(trL) F(trL) is the smallest σ-algebra of all traces with a given length.

Pr =⃝
ρ (F(ρL)) Probability measure of an L long path.

Pr =⃝
tr (F(trL)) Probability measure of an L long trace.

Table 1.3: Symbols of paths and traces

4

Chapter 2

Mathematical background

2.1 Measure theory

In this section, we present the definitions of measure theory. we use the toolset of measure
theory to describe stochastic phenomena. All definition in this section is based on [?]
and [?].
Measurable spaces are often used to describe the set of outcomes in a stochastic phe-
nomenon. For instance, in the case of the stochastic delay in Model ?? the set of outcomes
is the set of positive real numbers t ∈ R+. The sigma-algebra on a measurable denotes
the set of intervals on the set of outcomes on which one can define a probability measure.
In the stochastic delay component in Model ??, the sigma-algebra of the outcomes is the
Borel sigma-algebra on R+.

Definition 1 (Measurable space) A measurable space from probability theory is a pair
MX = (X, F), where X is a set of outcomes and F ⊆ 2X is a σ-algebra. For conciseness,
we will use the notation X to refer to both the set of outcomes and the space MX when
the meaning is clear from context, and use F(X) to refer to the associated σ-algebra.

Definition 2 (Trivial measurable space) The trivial measurable space is ⊤ =
({⊤}, {∅, {⊤}}), which is the (only) measurable space associated with the one-element set.

If there are two or more random phenomena, the product of the measurable spaces of
the two phenomena defines the outcome space of the joint occurrence. Additionally, the
disjoint union of the two measurable spaces is the outcome space of random phenomena
when one of the two phenomena occurs randomly.

Definition 3 (Operations on measurable spaces) We will use the notations X × Y
and X ⊎Y to refer to products and disjoint unions of measurable spaces, i.e., F(X ×Y) =
F(X)⊗F(Y) is the smallest σ-algebra containing the sets {F ×G | F ∈ F(X), G ∈ F(Y)}
and F(X ⊎ Y) = {F ⊎ G | F ∈ F(X), G ∈ F(Y)}.

2.2 Probability measures

Probability measures assign are functions which assign a positive real value to each interval
on the set of outcomes. A probability measure can be a probability or a probability density
value in the case of discrete and continuous measurable spaces, respectively.

5

Definition 4 (Set of all distributions) Given a measurable space X, let D(X) de-
note the set of all probability measures (also called distributions) on X. We use
µ ∈ D(X), µ : X → R+, to define a distribution on X.

Modeling deterministic behavior with Dirac distribution

Some parts of the SGCL models may have purely deterministic behavior. Dirac
measure and Dirac distribution are defined to model the semantics of deterministic
behavior. Dirac distribution models random phenomena, the output of which is
always the same. Therefore the Dirac measure assigns 1.0 to the deterministic
otcome and 0.0 to anything else.

Definition 5 (Dirac measure) The Dirac measure δX(x) ∈ D(X) at x ∈ X is
δX(x)(F) = 1 if x ∈ F , 0 otherwise. We will omit the subscript X if it is clear from
context.

In the case of stochastic phenomena, the product of probability measures is a probability
measure of the random phenomenon, where all the joint stochastic phenomena occur
independently from each other. The product of probability measure is also called joint
distribution in the case of independent random phenomena.

Definition 6 (Product of measures) The product measure µ × λ : F(X × Y) → [0; 1]
of µ : F(X) → [0; 1] and λ : F(Y) → [0; 1] is the unique measure such that (µ×λ)(F ×G) =
µ(F) · λ(G) for all F ∈ F(X) and G ∈ F(Y).

In measure theory the measurable functions are the generalization of the continuous func-
tions. Measurable functions can describe mathematical relations and transformation on
set of outcomes of random phenomenon.

Definition 7 (Measurable function) The function f : X → Y is measurable if
f−1(F) = {x ∈ X | f(x) ∈ F} ∈ F(X) for all F ∈ F(Y). We will write f : X

m→ Y
to emphasize that f is measurable.

In probability theory measurable functions are used to apply transformations on (the
outcomes of) random phenomena. The probability measure of the transformed phenomena
is called induced or pushforward probability measure.

Definition 8 (Induced/Pushforward probability measure) If there is f : X
m→ Y

a measurable function and µ : X → R+ a probability measure on X then let be f∗(µ) =
µ ◦ f−1 : Y → R+ is the induced or pushforward probability measure of µ and f , where
ν = f∗(µ) and ν(F) = µ ◦ f−1(F) = µ(f−1(F)) for all F ∈ F(Y).

Measurable space of distributions

Let be D(X) the set of distributions over measurable space X. D(X) itself forms
a measurable space [?], where F(D(X)) is the smallest σ-algebra such that the
evaluation maps εF : D(X) → [0; 1], εF (µ) = µ(F) are measurable for all F ∈ F(X).

Using the fact that D(X) is measurable, we can conclude that the outcome of a random
phenomenon can be another stochastic phenomenon. For instance, one randomly draws
out a coin from a bag full of biased coins, and the head-tail probabilities of the coins are

6

different. The probability measure of such a phenomenon is the special case of the push-
forward measures when the measurable function assigns another probability measurable
to the outcome of a random phenomenon. This type of pushforward probability measure
is called distribution binding.

Definition 9 (Bind distributions) Let be the measurable transformation of a distribu-
tion µ ≫= f . If (we get a given distribution) µ ∈ D(X) and f : X

m→ D(Y), then we may
form µ ≫= f ∈ D(Y) by (µ ≫= f)(F) =

∫
X f(x)(F) dµ(x) [?]. The resulting distribu-

tion corresponds to the random selection of some x ∈ X according to the distribution µ,
followed by the random selection of some y ∈ Y according to the distribution f(x).
In particular, if g : X

m→ Y and f(x) = δX(g(x)), then g∗(µ) = µ ≫= f is the pushforward
of µ along g, which corresponds to the random selection of some x ∈ X according to µ
followed by the application of the (deterministic) function g.

2.3 Semantics of probabilistic programs

In computer science, probabilistic programs are often used to define the mathematical
model of stochastic software behavior [?]. The semantics of probabilistic programs con-
tain a set of objects, a set of transformations, and a concatenation function. The set of
objects models the actual state of the software. The set of transformations on the set
of objects models the code blocks within the software. An element of this set assigns a
distribution of subsequent states to the actual state. The concatenation function assigns
a distribution on the set of objects to an object and an object transformation function.
The concatenation function models the sequential execution of the programs. The object
transformation describes the state transition of the software into another software state.
The concatenation function assigns an object transformation to two other object transfor-
mations. Thus the concatenation functions model the concatenatenation of two program
blocks into one. In the Church probabilistic programming language [?], the state of the
program is defined by a list of variable name-value pairs. The state transitions are speci-
fied by the set of Church expressions. The Church expressions can be concatenated using
the distribution binding. For example, after the first Church expression the distribution
of program states is known. The distribution is determined by the initial program state
and the first expression. Then after the second expression the state distribution will be
the binding distribution of the second expression and the previous state distribution.

7

Chapter 3

Events

An event is an observable phenomenon, such as an incoming message or an incoming car
on the road. An event might have some parameters. Parameters define the attributes and
properies of the event occurrence. A parameter can be the payload of a message or the
correctness of the payload. An event instance is the occurrence of a given event with a
given parameter. In SGCL, interfaces are syntactic sugar to group a given set of events
together.

Definition 10 (Event) Let be E a finite set of events. The parameter domain of the
event e ∈ E is the measurable space Dom(e) = (Xe, Fe). If Dom(e) = ⊤, then e has no
parameter. Otherwise, e is parameterized. The set of all event instances for a given event
e is denoted by inst(e) = {(e, p) | p ∈ Xe}. In the case when the absence of an event is of
interest, inst⊥(e) is defined as inst(e) ∪ {⊥}.

In stochastic components, the event instances may occur randomly. The distribution of
event instances can model random parameter values in the stochastic components. As a
result, the sigma-algebra of event instances has to be defined.

Definition 11 (Sigma algebra of event) To form measurable spaces, we define the σ-
algebras F(inst(e)) = {{e} × F | F ∈ F(Dom(e))} and F(inst⊥(e)) = F(inst(e)) ∪ {F ∪
{⊥} | F ∈ F(inst(e))}, respectively. For a set of events E, we define the measurable
spaces inst(E) = ⊎

e∈E inst(e) and inst⊥(E) similarly. Finally, let be Fe ∈ F(inst(e)) a
measurable set of instances of event e.

Typical parameter types Common parameter types include finite sets Xfin (e.g.,
{true, false} for Boolean values) with F(Xfin) = 2Xfin , integers with F(Z) = 2Z, and
real numbers with F(R) = B, where B is the Borel σ-algebra generated by the open sub-
sets of the real numbers. Events with more than one parameter may be formed as the
product measurable spaces of elementary parameter spaces.

8

Chapter 4

Semantics of stochastic
synchronous components

In this section, the stochastic synchronous component is defined. Stochastic synchronous
components on execution, if a trigger arrives, sample the input event instances, transition
into a new state, and generate some output events. Event vectors determine which input
and output events are raised during transitions. Event vectors also specify the parameter
values of the generated events.

Definition 12 (Event vector) Given a set of events E, and event vector vE is a func-
tion that assigns a (possibly “null”, i.e., ⊥) event instance to every event e ∈ E such that
vE(e) ∈ inst⊥(e). The set of all possible event vectors is denoted by VE and is endowed
with the σ-algebra F(VE) = ∏

e∈E F(inst⊥(e)).
Let ⊥E denote the empty event vector ⊥E ∈ VE with ⊥E(T) = ⊥ for all e ∈ E. We will use
the notation v1▷v2 for the overlay of the event vectors v1, v2 ∈ VE, where (v1▷v2)(e) = v2(e)
if v2(e) ̸= ⊥, v1(e) otherwise. Note that v ▷ ⊥E = ⊥E ▷ v = v.

In GCL, if the execution of a synchronous component is triggered, then the component
transitions into a new state and generates some output event instances as a function of
the current state and the actual input event instances. Contrarily to GCL, if a transition
occurs, the stochastic synchronous components transition into a random state and generate
output event instances randomly. As a result, stochastic synchronous components contain
the initial state distribution instead of the initial state, and the transition function assigns
a distribution of subsequent states and output event vectors. In stochastic synchronous
components, the domain of events is defined by the domain of the transition distribution.

States of stochastic components

The measurable space of potential states might be uncountable. The state of an
atomic synchronous stochastic component consist of a given number of a discrete
and continuous state variables s = (z1, . . . zk, r1, . . . rl) ∈ SExt = Zk × Rl|k, l ∈ N.

Definition 13 (Synchronous stochastic component) A synchronous stochastic
component is a tuple −⃝ = (S, π0, I, O, T), where

• S is the measurable space of potential states;

• π0 ∈ D(S) is the initial state probability distribution;

9

• I and O are the finite sets of input and output events, respectively, with I ∩ O = ∅,
while the set of all events is denoted by E = I ∪ U ; and

• T : S × VI
m→ D(S × VO) is the transition function, which determines the (random)

next state and vector of output events of the component when executing in a given
state with a given input vector. The behavior of the component is deterministic, but
probabilistic, i.e., it may depend on a random choice, but there is no nondeterminism
within the component.

Determinism of synchronous components

Deterministic synchronous components, i.e., components with a single initial state
s0 ∈ S and a deterministic transition function Tdet : S ×VI → S ×VO may be turned
into a stochastic component with Dirac distributions, which contain no randomness.
Formally, we define π0 = δ(s0) and T (s, v) = δ(Tdet(s, v)).

The definition of the structure of synchronous composite components requires no change
from [?]. Nevertheless, to make the paper self-contained, we repeat the definition here:

Definition 14 (Synchronous composite component [?]) A synchronous compos-
ite component is a tuple s⃝ = (C, I, O,⇌), where

• C = { −⃝1, . . . , −⃝K} is the set of synchronous stochastic components that constitute
the composite component, such that −⃝k = (Sk, π0

k, Ik, Ok, Tk) for all k = 1, . . . , K;

• I ⊆ Î is the set of exported input events, where Î = ⋃K
k=1 Ik;

• O ⊆ Ô is the set of exported input events, where Ô = ⋃K
k=1 Ok;

• inputs and outputs are disjoint no two components have common outputs, i.e., Î ∩
Ô = ∅ and Ok ∩ Oℓ = ∅ holds for all k ̸= ℓ; and

• ⇌ : Î \ I → Ô is the channel function that associates each non-exported input with
an output from which it will receive events, i.e., an input is either linked to an output
by ⇌ or is exported. For each e ∈ Î \ I, we must have Dom(e) = Dom(⇌(e)).

The semantics of synchronous composite components must be adapted to take their prob-
abilistic behavior into account. The initial state distribution of a stochastic composite
synchronous component is the product measure of the initial distribution of the subcom-
ponents, where no previous event is raised with one probability. Note that the initial
distributions of the subcomponents are independent. The transition function of the com-
posite component is defined in three steps. First, we determine the joint distribution of the
transition functions of the subcomponents. Then we define the combine function, which
assigns the state of the composite component to the states and output event vectors of the
constituent components. Finally, the transition distribution of the composite component
is defined with the pushforward distribution of the joint distribution of the next state and
output distribution, and the combine function.

Definition 15 (Semantics of synchronous composition) A synchronous composite
component s⃝ = (C, I, O,⇌) is a synchronous stochastic component s⃝⟩ −⃝ =
(S, π0, I, O, T) as follows:

• S = S1 × · · · SK × V
Ô

is the set of potential states, which is formed by all possible
combinations of the potential states of the constituent components as well as the last
output event vector of every component.

10

• π0 is the product measure
∏K

k=1 π0
k × δ(⊥

Ô
).

• To construct T , let be the function combine : (S1 × VO1) × · · · × (SK × VOK
)) m→ S

combine((s1, v1), . . . , (sK , vK)) = ((s1, . . . , sK), v1 ⊎ · · · ⊎ vK).
This function is measurable, because it only rearranges tuple and event vector com-
ponents. Now let

T (((s1, . . . , sK), v
Ô

), vI) = combine∗(T1(s1, vI1) × · · · × TK(sK , vIK
)) × δ(vO), (4.1)

where

– for all k = 1, . . . , K and e ∈ IK ∩ I, vIK
(e) = vI(e);

– for all k = 1, . . . , K and e ∈ IK \ I, vIK
(e) = v

Ô
(⇌(e)); and

– vO is the restriction of v
Ô

to the exported output events O.

Constituent components in a synchronous composite component act independently from
each other. The product measure of the constituent transitions in (4.1) corresponds to
an independent sample of the next states and output event vectors of the components.
The output event vector is delayed until the next event to avoid feedback loops between
components formed by the channel function ⇌.
Similarly to synchronous composite components, the structure of synchronous cascade
components can be taken from [?] as is:

Definition 16 (Synchronous cascade component) A synchronous cascade compo-
nent is a tuple c⃝ = (C, Exec, I, O,⇌), where

• C = { −⃝1, . . . , −⃝K} is the set of synchronous stochastic components that constitute
the composite component, such that −⃝k = (Sk, π0

k, Ik, Ok, Tk) for all k = 1, . . . , K;

• Exec ∈ C∗ is a finite ordered sequence (possibly with repetitions) of synchronous
components called the execution sequence that specifies the order of components to
be executed in an execution cycle;

• I ⊆ Î is the set of exported input events, where Î = ⋃K
k=1 Ik;

• O ⊆ Ô is the set of exported input events, where Ô = ⋃K
k=1 Ok;

• inputs and outputs are disjoint no two components have common outputs, i.e., Î ∩
Ô = ∅ and we have Ok ∩ Oℓ = ∅ for all k ̸= ℓ; and

• ⇌ : Î \ I → Ô is the channel function. For each e ∈ Î \ I, we must have Dom(e) =
Dom(⇌(e)).

To define the semantics of cascade composition, we define the lifti and turni functions.
The lifti function lifts the transition distribution of the ith constituent component to the
level of the composite component if all other subcomponents remain in the same state.
The turni function calculates the transition distribution of the composite component if
only the ith constituent component can change state. The turni function assigns the
pushforward distribution of the lifti function and the transition distribution of the ith
subcomponent. The transition function of the cascade composite component is defined by
binding together the turni functions in the order of the execution list.

11

Definition 17 (Semantics of cascade composition) A cascade composite component
c⃝ = (C, Exec, I, O,⇌) is a synchronous stochastic component c⃝⟩ −⃝ = (S, π0, I, O, T) as

follows:

• S = (S1 × · · · SK) × V
Ô

is the set of potential states;

• π0 is the product measure
∏K

k=1 π0
k × δ(⊥

Ô
).

• To calculate T (s, vI), first let µ0 = δ(s). We iteratively compute µi = µi−1 ≫= turni

for each i = 1, . . . , |Exec|, where Exec[i] = −⃝k,

turni

((
s

(i−1)
1 , . . . , s

(i−1)
k , . . . , s

(i−1)
K

)
, v

(i−1)
Ô

)
= lifti∗

(
Tk

(
s

(i−1)
k , v

(i)
Ik

))
, (4.2)

lifti

(
s

(i)
k , v

(i)
Ok

)
=

((
s

(i−1)
1 , . . . , s

(i−1)
k−1 , s

(i)
k , s

(i−1)
k+1 , . . . , s

(i−1)
K

)
, v

(i)
Ô

)
, (4.3)

– for all e ∈ Ik ∩ I, v
(i)
Ik

(e) = vI(e)),

– for all e ∈ Ik \ I, v
(i)
Ik

(e) = v
(i−1)
Ô

(⇌(e))),

– for all e ∈ Ok, v
(i)
Ô

= v
(i)
Ok

(e), and

– for all e ∈ Ô \ Ok, v
(i)
Ô

= v
(i−1)
Ô

(e).

Finally, let out((s1, . . . , sK), v
Ô

) = (((s1, . . . , sK), v
Ô

), vO), where vO is the restric-
tion of v

Ô
to O. Then T (s, vI) = out∗(µ|Exec|).

4.1 Synchronous elementary stochastic components

Two types of stochastic elementary components can have synchronous behavior: stochastic
sample and stochastic switch.

Definition 18 (Synchronous stochastic sample) A synchronous stochastic simple is
a synchronous component −⃝s = (S, π0, I, O, T) with the following restrictions,

• S = {s0} −⃝s has only one state;

• π0 ∈ δ(s0) the initial state is always s0;

• |I| = |O| = n, n ∈ N+ the number of input and output events are the same I =
{i1, . . . in} and O = {o1, . . . on};

• Dom(ii) = Dom(oi);

• T (s0, vI) ∈ D({(s0, vO)|(vI(ii) = ⊥) → (vO(oi) = ⊥)});

Stochastic switch

The stochastic switch is just syntactic sugar since any stochastic switch can be
replaced by a stochastic sample and a statechart, which sends out the incoming
event based on the random sample. The distribution of the stochastic sample must
be categorical distribution, and the statechart only has one state. Therefore, we do
not define the semantics of stochastic switches separately.

12

Chapter 5

Semantics of stochastic
asynchronous components

5.1 Timing of events

As time passes, events may occur randomly in stochastic components. As a result, we shall
extend the definition of event instances with occurrence time. Arming event instances
model the occurrence of a given event instance at a given time. An arming event instance
consists of an event instance and an alarm clock, which determines when the event instance
will occur. This alarm clock is defined by the absolute time of occurrence, which is positive
real number t ∈ R+. We introduce arming vectors to model a given set of arming event
instances. Arming vectors define a set of arming event instances.

Definition 19 (Armed event instance) Let be eit = (t, (e, p)) an arming event in-
stance. The set of arming instances of an event is arm(e) = R+ × inst(e). The arming in-
stance (τ, (e, p)) ∈ arm(e) corresponds to the event e occurring with parameter p ∈ Dom(e)
in exactly τ units of time. To describe situations where an event may not be armed, we
define arm⊥(e) = arm(e) ⊎ {⊥}. We endow these sets with the corresponding product and
disjoint union σ-algebras F(arm(e)) and F(arm⊥(e)), respectively, to form measurable
spaces.

Definition 20 (Arming vector) An arming vector avE over a finite set of events
E is a countable set of arming event instances, which may be empty, where avE ⊆
(∏e∈E arm(e)) ⊎ {⊥}. We use ArmE to denote the set of all arming vectors over E and
endow it with the product σ-algebra F(ArmE) = ∏

e∈E F(arm⊥(e)) to form a measurable
space. We write ⊥E for the empty arming vector, where ⊥E(e) = ⊥ for all e ∈ E.

5.2 Stochastic asynchronous component

The stochastic asynchronous component contains initial state distribution instead of an
initial state, and the transition function returns with a distribution. Contrarily to syn-
chronous components, the initial state distribution also determines the initial events be-
sides the initial state.
Stochastic asynchronous components can generate the arming event instances during tran-
sitions. The transition function of the distributions determine both the parameters and
the time of the arming instances. The collection of the arming events is called the alert

13

input of the component. As a result, the component may generate its own input event
instances on each transition. In stochastic asynchronous components, two or more events
may occur at once. In this case, we use a fixed priority sequence to determine in which
order the events will affect the component.
Moreover, if a stochastic asynchronous component transitions, the component cannot gen-
erate more than one output event instance. Multiple output events can occur at the same
time, if the component generates multiple arming input event instances, when a transition
occurs. The time of the new arming instances shall be the actual time. In the semantics
there is no dedicated notation for actual time. All timing information is contained by
arming vectors.

Definition 21 (Asynchronous component) An asynchronous component is a tuple
=⃝ = (S, π0, I, A, PrioA, O, T), where

• S is the measurable space of potential states;

• π0 ∈ D(S × ArmA) is the initial state and arming vector probability distribution,
which determines the (random) initial state of the component;

• I and O are the finite sets of input and output events, respectively, with I ∩ O = ∅,
while the set of all events is denoted by E = I ∪ U ;

• A ⊆ I is the set of alert input events;

• PrioA ∈ A∗ is the alert input event priority sequence, in which every alert input
event e ∈ A occurs exactly once. Simultaneous alert input events will be processed
according to this ordering.

• T : S × inst(I) m→ D(S × inst⊥(O) × ArmA) is the transition function, which deter-
mines the (random) next state, the output event (if any), and the alert input events
to be armed when executing in a given state with a given input event instance.

Nondeterminism of asynchronous components

The behavior described by the transition function T of the asynchronous component
is deterministic, but probabilistic. This is in contrast with [?], where nondeter-
minism was suggested to resolve issues with concurrency, such as between parallel
regions of a statechart. We instead resolve the concurrency by either fixed or ran-
dom choice.

5.3 Stochastic asynchronous adapter

The asynchronous adapters are similar to adapters in GCL. In SGCL, the adapters contain
a priority sequence to determine in which order the outputs of a synchronous component
are percieved by its environment. Moreover, the adapters cannot contain clock in SGCL.
Periodic execution can be modeled with composition and periodic event sources.

Definition 22 (Asynchronous adapter) An asynchronous adapter for a synchronous
component is a tuple −⊏⃝ = (−⃝, ec, Trig, PrioO), where

• −⃝ = (Ss, π0
s , Is, Os, Ts) is the wrapped synchronous component;

14

• ec /∈ Is is the control event, which has no parameters Dom(ec) = ⊤; and

• Trig ⊆ Is ∪ {ec} is the set of trigger events that cause the component to execute.
Other incoming events are buffered until a trigger event is received. By convention,
we require that ec ∈ Trig.

• PrioO ∈ O∗
s is an output event priority sequence, in which each output event e ∈ Os

appears exactly once. Simultaneous output events will be emitted according to this
ordering. This is in contrast with [?], where a non-deterministic ordering (any
permutation of output events is allowed) is used.

The asynchronous adapters buffer the input and output event instances in queues. Initially,
all input and output queues are empty. The adapter state consists of the state of the
wrapped component and the input and output buffers. The execution of the wrapped
synchronous component can be triggered externally by a dedicated ec control event or
by an input event. In addition, the adapter can be triggered internally by the internal
alert event eo of the adapter. Additionally, we will use the notation aveo(v) = ⊥A if
v = ⊥O, otherwise aveo(v) = {eo 7→ (0, (eo, ⊤))}, which schedules the alert input event eo

immediately.

Definition 23 (Semantics of asynchronous adapters) An asynchronous adapter
−⊏⃝ = (−⃝, ec, Trig, PrioO) (where −⃝ = (Ss, π0

s , Is, Os, Ts) is the wrapped synchronous
component) is an asynchronous component −⊏⃝⟩ =⃝ = (S, π0, I, A, PrioA, O, T):

• S = Ss × VI × VO is the set of potential states (ss, vI , vO) ∈ S formed by pairs of
wrapped synchronous component states and buffered input and output event vectors.

• π0 = (π0
s × δ(⊥I) × δ(⊥O)) × δ(⊥∅) is the initial state and arming vector proba-

bility distribution, which is the initial state probability distribution of the wrapped
synchronous component with no buffered events or armed input events affixed.

• I = Is ⊎{ec, eo} is the set of wrapped and control inputs, where eo /∈ Is is the internal
output alert event with Dom(eo) = ⊤.

• A = {eo} and PrioA = ⟨eo⟩, because only the output alert event will be used to trigger
timing-dependent behavior.

• O = Os is the set of wrapped outputs.

• The transition function T ((ss, vI , vO), (eI , pI)) is defined as follows:

– First, if eI ∈ {ec, eo}, let v′
I = vI . Otherwise, let v′

I = vI ▷ {eI 7→ (eI , pI)}.
– If eI = eo, then we may output a single output event from our buffer vO.

∗ If vO = ⊥O, we set T ((ss, vI , vO), (eI , pI)) = δ((ss, v′
I , vO), ⊥, ⊥A), since

there is no output event to flush from the buffer.
∗ Otherwise, let ep be the first event in PrioO such that vO(ep) ̸= ⊥ and let

v′
O(ep) = ⊥ while v′

O(e) = vO(e) for all e ∈ O \ {ep}.

T ((ss, vI , vO), (eI , pI)) = δ((ss, v′
I , v′

O), vO(ep), aveo(v′
O)). (5.1)

Thus, we flush the event ep with the highest priority from the buffer and
schedule the next output event to be flushed immediately if there is any.

– If eI /∈ Trig, then let T ((ss, vI , vO), (eI , pI)) = δ((ss, v′
I , vO), ⊥, ⊥A), adding the

input event instance to the buffer for further processing.

15

– If eI ∈ Trig, then we may let the wrapped synchronous component process the
buffered events. Consider the function lift : Ss × VO

m→ S × inst⊥(O) × ArmA

defined as

lift(s′
s, v′

O) = ((s′
s, ⊥I , vO ▷ v′

O), ⊥, aveo(vO ▷ v′
O)). (5.2)

Then T ((ss, vI , vO), (eI , pI)) = lift∗(Ts(ss, v′
I)).

Limits for queue size

In GCL and SGCL, one can specify an upper limit for the queue size. Finite
queue size is essential for analysis methods, which explore the whole state space of
the model. Without a queue size limit, the state space would be infinite. In IoT
applications, it is hard to give an upper limit to the queue size. Using simulation-
based analysis methods such as Monte-Carlo algorithms do not need finite queue
length if the probability of infinite queue length is zero.

5.4 Stochastic asynchronous composite component

In SGCL, we extended the definition of asynchronous composite components with a PrioC
priority sequence, which resolves potential nondeterminism in a composite asynchronous
component. Nondeterminism may appear in the model if a channel connects an output
event of a subcomponent to the input events of two or more subcomponents. The priority
sequence defines in which order the asynchronous components can react to events.

Definition 24 (Asynchronous composite component) An asynchronous composite
component is a tuple a⃝ = (C, PrioC, I, O,⇌), where

• C = { =⃝1, . . . , =⃝K} is the set of asynchronous stochastic components that constitute
the composite component, such that =⃝k = (Sk, π0

k, Ik, Ak, PrioAk
, Ok, Tk) for all k =

1, . . . , K;

• PrioC is the component priority sequence, where each component =⃝k ∈ C occurs
exactly once;

• I ⊆ Î is the set of exported input events, where Î = ⋃K
k=1 Ik;

• we have A ⊆ I, where A = ⋃K
k=1 Ak is the set of all alert input events;

• O ⊆ Ô is the set of exported output events, where Ô = ⋃K
k=1 Ok;

• inputs and outputs are disjoint and no two components have common alert inputs or
outputs, i.e., Î ∩ Ô = ∅ and we have Ak ∩ Aℓ = Ok ∩ Oℓ = ∅ for all k ̸= ℓ; and

• ⇌ ⊆ Ô× Î is the channel relation that connects arbitrary outputs to arbitrary inputs.
For each o ⇌ i, we must have Dom(o) = Dom(i). To ensure that the behavior of the
composite component remains deterministic, we require that there is no constituent
asynchronous component =⃝k with i1, i2 ∈ Ik for all o ∈ Ô, o ⇌ i1, and o ⇌ i2
with i1 ̸= i2, i.e., a single output event is routed to at most one input event of any
constituent asynchronous component.

16

In stochastic asynchronous components, input queues contain the input event instances of
the subcomponents until the events are processed. The queues are defined as a sequence
of event instances. The state of an asynchronous composite component consists of the
states of the subcomponents and their input queues..
The transition function of the composite component is determined by the sequential tran-
sitioning of its subcomponents. Only one subcomponent can activate transition at once.
Each subcomponent executes state transition the following way. Firstly, the subcompo-
nent gets the last event instance from its input queue. Then the subcomponent transitions
into a new state, and generates some new event instances.
The output event instances are redirected to the input buffers of other subcomponents
via the channels. Event instances in the input queues are generated within the composite
component. Consequently, these events are defined as alarm input events. The component
priority sequence defines which component will transition first if multiple queues have
events. As a result, the nondeterminism of the asynchronous components can be resolved.

Definition 25 (Semantics of asynchronous composition) For every asynchronous
composite component a⃝ = (C, PrioC, I, O,⇌) we may construct an asynchronous compo-
nent a⃝⟩ =⃝ = (S, π0, I ∪ {es}, A, PrioA, O, T) as follows:

• S = (S1 × · · · × SK) × (inst(I1)∗ × · · · × inst(IK)∗) is the product state space of the
constituent asynchronous components and their corresponding input event queues.

• Consider the function combine : ∏K
k=1(Sk × ArmAk

) m→ S × ArmA, where

combine((s1, av1), . . . , (sK , avK)) = (((s1, . . . , sK), (⟨⟩, . . . , ⟨⟩)), av1 ⊎ · · · ⊎ avK).
(5.3)

Then π0 = combine∗(π0
1 × · · · × π0

K).

• A = {es} ⊎ A1 ⊎ · · · ⊎ Ak is the set of all alert input events, where es is the step alert
event with Dom(es) = ⊤.

• Let PrioC = ⟨ =⃝1, . . . , =⃝K⟩. Then PrioA = ⟨es⟩ ++ PrioA1 ++ · · · ++ PrioAK
is the

alert input priority sequence, which contains the alert input priority sequences of the
constituent asynchronous components in the order of their component priority.

• The transition function T (((s1, . . . , sK), (q1, . . . , qK)), (eI , pI)) is defined as follows:

– If eI = es, then we may execute one of the constituent asynchronous components
for a single step, possibly scheduling the execution of the next step immediately
afterwards.

∗ If q1 = . . . = qK = ⟨⟩, then there is no queued input event to process. Thus,
we may set T (s, (eI , pI)) = δ(s, ⊥, ⊥A).

∗ Otherwise, let k be the index of the component =⃝k occurring earliest in
PrioC such that qk ̸= ⟨⟩ and let qk = ⟨(e, p)⟩ ++ q′

k. For all other i ̸= k,
let q′

i = qi. Let us consider the function lift : Sk × inst⊥(Ok) × ArmAk

m→
S × inst⊥(O) × ArmA,

lift(s′
k, eik, avk) = (((s1, . . . , sk−1, s′

k, sk+1, . . . , sK), (q′′
1 , . . . , q′′

K)), ei, av).
(5.4)

In the definition above, if eik = ⊥, then q′′
i = q′

i for all i = 1, . . . , K and
ei = ⊥. If eik = (e′, p′), then let q′′

i = ⟨(e′′, p′)⟩ ++ q′
i for all components

=⃝i ∈ C and events e′ ⇌ e′′ such that e′′ ∈ Ii. For all other components

17

=⃝j ∈ C, let q′′
j = q′

j instead. Moreover, let ei = (e′, p′) if e′ ∈ O, ⊥
otherwise. Lastly, if q′′

1 = . . . = q′′
K = ⟨⟩, let av = avK , else let av =

avK ∪ {es 7→ (t, (es, ⊤))}, where t ∈ R+ is the actual time. Thus we obtain
T (s, (eI , pI)) = lift∗(Tk(sk, (e, p))).

– Otherwise, we add the input event (eI , pI) to the respective queue and schedule
an execution step immediately afterwards. Formally, let q′

k = qk ++⟨(eI , pI)⟩ for
the component =⃝k ∈ C such that eI ∈ Ik and q′

i = qi for all other components
=⃝i ∈ C. Then we may set

T (s, (eI , pI)) = δ(((s1, . . . , sK), (q′
1, . . . , q′

K)), ⊥, {es 7→ (0, (es, ⊤))}). (5.5)

5.5 Semantics of elementary stochastic components

The set of elementary components is a subset of stochastic components, where we made
the following restrictions the component must have only one state, and all transitions
are loops. There are four types of elementary stochastic components: stochastic event
source, periodic event source, delay, and sample. The event filters and the stochastic rules
are just syntactic sugar to facilitate the definition of the transition function of stochastic
elementary components.

5.5.1 Stochastic event source

The event source components raises their output events only once at a random time. The
event source has no real input events only alarm inputs. Each output event has its own
alarm input event. The output events have no parameters. The initial distribution defines
when the output events of the event source will occur. The transitions function generates
the corresponding output event for each alarm input event with a Dirac distribution. The
transition function generates no arming input event.

Definition 26 (Stochastic event source) Stochastic event source is a stochastic asyn-
chronous component =⃝es = (S, π0, I, A, PrioA, O, T).

• S = s0 has only one state,

• I = A, all input events of a stochastic event source are alert input events,

• the number of output, input and alert input events are the same |A| = |O| = n, n ∈
N+ and let be A = a1, a2, . . . an and O = o1, o2 . . . on,

• Dom(oi) = Dom(ai) = ⊤ for all i = 1, 2, . . . n,

• π0 ∈ D({(s0, {(t1, (a1, ⊤)), . . . (tn, (an, ⊤)))})|t1, . . . tn ∈ R+},

• T (s0, (t, (ai, ⊤))) = δ(s0, (oi, ⊤), ⊥A)

5.5.2 Stochastic periodic event source

The definition of the periodic event source is the same as the event source except for
the transition function. The transition function of periodic event sources generates other
arming input event instances. If an instance of an arming input event triggers a transition,
then the transition function will generate another instance of the given arming input event.

18

The occurrence time distribution of the new instance is defined with stochastic rules. Note
that the definition of periodic event sources enables time-dependent distributions.

Definition 27 (Stochastic periodic event source) Stochastic periodic event source is
a stochastic asynchronous component =⃝pes = (S, π0, I, A, PrioA, O, T).

• S = s0 has only one state,

• I = A, all input events of a stochastic event source are alert input events,

• the number of output, input and alert input events are the same |A| = |O| = n, n ∈
N+ and let be A = a1, a2, . . . an and O = o1, o2 . . . on,

• Dom(oi) = Dom(ai) = ⊤ for all i = 1, 2, . . . n,

• π0 ∈ D({(s0, {(t1, (a1, ⊤)), . . . (tn, (an, ⊤)))})|t1, . . . tn ∈ R+},

• T (s0, (t, (ai, ⊤))) ∈ D({(s0, (oi, ⊤), {(t + ti, (ai, ⊤))})|ti ∈ R+}) thus the transition
distribution is an element of the set of distributions where the generated output and
alert input events are deterministic only the occurrence time is stochastic

5.5.3 Stochastic delay

If a delay component receives an incoming event instance, it generates an output event
instance a random time later with the same parameters as the incoming event. Each direct
(not alarm) input event of a stochastic delay has its own alarm input and output events.
If an direct input event instance occurs, the stochastic delay will generate an instance of
the corresponding alarm input event with the same parameters. The distribution of the
alarm event instance is defined by a stochastic rule. The instance of the alarm input event
will generate an instance of the corresponding output event with the same parameters
with the Dirac distribution.

Definition 28 (Stochastic delay) Stochastic periodic event source is a stochastic asyn-
chronous component =⃝d = (S, π0, I, A, PrioA, O, T).

• S = s0 has only one state,

• |I| = 2 · |O| = 2 · |A|, each input event has its own alert input and output events
|A| = |O| = n, n ∈ N+ and let be A = {a1, a2, . . . an}, O = {o1, o2 . . . on} andI =
{i1, . . . in, a1, . . . an},

• Dom(oi) = Dom(ai) = Dom(ii) for all i = 1, 2, . . . n the parameters domains of the
corresponding input, alarm input and output events are the same,

• π0 = δ(s0, ⊥) has no initial arming events,

• T (s0, (t, (ii, pi))) ∈ D({(s0, ⊥, {(t + ti, (ai, pi))})|ti ∈ R+})

• T (s0, (t, (ai, pi))) = δ(s0, (oi, pi), ⊥A)

19

5.5.4 Stochastic sample

If a sample component receives an input event instance, it generates an output event
immediately with random parameters. Each input event of a stochastic sample has its
own output event. If an instance of an input event occurs the stochastic sample will
generate an instance of the corresponding output event immediately. The parameters
distributions of the output events are defined with stochastic rules. The stochastic sample
has no alarm input events.

Definition 29 (Stochastic sample) Stochastic periodic event source is a stochastic
asynchronous component =⃝s = (S, π0, I, A, PrioA, O, T).

• S = s0 has only one state,

• A = ∅ has no arming input event

• |I| = |O|, each input event has its own output events |I| = |O| = n, n ∈ N+ and let
be O = {o1, o2 . . . on} andI = {i1, . . . in, a1, . . . an},

• Dom(oi) = Dom(ii) for all i = 1, 2, . . . n the parameters domains of the correspond-
ing input and output events are the same,

• π0 = δ(s0, ⊥A) has no initial arming events,

• T (s0, (t, (ii, pin,i)) ∈ D({(s0, (oi, pout,i), ⊥A)|pout,i ∈ Dom(ii)})

20

Chapter 6

Semantics of runs

Now we are ready to describe the probabilistic semantics of stochastic Gamma models.
First, composite components are translated into their corresponding atomic components
according to Definitions 15, 17, and 25. Synchronous components are converted into
asynchronous components according to Definition 23 by constructing an asynchronous
adapter. Thus, it is sufficient to describe the stochastic semantics of atomic asynchronous
components.

6.1 Extended state of an asynchronous component

At a given time, the behavior of an asynchronous component is determined by its actual
state and all the alarm clocks generated by the previous transitions. The state of a
stochastic asynchronous component does not contain all information about the component
since the alarm clocks of the arming vectors contain the timing-related behavior. As a
result, a new kind of extended state has to be introduced, which contains all information
about a given component at a given time.

Definition 30 (Extended State) If we let a component run, then the actual state of
the component at given time consist of the state) and the arming vector, which a contains
all the arming and output event instances generated by the component. The extended
state es = (s, avA, ei) ∈ S × ArmA × inst(O) of a stochastic asynchronous component
=⃝ = (S, π0, I, A, PrioA, O, T) consists of the state of the component and the arming
vector of the alert input events. Let be the set of extended states SExt = S×ArmA×inst(O).

Extended state and transitions

If the extended state is esK = (sK , avS K , eiout K)
and a (sK , eiin K) → (sK+1, avK+1, eiout K+1) transition occurs,
then the extended state will change to: esK+1 = (sK+1, avS K ⊎ avK+1 \
{eiK}, eiK+1). Let be F(SExt) the σ-algebra of extended states and let be Fes ∈
F(SExt) a measurable set of extended states.

21

6.2 Earliest event in a stochastic component

To get the earliest arming event instance of an arming vector in a stochastic asynchronous
component, we define the min=⃝(ArmA). This function searches for the arming event
instance, which has the earliest occurrence time. If multiple arming event instances occur
at a minimal time, then the function chooses the arming event instance with the highest
priority according to the priority sequence of the component. The elementary stochastic
components are designed in a way to prevent that two or more arming event instance
generated at the same time. In case of composite stochastic models the component priority
sequence guarantees the determinism.

Definition 31 (Earliest arming event instance) Let be the earliest arming event in-
stance of an arming vector in a stochastic asynchronous component min=⃝(ArmA) =
(tmin, (emin, pmin)) ∈ ArmA, where ∀eit = (t, (e, p)) ∈ ArmA either:

• tmin < t or

• tmin < tandemin is before than e in PrioA

6.3 Paths of asynchronous components

As a stochastic asynchronous component runs, it changes states and generates events ran-
domly. As time passes, the number of state changes and event instances can be indefinitely
large. The distribution of the runs is determined by the transition function and initial
distribution of the component. Each run is determined by the timed sequence of state
changes and event occurrences. All of this information is stored in the extended states.
Similarly to PRISM, we use paths to model the random runs. A path contains a sequence
of extended states. Note that in contrast to the paths of continuous Markov-chains and
stochastic timed automata, a path of a stochastic asynchronous component does not have
to contain dedicated time delays. The timing information is stored within the arming
vectors within the extended states. The time of a transition can be calculated using the
min=⃝ function. The alarm clock of min=⃝(esK) determine the time of the Kth transition
within the path.

Definition 32 (Path of a component) Let be path of a stochastic asynchronous com-
ponent the sequence of extended states:

ρ = ⟨es1, es2, . . . , esK⟩ ∈ SExt
K

and the set paths of a stochastic asynchronous component:

Path=⃝ = SExt
K

Infinite cycles in asynchronous components

In composite asynchronous components, one can define such behavior, which gen-
erates an infinite number of events at a given time. This behavior may occur if the
instance of an alert event can cause (with one probability) another instance instan-
taneously in an infinite cycle. Infinite events in finite time cannot be simulated and
cannot occur in real systems. As a result, the ability of a component to generate
infinite events within finite time is a semantic error.

22

If a stochastic component runs indefinitely, then the set of possible runs might be con-
tinuously infinite. The set of paths of a given component might contain infinite pieces of
infinitely long paths. We introduce the cylinder sets of paths to define sigma-algebras on
the set of paths. The cylinder sets can be interpreted as the intervals of paths.
Definition 33 (Cylinder sets of a path) For path ρ = ⟨Fes 1, . . . , Fes K⟩ ⊂ SExt

K with
K ≤ L extended states, the CylL(ρ) cylinder set is the set of (finite or infinite) traces with
the prefix ρ if K = L, or just the singleton set {ρ} if K < L.

Let be F(Path=⃝) be the smallest sigma algebra on Path=⃝ which contains all cylinder sets
Cyl.

Transition function as conditional distributions

Similarly to Markov chains, the transition function can be written as a conditional
distribution. In this form, the transition function is the conditional distribution of
the next extended state of the component, assuming the specific extended state of
the component:

D=⃝(esK+1|esK) = next∗(avK)(T (sK , min=⃝(avK))),
Dρ(⟨es1, . . . esK , esK+1⟩|⟨es1, . . . esK⟩) = next∗(avK)(T (sK , min=⃝(avK)))

where next assigns the next extended state to an outcome of a transition function
and the arming vector of the previous extended state:

esK+1 = (sK+1, avK+1, eiK+1),
esK = (sK , avK , eiK),

next : Arm × S × Arm × inst(O) m→ SExt ,
next(avK)(sT , avT , eiT) = (sT , avK ⊎ avT , eiT)

We define a probability measure on the set of paths iteratively. We use a generalized
form of Kolmogorov’s extension theorem since we can construct iteratively probability
measures on infinitely long sequences of random phenomena using Kolmogorov’s Extension
Theorem. Thus we can define a probability measure the following way: firstly, We specify
the probability measure for the one-long sequences; secondly, we assume that we defined
the probability measure for the set of random variable sequences with a given length;
finally, we define a probability measure for the set of one longer variable sequences. In the
case of stochastic components, the random phenomena will be the distribution of extended
states. The initial distribution π0

es of a stochastic component specifies the initial extended
state of the component at the beginning of each run. As transitions occur, then the state
distribution changes as well. We use distribution binding to define the probability measure
on the set of one longer paths. The bind operator determines the state distribution after
the occurrence of a transition. If πL

es denotes the state distribution after L number of
transitions, then πL+1

es = πL
es ≫= D=⃝ denotes the state distribution if a new transition

occurs.
Definition 34 (Probability measure on a finite path) Probability measure of an
L ∈ N long path:Pr =⃝

ρ : F(Path=⃝
L) m→ R+ where

• if L=0 then Pr =⃝
ρ (F(ρ0)) = π0

• We assume that we defined the probability measure Pr =⃝
ρ (F(ρL)) for all L long paths

• let be the probability measure for the sigma algebra of the cylinder set of all L long
paths ρL ∈ Path=⃝

L Pr =⃝
ρ (F(ρL+1)) for all L + 1 long paths ρL+1 ∈ Path=⃝

L+1, where:

23

– esK = (sK , avK), (τK+1, eiK+1) = min=⃝(avK):
The time of the next event transition is determined by the previous extended
state by getting the earliest arming event instance in the Kth arming vector.

– Pr =⃝
ρ (F(ρL+1)) = Pr =⃝

ρ (F(ρL)) ≫= Dρ:
The probability measure of the L long path and the stochastic transition distri-
bution of the next extended state are binded together.

Asynchronous components as probabilistic programs

The semantics of stochastic asynchronous components is defined similarly to prob-
abilistic programs. There is a strong analogy between the semantics of asyn-
chronous stochastic components and probabilistic programs. In the semantics of
asynchronous components, the extended state is analogous to the set of variable
name-value pairs. The stochastic transition function is analogous to the expres-
sions of probabilistic programming languages. Finally, both the effect of sequential
state transitions and the concatenation of probabilistic program blocks are defined
with the distribution binding. As a result, we can construct a probabilistic program
for each asynchronous component, which has the same semantics and represents the
same behavior.

6.4 Traces of asynchronous components

In practical applications, we want to analyze only the output events of a given component.
As a result, we introduce traces which are sequence output event instances and the time
interval between them.

Definition 35 (Traces of asynchronous components) A trace of the asynchronous
component =⃝ = (S, π0, I, A, PrioA, O, T) is a finite or infinite sequence ⟨τ1, ei1, τ2, ei2, . . .⟩
of alternating delays τi and event instances eii ∈ inst⊥(O). We let Trace=⃝(O) denote the
set of all (finite or infinite) traces and let Trace=⃝

≤L(O) denote set of a traces with at most
L event instances.

Definition 36 (Cylinder sets of finite traces) For a finite trace tr =
⟨τ1, ei1, . . . , τK , eiK⟩ ∈

(
R≥0 × inst⊥(O)

)K with K ≤ L event instances, the
CylL(tr) = ⟨Iτ1, Fe1, . . . IτL, FeL⟩ cylinder set is the set of (finite or infinite) traces
with the prefix tr if K = L, or just the singleton set {tr} if K < L.

The traces can be derived directly from paths by leaving out the arming vector and the
state from the extended states. Thus, we define the toTrace function the following way:

Definition 37 (Path to trace transformation) Let be the toTrace function set of
traces: toTrace : Path=⃝ m→ Trace=⃝ ,where:
toTrace(⟨(s0, av0, ei0), . . . , (sK , avK , eiK)⟩) = ⟨τ1, ei1, . . . , τK , eiK⟩ and
(τi+1, _) = min=⃝(avi)

We define a probability measure on traces using the pushforward distribution of the prob-
ability measure of paths and the toTrace function.

Definition 38 (Probability measure of traces) Let be the probability measure of the
sigma algebra of cylinder set of traces: Pr =⃝

tr : F(Trace=⃝) m→ R+ ,where: Pr =⃝
tr =

toTrace∗(Pr =⃝
ρ)

24

6.5 Continuous Stochastic Logic

Continuous stochastic logic is a defined with time-dependent logic expressions in stochas-
tic models. For instance, continuous stochastic logic is used together with Markov-chains,
stochastic Petri-nets and stochastic timed automata. Continuous stochastic logic expres-
sions can specify a given set of paths that satisfy or violate a given condition. Atomic
expression specifies a Boolean condition on the state space of the stochastic model. Logic
and temporal logic expressions can combine atomic expressions and other expressions. In
addition, one can use stochastic expressions to specify the probability of paths that satisfy
a given expression or the expected time until a given condition is true. Finally, continu-
ous stochastic logic can define conditional probabilities and expected values. Continuous
stochastic logic can be applied to SGCL models. The atomic expressions of the contin-
uous stochastic logic assign a Boolean value to the output events in the traces. In the
analysis components, template sentences define continuous stochastic logic expressions in
a simplified way. SGCL template sentences support only a subset of continuous stochastic
logic expressions. Template sentences can specify time-limited conditions on the SGCL
models.

25

	Introduction
	Mathematical background
	Measure theory
	Probability measures
	Semantics of probabilistic programs

	Events
	Semantics of stochastic synchronous components
	Synchronous elementary stochastic components

	Semantics of stochastic asynchronous components
	Timing of events
	Stochastic asynchronous component
	Stochastic asynchronous adapter
	Stochastic asynchronous composite component
	Semantics of elementary stochastic components
	Stochastic event source
	Stochastic periodic event source
	Stochastic delay
	Stochastic sample

	Semantics of runs
	Extended state of an asynchronous component
	Earliest event in a stochastic component
	Paths of asynchronous components
	Traces of asynchronous components
	Continuous Stochastic Logic

