
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Runtime verification

Istvłn Majzik

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

ÁOverview (1)

o V&V techniques, Critical systems

ÁStatic techniques (2)

o Verifying specifications

o Verifying source code

ÁDynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

ÁSystem-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Table of contents

ÁGoals and challenges

o Use cases

ÁRuntime verification techniques

o Verification based on reference automata

o Verification based on temporal logic properties

o Verification based on sequence diagrams

o Verification based on scenario and context description

ÁImplementation experience

3

Learning outcomes

ÁExplain the role of runtime verification and the
related main challenges (K2)

ÁExplain the monitoring technique that uses
reference automata (K2)

ÁExplain the monitoring technique that uses
temporal logic expressions (K2)

ÁConstruct an observer automaton on the basis of
a sequence chart specification (K3)

ÁUnderstand how context-dependent behavior can
be monitored (K1)

4

Goals and challenges

What is runtime verification?

ÁDefinition:

Checking the behavior of systems

o in runtime (online),

o based on formally specified properties

ÁMotivation

o Dependability and safety requirements

ÅIT services: Correct service to be provided (SLA)

ÅSafety-critical systems: Hazardous states to be avoided (THR)

o Runtime faults are inevitable

ÅRandom faults in hardware components

ÅSoftware design, implementation, configuration faults

6

Goal: Runtime detection of faults

ÁRuntime fault detection is the basis of fault handling
o Detection of hardware faults based on source code
ÅE.g., checking the execution w.r.t. the control flow graph (CFG)

ÅOnly for detecting operational faults

o Checking on the basis of requirements
ÅFor systematic (design, coding, configuration) faults as well

o Verification on the basis of formalized requirements
ÅFor systematic (design, coding, configuration) faults as well

ÅPrecise representation of requirements: Automated synthesis of
checker components (monitors)

ÁFault detection triggers fault handling
o Recovery, reconfiguration, stopping, setting safe state, etc.

ÁComponents for fault detection: Monitors

7

Use cases of monitors (1)

ÁMonitors used for runtime verification
o Evaluating formalized requirements

o Detecting errors resulting from operational faults,
configuration errors, unexpected environmental conditions

8

Monitor
synthesis

Monitor1

Formalized
requirements

Monitor2

Monitorn

System under
execution

R
u

n
tim

e
ve

ri
fic

a
tio

n

Use cases of monitors (2)

ÁMonitors can be test oracles in testing frameworks
o Evaluating the satisfaction of selected requirements
o Detecting design or implementation errors

9

Test executor
(test driver)

Monitor
synthesis

Monitor1

Monitor2

Monitorn

System under
test (SUT)

Formalized
requirements

T
e

st
 o

ra
cl

e
s

Challenges

ÁVerification techniques

o Formalization of checked properties

o Efficient algorithms for verification

ÁInstrumentation

o Observation of the information needed for verification

o Minimizing overhead

ÁPractical aspects of theoretical results

o Monitor synthesis

o Reducing resource needs, providing scalability

 Application in safety relevant embedded systems

10

Challenges

ÁVerification techniques

o Formalization of checked properties

o Efficient algorithms for verification

ÁInstrumentation

o Observation of the information needed for verification

o Minimizing overhead

ÁPractical aspects of theoretical results

o Monitor synthesis

o Low resource needs, scalable implementation

 Application in safety relevant embedded systems

11

ÅChecking of temporal properties on execution trace
ÅTemporal logics
ÅReference automata
ÅRegular expressions

ÅDesign-by-contract based monitoring
ÅExecutable assertions

ÅSpecification-less monitoring
ÅGeneric correctness requirements of concurrent execution

(e.g., deadlock, race, livelock, serialization conflicts)

Challenges

ÁVerification techniques

o Formalization of checked properties

o Efficient algorithms for verification

ÁInstrumentation

o Observation of the information needed for verification

o Minimizing overhead

ÁPractical aspects of theoretical results

o Monitor synthesis

o Reducing resource needs, providing scalability

 Application in safety relevant embedded systems

12

Challenges

ÁVerification techniques

o Formalization of checked properties

o Efficient algorithms for verification

ÁInstrumentation

o Observation of the information needed for verification

o Minimizing overhead

ÁPractical aspects of theoretical results

o Monitor synthesis

o Low resource needs, scalable implementation

 Application in safety relevant embedded systems

13

Å Active and passive instrumentation
Å Active: inserting source code snippets into observed code
Å Passive: observation without modifying the code

Å Techniques for active instrumentation
Å Aspect-Oriented Programming (AOP)
Å Tracematch: AspectJ extension for trace patterns

Å Synchronous and asynchronous monitoring

Challenges

ÁVerification techniques

o Formalization of checked properties

o Efficient algorithms for verification

ÁInstrumentation

o Observation of the information needed for verification

o Minimizing overhead

ÁPractical aspects of theoretical results

o Monitor synthesis

o Reducing resource needs, providing scalability

 Application in critical embedded systems

14

Example: Framework for monitor synthesis
ÁMOP: Monitoring-Oriented Programming

o FSM: Finite State Machines
o ERE: Extended Regular Expressions
o CFG: Context Free Grammars
o PTLTL: Past Time Linear Temporal Logic
o LTL: Linear Temporal Logic
o PTCaRet: Past Time LTL with Calls and Returns
o SRS: String Rewriting Systems

15

The presented solutions

ÁTo be used in: Control-oriented applications
o State based, event- and message-driven behavior

o E.g., safety functions, ǇǊƻǘƻŎƻƭǎΣ Χ

ÁHierarchical runtime verification
o Local: Checking single components (controller, ECU)
ÅReference automaton (to check control flow graph, CFG)

ÅLocal temporal properties of states (temporal logic, TL)

o System-level: Checking the interaction of components
ÅTemporal properties of interactions (temporal logic, TL)

ÅScenario based properties (Message Sequence Chart, MSC)

ÁRelation to model based design
o Model based code generation with instrumentation

16

Overview: Design-time verification

17

Design-time verification

System
requirements

Model checking

Formal model
(e.g., automaton)

Code
generation

Component
source code

Overview: Runtime verification

18

Design-time verification Runtime verification

System
requirements

Model checking

Formal model
(e.g., automaton)

Code
generation

Instrumentation

CFG monitor
synthesis

MSC monitor
synthesis

TL monitor
synthesis

Local CFG
monitors

Instrumented
component code

System-level
monitors

System-level
monitors

Runtime verification based on
reference automata

