
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Verifying the Architecture

István Majzik, Zoltán Micskei

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying the architecture, Dependability analysis

o Runtime verification
2

Table of Contents

 Introduction
o Architecture design and languages

o What is determined by the architecture?

o What kind of verification methods can be used?

 Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

 Systematic analysis methods
o Interface analysis

o Fault effects analysis

 Model based evaluation
o Performance evaluation

3

Learning outcomes

 Explain the activities and tasks in the typical
architecture verification process (K2)

 List what system level properties are determined
by the architecture (K1)

 Recall the analysis process in ATAM (K1)

 Perform fault effect analysis with fault trees and
event tree analysis (K3)

 Identify how models can be used for performance
evaluation (K1)

4

INTRODUCTION

Architecture design and languages

What is determined by the architecture?

What kind of verification methods can be used?

5

Architecture design

 What is the architecture?
o Components (with properties)

o Relations among them (use of service, deployment, …)

 Design decisions
o Selecting components and specifying their relations

• System functions by interactions of components

• Hardware-software separation and interactions

o Specifying properties of components
• Performance, redundancy, safety, ...

o Using architecture design patterns
• E.g., MVC, N-tier, …

o Re-use (off-the-shelf and available components)

6

Typical languages for architecture design

 UML

 SysML (e.g., Block diagram)

 AADL: Architecture Analysis and Design Language
o Components

o Relations: Data/event interchange on ports

o Mapping to hardware

o Properties for analysis

7

Typical languages for architecture design: SysML

8

Typical languages for architecture design: AADL

AADL: Architecture Analysis and Design Language
(v2: 2009)
o For embedded systems (SAE)

 Software components
o System: Hierarchic structure of components

o Process: Protected address range

o Thread group: Logic group of threads

o Thread: Concurrently schedulable execution unit

o Data: Sharable data

o Subprogram: Sequential, callable code unit

9

Typical languages for architecture design: AADL

 Hardware components
o Processor, Virtual Processor: Platform for

scheduling of threads/processes

o Memory: Storage for data and executable
code

o Bus, Virtual Bus: Physical or logical unit of
connection

o Device: Interface to/from external
environment

 Mapping
o Between software and hardware

o Between logical (virtual) and physical
components

10

Typical languages for architecture design: AADL

 Example: Mapping between components

11

Typical languages for architecture design: AADL

 Relations

o Data and event flow on
ports

 Property specification
for analysis

o Timing

o Scheduling

o Error propagation
(using an extension of
AADL)

 Models in graphical,
textual, XML formats

12

What is determined by the architecture? 1/2

 Performance
o Resource assignment: Providing critical services, queuing

of requests, parallel processing
o Resource management: Scheduling of resources, dynamic

assignment, load balancing

 Dependability
o Error detection: Push/pull monitoring, exception handling
o Recovery: Forward, backward recovery, compensation
o Fault handling: Reconfiguration, graceful degradation

 Security
o Protection of sensitive data: Authentication, authorization,

data hiding
o Detection of intrusion: Analysis of illegal changes
o Recovery after intrusion: Maintenance of data integrity

13

What is determined by the architecture? 2/2

 Maintainability
o Encapsulation: Semantic coherence
o Avoiding domino effects of changes: Information hiding,

error confinement, usage of proxies
o Late binding: Runtime registration, configuration

descriptors, polymorphism
 Testability

o Assuring controllability and observability
o Separation of interfaces and implementation
o Recording and replaying interactions

 Usability
o Separation of user interface
o Maintenance of user model, task model, system model in

runtime

14

Example: Architecture for software safety (EN 50128)

 Highly recommended techniques for SIL 3 and SIL 4

o Defensive programming

o Fault detection and diagnostics

o Failure assertion programming

o Diverse programming

o Storing executed cases

o Software fault effect analysis

 -> Software, information and time redundancy

 Not recommended techniques

o Forward and backward recovery

o Artificial intelligence based fault handling

o Dynamic software reconfiguration

Combination of

techniques is allowed

Reference for error

detection

15

Example: Safety architecture in fail-stop systems

SCADA applications: Supervisory
Control and Data Acquisition

Channel 1 (P)

GUI

Bitmap A Bitmap B

Database

Input Control

Communication
protocol

GUI

Bitmap

Database

Input Control

Communication
protocol

17

Example: Safety architecture in fail-stop systems

Channel 1 (P)

GUI

Bitmap A Bitmap B

Database

Input Control

Communication

protocol

Channel 2 (N)

Database

Control Input

Communication

protocol

Channel 1 (P)

GUI

Bitmap A Bitmap B

Database

Input Control

Communication

protocol

Channel 2 (N)

Database

Control Input

Communication

protocol

Independent software ”channels”
with comparison at I/O and HMI

18

Summary: System properties and the design space

19

System property Architectural decisions (examples)

Performance Resource assignment,
resource management

Dependability Error detection, error confinement,
recovery, fault handling

Security Protection against illegal access,
detection of intrusion, maintenance

Maintainability Localizing, avoiding domino effect, late
binding

Testability Controllability, observability,
separation of interfaces

Usability Separation and maintenance of user,
task and system model

Overview: What are the verification techniques?

 Review technique: Analysis of requirements and
architecture related decisions

o Architecture tradeoff analysis method (ATAM)

 Static analysis: Systematic analysis of the architecture

o Interface analysis
• Conformance of required and offered interfaces

o Fault effect analysis by combinatorial techniques
• Component level faults  System level effects

 Quantitative analysis: Model based evaluation

o Constructing and solving an analysis model for the
evaluation of extra-functional properties

• Computing system level properties on the basis of local
(component of relation) properties

20

REQUIREMENTS BASED
ARCHITECTURE ANALYSIS

ATAM: Architecture Trade-off Analysis

21

Requirements based architecture analysis

 Architecture Tradeoff Analysis Method (ATAM)
o What are the quality objectives and their attributes?

• What are the relations and priorities of the quality objectives?

o How does the architecture satisfy the quality objectives?
• Do the architecture level design decisions support the quality

objectives and their priorities? What are the risks?

 Basic ideas
o Systematic collection of quality objectives and attributes:

Utility tree with priorities

o Capturing and understanding the objectives:
Scenarios (that exemplify the role of the quality attribute)

o Architecture evaluation: What was the design decision,
what are the related sensitivity points, tradeoffs, risks?

22

ATAM conceptual analysis process

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

23

Architectural
plan

Business
drivers

Quality
attributes

Scenarios

Architectural
approaches

Architectural
decisions

Tradeoffs

Sensitivity

Non-risks

Risks

Analysis

Collection of quality objectives: Utility tree

Priority:
Low, Medium, High

Implementation complexity:
Low, Medium, High

Scenarios
for
capturing
(refined)
attributes

Attributes
belonging to
quality
objectives
and their
refinements

24

Quality
objectives

Steps of the analysis (with examples)

 Analysis of the architectural support for the scenarios
o Scenario: Recovery in case of disk failure shall be performed in < 5 min

o Reaction as design decision: Replica database is used

 Analysis of sensitivity points
o The use of replica database influences availability

o The use of replica database influences also performance
• Synchronous updating of the replica database: Slow

• Asynchronous updating of the replica database: Faster, but potential data loss

 Analysis and optimization of the tradeoffs
o The use of replica database influences both availability and performance –

depending on the updating strategy
• Tradeoff (architecture decision): Asynchronous updating of the replica database

 Analysis of the risks of tradeoffs
o Replica database with asynchronous updating (as an architecture design

decision) is a risk, if the cost of data loss is high
• The decision is optimal only in case of given needs and cost constraints

25

The process of ATAM 1/2

1. Presentation of the method <- evaluation leader

2. Presentation of business drivers <- development leader

o Functions, quality objectives, stakeholders

o Constraints: technical, economical, management

3. Presentation of the architecture <- designers

4. Identification of the design decisions <- designers

5. Construction of the utility tree <- designers, verifiers

o Refinement of quality objectives

o Assignment of scenarios to capture objectives:

• Inputs, effects that are relevant to the quality objective

• Environment (e.g., design-time or run-time)

• Expected reaction (support) from the architecture

o Assignment of priorities to the scenarios (objectives)

26

The process of ATAM 2/2

6. Analysis of the architecture <- verifiers

o Architectural support

o Sensitivity points

o Tradeoffs

o Risks

7. Extending the scenarios <- stakeholders

o Contribution of testers, users, etc.

o Brainstorming: Aspects of testability, maintenance, ergonomics, etc.

o Assignment of priorities

8. Continuing the architecture analysis <- verifiers

o In case of scenarios with priorities that are high enough

9. Presentation of results <- verifiers

o Preparation of a summary document

27

Advantages of ATAM

 Explicit and clarified quality objectives

o Refinement of objectives, assignment of scenarios

o Assignment of priorities

 Early identification of risks

o Explicit analysis of the effects of architecture design
decisions (model based analysis may be used)

o Investigation of tradeoffs

 Stakeholders are involved

o Designer, tester, user, verifier

o Communication among the stakeholders

 Documenting architecture related decisions and risks

28

SYSTEMATIC ANALYSIS

Interface analysis

Fault effects analysis

29

Interface analysis

 Goals
o Checking the conformance of component interfaces

o Completeness: Systematic coverage of relations and interfaces

 Syntactic analysis
o Checking function signatures (number and types of parameters)

 Semantic analysis
o Based on the description of the functionality of the components

o Analysis of contracts (contract based specifications)

 Behavioral analysis
o Based on the behavior specification of components

o Behavioral conformance is checked (e.g., in case of protocols)

o Precise behavioral equivalence relations are defined (e.g.,
bisimulation), also timing can be checked

30

Example: Interface analysis
 ”Contract based” specification of component functionality: JML

public class Purse {
 final int MAX_BALANCE;
 int balance;
 /*@ invariant pin != null && pin.length == 4 @*/
 byte[] pin;
 /*@ requires amount >= 0;
 @ assignable balance;
 @ ensures balance == \old(balance) – amount

 && \result == balance;
 @ signals (PurseException) balance == \old(balance);
 @*/
 int debit(int amount) throws PurseException {
 if (amount <= balance) {
 balance -= amount;
 System.out.println("Debit placed"); return balance; }
 else {
 throw new PurseException("overdrawn by " + amount); }}

 Matching interfaces on the basis of contacts (requires – ensures)

31

Analysis of fault effects

 Goal: Analysis of the fault effects and the evolution of
hazards on the basis of the architecture

o What are the causes for a hazard?

o What are the effects of a component fault?

 Results:

o Hazard catalogue

o Categorization of hazards

• Rate of occurrence

• Severity of consequences

 Risk matrix

o These results form the basis for risk reduction

trigger

Cause Hazard Consequence

rate severity

33

Categorization of the techniques

 On the basis of the development phase (tasks):

o Design phase: Identification and analysis of hazards

o Operation phase: Checking the modifications

 On the basis of the analysis approach:

o Cause-consequence view:

• Forward (inductive): Analysis of the effects of faults and events

• Backward (deductive): Analysis of the causes of hazards

o System hierarchy view:

• Bottom-up: From the components to subsystems / system level

• Top-down: From the system level down to the components

 Systematic techniques are needed

34

Fault tree analysis

 Analysis of the causes of system level hazards

o Top-down analysis

o Identifying the component level combinations of
faults and events that may lead to hazard

 Construction of the fault tree

1. Identification of the foreseen system level hazard:
on the basis of environment risks, standards, etc.

2. Identification of intermediate events (pseudo-events):
Boolean (AND, OR) combinations of lower level events
that may cause upper level events

3. Identification of primary (basic) events:
no further refinement is needed/possible

35

Set of elements in a fault tree

Top level or intermediate event

Primary (basic) event

Event without further analysis

Conditional event

AND combination of events

OR combination of events

Normal event (i.e., not a fault)

36

Fault tree example: Elevator

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Top level event
(hazard)

Primary
evens

Boolean
relation

Intermediate
event

Button
stuck

Secondary
proc. fault

Event without
further analysis

37

Qualitative analysis of the fault tree

 Fault tree reduction: Resolving intermediate
events/pseudo-events using primary events
 disjunctive normal form (OR on the top of the tree)

 Cut of the fault tree:
 AND combination of primary events

 Minimal cut set: No further reduction is possible

o There is no cut that is a subset of another

 Outputs of the analysis of the reduced fault tree:

o Single point of failure (SPOF)

o Events that appear in several cuts

38

Original fault tree of the elevator example

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

39

Reduced fault tree of the elevator example

Elevator
stuck

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

SPOF Potential
SPOF

40

Quantitative analysis of the fault tree

 Basis: Probabilities of the primary events
o Component level data, experience, or estimation

 Result: Probability of the system level hazard
o Computing probability on the basis of the probabilities

of the primary events, depending on their combinations
o AND gate: Product (if the events are independent)

• Exact calculation: P{A and B} = P{A} · P{B|A}

o OR gate: Sum (worst case estimation)
• Exactly: P{A or B} = P{A} + P{B} - P{A and B} <= P{A} + P{B}

o Probability with time function can also be used in
computations

 Limitations of the analysis
o Correlated faults (not independent)
o Representation of fault sequences

41

Fault tree of the elevator with probabilities

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

p2 p3

p1 p2p3

p4 p5

p4p5 p6

p4p5+p6

p1+p2p3+(p4p5+p6)

42

EXERCISE

The intrusion detection system of a flat includes as detectors a
door opening sensor, a pressure detector on the floor and a sound
detector with an analogue sound filter.

These detectors are operated in
a TMR structure with a voter
component that is implemented
using a microcontroller.

Exercise:

 Draw up the fault tree that belongs to the undetected intrusion
as the top level hazard. The basic events are the faults of the
above mentioned components (these faults are considered as
independent).

 Indicate the single point of failure (if any).

 Intrusion detection system

Module 1

Input

Module 2

Module 3

voting

 Output

Majority

TMR:

43

Solution of the exercise

Single point of failure: Voter fault, microcontroller fault

 Betörés
detektálatlan

Szavazó
hibája

Ajtónyitó

hibája

Nyomásérz

hibája

Ajtónyitó
hibája

Nyomásérz
hibája

Hangérz.
hibája

Szűrő
hibája

Hangérz.
hibája

Szűrő
hibája

Mikrokontr.
hibája

Undetected
intrusion

Voter
sw

fault

Micro
ctrl.
fault

Door
det.
fault

Press.
det.
fault

Press.
det.
fault

Door
det.
fault

Snd.
det.
fault

Snd.
det.
fault

Filter
fault

Filter
fault

44

Event tree analysis

 Forward (inductive) analysis:
Investigates the effects of an initial event (trigger)
o Initial event: component level fault/event

o Related events: faults/events of other components

o Ordering: causality, timing

o Branches: depend on the occurrence of events

 Investigation of hazard occurrence „scenarios”
o Path probabilities (on the basis of branch probabilities)

 Advantages: Investigation of event sequences
• Example: Checking protection systems (protection levels)

 Limitations of the analysis
o Complexity, multiplicity of events

45

Event tree example: Reactor cooling

no

Cooling1
leakage

Power
failure

Cooling2
failure

Reagent
removal failure

Process
shutdown

initial
event

no

yes

yes

no

no

yes
yes

yes

no













46

Event tree example: Reactor cooling

no

Cooling1
leakage

Power
failure

Cooling2
failure

Reagent
removal failure

Process
shutdown

initial
event

no

yes

yes

no

no

yes
yes

yes

no

P1•P3•P4

P1

1-P2

P2

P3

1-P3

P4

1-P4

P5

P5

P1•P3•P4•P5

P1•P3

P1

P1•P5

P1•P2

47

EXERCISE

The temperature of a hot water storage is measured using two sensors.

 The two sensors may be faulty with probability p1 and p2, in this

case they report the invalid temperature +255°C.

 The faults of the sensors are checked by the controller performing

an acceptance check.

 The sensor with p1 fault probability is the primary sensor. The

secondary sensor is read only in case of detecting the fault of the

primary sensor.

 In case of a faulty sensor, the acceptance check always detects the

fault.

However, due to a program bug, the acceptance check detects a

sensor fault with probability pe even in case of a non-faulty sensor.

Evaluation of sensor subsystem

48

Exercise: Evaluation of sensor subsystem
The temperature of a hot water storage is measured using two sensors.

 The two sensors may be faulty with probability p1 and p2, in this case they report the invalid
temperature +255°C.

 The faults of the sensors are checked by the controller performing an acceptance check.

 The sensor with p1 fault probability is the primary sensor. The secondary sensor is read only in
case of detecting the fault of the primary sensor.

 In case of a faulty sensor, the acceptance check always detects the fault.
However, due to a program bug, the acceptance check detects a sensor fault with probability
pe even in case of a non-faulty sensor.

Draw the event tree belonging to this system and calculate the probabilities of the scenarios.

The events:
 Initial event: Starting the temperature measurement

 Further events: Faults of the sensors, fault of the acceptance checking

Ordering of events:
 Primary sensor  may be faulty with probability p1

 Acceptance checking  may be faulty with probability pe (in case of a non-faulty sensor)

 Secondary sensor  may be faulty with probability p2

 Acceptance checking  may be faulty with probability pe (in case of a non-faulty sensor)

49

Solution of the exercise

Event tree:

Failure of the service at system level: pe·pe + pe·p2 + p1·pe + p1·p2

Primary
sensor

 Acceptance
checking

Secondary
sensor

 Acceptance
checking

ok
ok

fault
ok

ok

fault

fault
ok

fault

ok

fault

fault

Failure of the service P=pe·pe

Failure of the service P=pe·p2

Failure of the service P=p1·pe

Failure of the service P=p1·p2

p1

pe

p2

p2

pe

pe

OK

OK

OK
1-p1

1-pe

1-p2

1-p2

1-pe

1-pe

50

Cause-consequence analysis

 Connecting event tree with fault trees

o Event tree: Scenarios (sequence of events)

o Connected fault trees: Analysis of event occurrence,
computing the probability of occurrence

 Advantages:

o Sequence of events (forward analysis) together with
analysis of event causes (backward analysis)

 Limitations of the analysis:

o Complexity: Separate diagrams are needed for all
initial events

51

Example for cause-consequence analysis

High press.

Valve 1

opens

Yes No

Valve 2

opens

Yes No

Valve1

fault

Control

fault

Valve2

fault

Operator

fault

52

Example for cause-consequence analysis

High press.

Valve 1

opens

Yes No

Valve 2

opens

Yes No

Valve1

fault

Control

fault

Valve2

fault

Operator

fault

P1 = pa + pb

P0•P1 P0•P1•P2

P0

P0

pa pb

P2 = pc + pd

pc pd

53

Failure Modes and Effects Analysis (FMEA)

 Tabular representation and analysis of components, failure
modes, probabilities (occurrence rates) and effects

 Advantages:
o Systematic listing of components and failure modes
o Analysis of redundancy

 Limitations of the analysis
o Complexity of determining the fault effects (using simulators,

analysis models, symbolic execution etc.)
 Component Failure mode Probability Effect

Temperature
limit L detector
function

> L not detected

 L detected

65%

35%

Over-heating

Process is
stopped

… … … …

54

MODEL BASED EVALUATION

Model based performance evaluation

55

Model based evaluation

Goal: Evaluation of architecture solutions
 Analysis models are constructed and solved on the basis of the

architecture model, e.g.

o Performance model

o Dependability model

o Safety analysis model

 Modular construction of analysis models (possibly automated)

o Architecture: Component and relations

o Analysis model: Submodels (modules) for components and relations

 Solution of the analysis models

o Local (component and relation) parameters are used to compute
system level properties

56

Model based evaluation

Architecture design:
Components + Relations

Parameters of
relations

Parameters of
components

Analysis
model

System
properties

Analysis
modules

57

Typical analysis models

58

Performance
model

Dependability
model

Safety analysis
model

Component
parameters

Local execution
time of functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection
coverage, …

Fault and hazardous
event occurrence rate

Relation
parameters

Call forwarding
rate, call
synchronization

Error propagation
probability,
conditions or error
propagation,
repair strategy

Hazard scenario,
hazard combinations

Model Queuing network Markov-chain, Petri-net Markov-chain, Petri-net

System
properties
(computed)

Request handling
time, throughput,
processor
utilization

Reliability,
availability,
MTTF, MTTR, MTBF

System level hazard
occurrence rate,
criticality

Focus: Performance modeling

59

Performance
model

Dependability
model

Safety analysis
model

Component
parameters

Local execution
time of functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection
coverage, …

Fault and hazardous
event occurrence rate

Relation
parameters

Call forwarding
rate, call
synchronization

Error propagation
probability,
conditions or error
propagation,
repair strategy

Hazard scenario,
hazard combinations

Model Queuing network Markov-chain, Petri-net Markov-chain, Petri-net

System
properties
(computed)

Request handling
time, throughput,
processor
utilization

Reliability,
availability,
MTTF, MTTR, MTBF

System level hazard
occurrence rate,
criticality

Performance modeling

 Typical formalisms: Queuing networks

 Example: Layered Queuing Network (LQN)

o Suitable for distributed client-server applications

 Model elements

o Client submitting requests to (remote) servers

o Servers (called “tasks” by convention)

• Queuing of incoming requests

• Entry points for service threads (called “functions”) with
priorities

• Forwarding function calls to other servers

o Hosts (called “processors”)

60

Example: Layered Queuing Network (LQN)

61

Task (server):
• Functions (service call

interfaces)
• Priorities

Function (service):
• Local execution time
• Call forwarding rate

Client (request):
• Call rate

CPU

Processor:
• Deployment
• Scheduling policy

62

Example: Performance modeling (LQN): Layers

Function call:
• Synchronous /

asynchronous

Computed system level
properties (average and
worst-case):
• Request handling time
• Task throughput
• Processor utilization

Function (service):
• Local execution time
• Call forwarding rate

Example: Mapping architecture model to analysis model

Classes and objects
with local parameters

Servers and
deployment

Interactions
(calls)

63

Example: Mapping architecture model to analysis model

Classes (objects) Deployment Interactions

LQN performance
model

Model
transformation

64

Example: Mapping architecture model to analysis model

Architecture
design
patterns
can be
identified to
assign analysis
modules

Szinkron üzenetküldés:

Analysis

results

65

Summary

 Motivation
oWhat is determined by the architecture?

o What kind of verification methods can be used?

 Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

 Systematic analysis methods
o Interface analysis

o Fault effects analysis

 Model based evaluation
o Performance evaluation

o Dependability modeling

66

