
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Verifying the Architecture

István Majzik, Zoltán Micskei

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying the architecture, Dependability analysis

o Runtime verification
2

Table of Contents

 Introduction
o Architecture design and languages

o What is determined by the architecture?

o What kind of verification methods can be used?

 Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

 Systematic analysis methods
o Interface analysis

o Rule based checking

o Fault effects analysis

 Model based evaluation
o Performance evaluation

3

Learning outcomes

 Explain the activities and tasks in the typical
architecture verification process (K2)

 List what system level properties are determined
by the architecture (K1)

 Recall the analysis process in ATAM (K1)

 Perform fault effect analysis with fault trees and
event tree analysis (K3)

 Identify how models can be used for performance
evaluation (K1)

4

INTRODUCTION

Architecture design and languages

What is determined by the architecture?

What kind of verification methods can be used?

5

Architecture design

 What is the architecture?
o Components (with properties)

o Relations among them (use of service, deployment, …)

 Design decisions
o Selecting components and specifying their relations

• System functions implemented by interactions of components

• Hardware-software interactions

o Specifying properties of components
• Influences performance, reliability, testability, ...

o Using architecture design patterns
• E.g., MVC, N-tier, …

• Supports maintainability

o Re-use (off-the-shelf and available components)

6

Typical languages for architecture design

 UML

 SysML (e.g., Block diagram)

 AADL: Architecture Analysis and Design Language
o Components

o Relations: Data/event interchange on ports

o Mapping to hardware

o Properties for analysis

7

Typical languages for architecture design: SysML

8

Typical languages for architecture design: AADL

AADL: Architecture Analysis and Design Language
(v2: 2009)
o For embedded systems (SAE)

 Software components
o System: Hierarchic structure of components

o Process: Protected address range

o Thread group: Logic group of threads

o Thread: Concurrently schedulable execution unit

o Data: Sharable data

o Subprogram: Sequential, callable code unit

9

Typical languages for architecture design: AADL

 Hardware components
o Processor, Virtual Processor: Platform for

scheduling of threads/processes

o Memory: Storage for data and executable
code

o Bus, Virtual Bus: Physical or logical unit of
connection

o Device: Interface to/from external
environment

 Mapping
o Between software and hardware

o Between logical (virtual) and physical
components

10

Typical languages for architecture design: AADL

 Example: Mapping between components

11

Typical languages for architecture design: AADL

 Relations

o Data and event flow on
ports

 Property specification
for analysis

o Timing

o Scheduling

o Error propagation
(using an extension of
AADL)

 Models in graphical,
textual, XML formats

12

What is determined by the architecture? 1/2

 Performance
o Resource assignment: Parallel processing, queuing policy,

deployment of critical services
o Resource management: Scheduling of resources, dynamic

assignment, load balancing

 Dependability
o Error detection: Push/pull monitoring, exception handling
o Fault tolerance: Static redundancy, dynamic redundancy
o Fault handling: Reconfiguration, graceful degradation

 Security
o Protection of sensitive data: Components for

authentication, authorization, data hiding
o Detection of intrusion: Confinement of illegal changes
o Recovery after intrusion: Maintenance of data integrity

13

What is determined by the architecture? 2/2

 Maintainability
o Encapsulation: Semantic coherence
o Avoiding domino effects of changes: Information hiding,

error confinement, usage of proxies
o Late binding: Runtime registration, configuration

descriptors, polymorphism
 Testability

o Assuring controllability and observability
o Separation of interfaces and implementation
o Recording and replaying interactions

 Usability
o Separation of user interface
o Maintenance of internal models (user model, task model,

environment model) in runtime

14

Example: Architecture for software safety (EN 50128)

 Highly recommended techniques for SIL 3 and SIL 4

o Diverse programming

o Fault detection and diagnostics

o Failure assertion programming

o Defensive programming

o Storing executed cases

o (Software fault effect analysis)

 -> Software, information and time redundancy

 Not recommended techniques

o Forward and backward recovery

o Artificial intelligence based fault handling

o Dynamic software reconfiguration

Combination of

techniques is allowed

Reference for error

detection

15

Operation is hard to

predict in design time

Summary: System properties and the design space

19

System property Architectural decisions (examples)

Performance Resource assignment,
resource management

Dependability Error detection and confinement, fault
tolerance, fault handling

Security Protection against illegal access,
detection of intrusion, maintenance

Maintainability Localizing, avoiding domino effect, late
binding

Testability Controllability, observability,
separation of interfaces

Usability Separation of UI, maintenance of user,
task and environment model

Overview: What are the verification techniques?

 Review: Requirement based architecture analysis
o Architecture trade-off analysis (ATAM)

 Static analysis: Systematic checking of the architecture
o Interface analysis

• Conformance of required and offered interfaces

o Rule based checking of the architecture
• Dependencies, containment, inheritance etc.

o Fault effect analysis by combinational techniques
• Component level faults System level effects

 Quantitative analysis: Model based evaluation
o Evaluation of extra-functional properties by constructing and

solving an analysis model
• Computing system level properties by solving the analysis model

20

REQUIREMENTS BASED
ARCHITECTURE ANALYSIS

Architecture Trade-off Analysis Method (ATAM)

21

Requirements based architecture analysis

 Architecture Tradeoff Analysis Method (ATAM)
o What are the quality objectives and their attributes?

• What are the relations and priorities of the quality objectives?

o How does the architecture satisfy the quality objectives?
• Do the architecture level design decisions support the quality

objectives and their priorities? What are the risks?

 Basic ideas
o Systematic collection of quality objectives and attributes:

Utility tree with priorities

o Capturing and understanding the objectives:
Scenarios (that exemplify the role of the quality attribute)

o Architecture evaluation: What was the design decision,
what are the related sensitivity points, tradeoffs, risks?

22

ATAM conceptual analysis process

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

23

Architectural
plan

Business
drivers

Quality
attributes

Scenarios

Architectural
approaches

Architectural
decisions

Tradeoffs

Sensitivity

Non-risks

Risks

Analysis

Collection of quality objectives: Utility tree structure

 Utility divided to quality objectives

 Quality objectives are characterized by attributes

 Attributes are exemplified by scenarios

24

Utility Objective Attribute Scenario

Objective

Objective

Attribute

Attribute

Scenario

Scenario

Collection of quality objectives: Utility tree

Priority:
Low, Medium, High

Implementation complexity:
Low, Medium, High

Scenarios for
capturing
(refined)
attributes

Attributes
belonging to
quality
objectives
and their
refinements

25

Quality
objectives

Steps of the analysis (with examples)

1. Analysis of the architectural support for the scenarios
o Scenario: Recovery in case of disk failure shall be performed in < 5 min

o Reaction as design decision: Replica database is used

2. Analysis of sensitivity points
o The use of replica database influences availability

o The use of replica database influences also performance
• Synchronous updating of the replica database: Slow

• Asynchronous updating of the replica database: Faster, but potential data loss

3. Analysis and optimization of the tradeoffs
o The use of replica database influences both availability and performance –

influence depends on the updating strategy
• Tradeoff (architecture decision): Asynchronous updating of the replica database

4. Analysis of the risks of tradeoffs
o Replica database with asynchronous updating (as an architecture design

decision) is a risk, if the cost of data loss is high
• The decision is optimal only in case of given needs and cost constraints

26

The process of ATAM 1/2

1. Presentation of the method <- evaluation leader

2. Presentation of business drivers <- development leader

o Functions, quality objectives, stakeholders

o Constraints: technical, economical, management

3. Presentation of the architecture <- designers

4. Identification of the design decisions <- designers

5. Construction of the utility tree <- designers, verifiers

o Refinement of quality objectives

o Assignment of scenarios to capture objectives:

• Inputs, effects that are relevant to the quality objective

• Environment (e.g., design-time or run-time)

• Expected reaction (support) from the architecture

o Assignment of priorities to the scenarios (objectives)

27

The process of ATAM 2/2

6. Analysis of the architecture <- verifiers

o Architectural support

o Sensitivity points

o Tradeoffs

o Risks

7. Extending the scenarios <- stakeholders

o Contribution of testers, users, etc.

o Brainstorming: Aspects of testability, maintenance, ergonomics, etc.

o Assignment of priorities

8. Continuing the architecture analysis <- verifiers

o In case of scenarios with priorities that are high enough

9. Presentation of results <- verifiers

o Preparation of a summary document

28

Advantages of ATAM

 Explicit and clarified quality objectives

o Refinement of objectives, assignment of scenarios

o Assignment of priorities

 Early identification of risks

o Explicit analysis of the effects of architecture design
decisions (model based analysis may be used)

o Investigation of tradeoffs

 Stakeholders are involved

o Designer, tester, user, verifier

o Communication among the stakeholders

 Documenting architecture related decisions and risks

29

INTERFACE ANALYSIS

Checking conformance of interfaces

30

Interface analysis

 Goals
o Checking the conformance of component interfaces

o Completeness: Systematic coverage of relations and interfaces

 Syntactic analysis
o Checking function signatures (number and types of parameters)

 Semantic analysis
o Based on the description of the functionality of the components

o Analysis of contracts (contract based specifications)

 Behavioral analysis
o Based on the behavior specification of components

o Behavioral conformance is checked (e.g., in case of protocols)

o Precise behavioral equivalence relations are defined (e.g.,
bisimulation), also timing can be checked

31

Example: Specification of contracts
 ”Contract based” specification of component functionality: JML

public class Purse {
 final int MAX_BALANCE;
 int balance;
 /*@ invariant pin != null && pin.length == 4 @*/
 byte[] pin;
 /*@ requires amount >= 0;
 @ assignable balance;
 @ ensures balance == \old(balance) – amount

 && \result == balance;
 @ signals (PurseException) balance == \old(balance);
 @*/
 int debit(int amount) throws PurseException {
 if (amount <= balance) {
 balance -= amount;
 System.out.println("Debit placed"); return balance; }
 else {
 throw new PurseException("overdrawn by " + amount); }}

 Matching interfaces on the basis of contacts (requires – ensures)

32

RULE BASED CHECKING OF THE
ARCHITECTURE

Checking dependencies, containment, inheritance

33

Checking architecture related rules

 Goals

o Verifying the architecture using models or code

o Checking rules for correct architecture

 Examples of rules

o Allowed dependencies between packages and classes

o Avoiding cyclic dependencies

o Access constraints between layers in the architecture

 Tool example: ArchUnit

o Focus: Automatically test architecture and coding rules
using any plain Java unit testing framework (e.g. JUnit)

34

Example: Using rules in ArchUnit

 Importing application classes to check
JavaClasses classes =
 new ClassFileImporter().importPackages("com.mycompany.myapp");

 Definition of rules using abstract DSL-like fluent API

o Example: Services should only be accessed by Controllers
ArchRule myRule = classes()

 .that().resideInAPackage("..service..")

 .should().onlyBeAccessed().byAnyPackage("..controller..", "..service..");

 Evaluation of the rule
myRule.check(classes);

 Checking cyclic dependency

 slices().matching("com.mycompany.myapp.(*)..").should().beFreeOfCycles()

35

Source: ArchUnit User Guide, https://www.archunit.org/userguide/html/000_Index.html

Example architecture rules

 Package and class dependency check:

noClasses().that().resideInAPackage("..source..")

 .should().dependOnClassesThat().resideInAPackage("..foo..")

 Inheritance check:

classes().that().implement(Connection.class)

 .should().haveSimpleNameEndingWith("Connection")

37

Source: ArchUnit User Guide, https://www.archunit.org/userguide/html/000_Index.html

FAULT EFFECTS ANALYSIS

Fault Tree, Event Tree, Failure Modes and Effects Analysis

(see also: IT System Design course)

39

Analysis of fault effects

 Goal: Analysis of the fault effects and the evolution of
hazards on the basis of the architecture

o What are the causes for a hazard?

o What are the effects of a component fault?

 Results:

o Hazard catalogue

o Categorization of hazards

• Rate of occurrence

• Severity of consequences

 Risk matrix

o These results form the basis for risk reduction

trigger

Cause Hazard Consequence

rate severity

40

Categorization of the techniques

 Cause-consequence view:
o Forward (inductive): Analysis of the effects of faults

and events

o Backward (deductive): Analysis of the causes of
hazards

 System hierarchy view:
o Bottom-up: From the components to subsystems /

system level

o Top-down: From the system level down to the
components

Systematic techniques are needed

41

Fault tree analysis

 Analysis of the causes of system level hazards

o Top-down analysis

o Identifying the combinations of component level
faults and events that may lead to hazard

 Construction of the fault tree

1. Identification of the foreseen system level hazard:
on the basis of environment risks, standards, etc.

2. Identification of intermediate events (pseudo-events):
Boolean (AND, OR) combinations of lower level events
that may cause upper level events

3. Identification of primary (basic) events:
no further refinement is needed/possible

42

Set of elements in a fault tree

Top level or intermediate event

Primary (basic) event

Event without further analysis

Conditional event

AND combination of events

OR combination of events

Normal event (i.e., not a fault)

43

Fault tree example: Elevator

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Top level event
(hazard)

Primary
evens

Boolean
relation

Intermediate
event

Button
stuck

Secondary
proc. fault

Event without
further analysis

44

Qualitative analysis of the fault tree

 Fault tree reduction: Resolving intermediate
events/pseudo-events using primary events
 disjunctive normal form (OR on the top of the tree)

 Cut of the fault tree:
 AND combination of primary events

 Minimal cut set: No further reduction is possible

o There is no cut that is a subset of another

 Outputs of the analysis of the reduced fault tree:

o Single point of failure (SPOF)

o Events that appear in several cuts

45

Reduced fault tree of the elevator example

Elevator
stuck

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

SPOF Potential
SPOF

47

Quantitative analysis of the fault tree

 Basis: Probabilities of the primary events
o Component level data, experience, or estimation

 Result: Probability of the system level hazard
o Computing probability on the basis of the probabilities

of the primary events, depending on their combinations

o AND gate: Product (if the events are independent)
• Exact calculation: P{A and B} = P{A} · P{B|A}

o OR gate: Sum (worst case estimation)
• Exactly: P{A or B} = P{A} + P{B} - P{A and B} <= P{A} + P{B}

 Limitations of the analysis
o Correlated faults (not independent)

o Representation of fault sequences

48

Fault tree of the elevator with probabilities

Elevator
stuck

Power
outage

Control
fault

Controller
hardware fault

UPS
outage

380V
outage

Primary
proc. fault

Control
software

fault

Button
stuck

Secondary
proc. fault

p2 p3

p1 p2p3

p4 p5

p4p5 p6

p4p5+p6

p1+p2p3+(p4p5+p6)

49

Event tree analysis

 Forward (inductive) analysis:
Investigates the effects of an initial event (trigger)
o Initial event: component level fault/event

o Related events: faults/events of other components

o Ordering: causality, timing

o Branches: depend on the occurrence of events

 Investigation of hazard occurrence „scenarios”
o Path probabilities (on the basis of branch probabilities)

 Advantages: Investigation of event sequences
• Example: Checking protection systems (protection levels)

 Limitations of the analysis
o Complexity, multiplicity of events

52

Event tree example: Reactor cooling

no

Cooling1
leakage

Power
failure

Cooling2
failure

Reagent
removal failure

Process
shutdown

initial
event

no

yes

yes

no

no

yes
yes

yes

no

53

Event tree example: Reactor cooling

no

Cooling1
leakage

Power
failure

Cooling2
failure

Reagent
removal failure

Process
shutdown

initial
event

no

yes

yes

no

no

yes
yes

yes

no

P1•P3•P4

P1

1-P2

P2

P3

1-P3

P4

1-P4

P5

P5

P1•P3•P4•P5

P1•P3

P1

P1•P5

P1•P2

54

Cause-consequence analysis

 Connecting event tree with fault trees

o Event tree: Scenarios (sequence of events)

o Connected fault trees: Analysis of event occurrence,
computing the probability of occurrence

 Advantages:

o Sequence of events (forward analysis) together with
analysis of event causes (backward analysis)

 Disadvantages:

o Complexity: Separate diagrams are needed for all
initial events

58

Example for cause-consequence analysis

High

pressure

Valve 1

opens

Yes No

Valve 2

opens

Yes No

Valve1

fault

Control

fault

Valve2

fault

Operator

fault

59

Example for cause-consequence analysis

High

pressure

Valve 1

opens

Yes No

Valve 2

opens

Yes No

Valve1

fault

Control

fault

Valve2

fault

Operator

fault

P1 = pa + pb

P0•P1 P0•P1•P2

P0

P0

pa pb

P2 = pc + pd

pc pd

60

Failure Modes and Effects Analysis (FMEA)

 Tabular representation and analysis of components, failure
modes, probabilities (occurrence rates) and effects

 Advantages:
o Systematic listing of components and failure modes
o Analysis of redundancy

 Limitations of the analysis
o Complexity of determining the fault effects (using simulators,

analysis models, symbolic execution etc.)
 Component Failure mode Probability Effect

Temperature
limit L detector
function

> L not detected

 L detected

65%

35%

Over-heating

Process is
stopped

… … … …

61

MODEL BASED QUANTITATIVE
EVALUATION

Model based performance evaluation

62

Model based quantitative evaluation

Goal: Evaluation of architecture solutions
 Analysis models are constructed and solved on the basis of the

architecture model, e.g.
o Performance model

o Dependability model

o Safety analysis model

 Analysis models are mathematical models
o Capture how local parameters of components and relations influence

system level properties

o The solution of the model (= computation of selected model
characteristics) provide system level properties

 Modular construction of analysis models (possibly automated)
o Architecture: Component and relations

o Analysis model: Submodels (modules) for components and relations

63

General approach for model based evaluation

Parameters of
relations

Parameters of
components

Analysis
model

System
properties

Analysis modules belonging to
components and relations

64

Architecture design:
Components + Relations

Captures how local parameters
of components and relations
influence the system level
properties

Typical analysis models

65

Performance model Dependability model

Component
parameters

Local execution time of
functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection coverage, …

Relation
parameters

Call forwarding rate,
call synchronization

Error propagation probability,
conditions or error propagation,
repair strategy

Model Queuing network Markov-chain, Petri-net

System properties
(computed)

Request handling time,
throughput,
processor utilization

Reliability,
availability,
MTTF, MTTR, MTBF

Typical analysis models

66

Performance model Dependability model

Component
parameters

Local execution time of
functions,
priorities,
scheduling

Fault occurrence rate,
error delay,
repair rate,
error detection coverage, …

Relation
parameters

Call forwarding rate,
call synchronization

Error propagation probability,
conditions or error propagation,
repair strategy

Model Queuing network Markov-chain, Petri-net

System properties
(computed)

Request handling time,
throughput,
processor utilization

Reliability,
availability,
MTTF, MTTR, MTBF

Performance modeling

 Typical formalisms: Queuing networks

 Example: Layered Queuing Network (LQN)

o Suitable for distributed client-server applications

 Model elements

o Client submitting requests to (remote) servers

o Servers (called “tasks” by convention)

• Queuing of incoming requests

• Entry points for service threads (called “functions”) with
priorities

• Forwarding function calls to other servers

o Hosts (called “processors”)

67

Example: Elements of an LQN model

68

User

Webserver connect() display() order()

Task (server):
• Functions (service call interfaces)
• Queuing of requests
• Priorities among functions

Function (service):
• Local execution time
• Call forwarding rate

Client:
• Request (service

call) rates

Processor:
• Deployment
• Scheduling

policy

CPU1

Call forwarding:
• Synchronous /

asynchronous

DB read() write()

CPU2

Example: Results of the analysis of an LQN model

69

User

Webserver connect() display() order()

Client:
• Request (service

call) rates

CPU1
DB read() write()

CPU2

Computed system level
properties (average and
worst-case):
• Request handling time
• Task throughput
• Processor utilization

Example: Layers in complex LQN models

Example: Mapping architecture model to analysis model

Classes and objects
with local parameters

Servers and
deployment

Interactions
(calls)

71

Example: Mapping architecture model to analysis model

Classes (objects) Deployment Interactions

LQN performance
model

Model
transformation

72

Example: Mapping architecture model to analysis model

Architecture
design
patterns
can be
identified to
assign analysis
modules

Szinkron üzenetküldés:

Analysis

results

73

Summary

 Motivation
o What is determined by the architecture?

o What kind of verification methods can be used?

 Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

 Systematic analysis methods
o Interface analysis

o Fault effects analysis

 Model based evaluation
o Performance evaluation

 Next lecture: Dependability modeling

74

