
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Introduction

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Synopsis
 Introduction
 Verification in the requirement phase
 Architecture verification and evaluation
 Verification of the detailed design

o Classic techniques
o Formal methods: model checking, equivalence checking
o Advanced methods: formal verification of extra-functional properties and timed

behavior, handling complex designs (large state spaces)

 Verification of the source code
o Code review, abstract interpretation, symbolic execution
o Classic techniques of proving program correctness

 Testing and test case generation
o Test design at unit level
o Integration and system testing
o Model based testing and test case generation

 Validation and assessment
 V&V in the maintenance phases
 Integrated approaches

2

Contents of the lecture

 Motivation
o What are the quality needs regarding software and what is

offered by the software industry?

o What is the role of software verification and validation
techniques?

 Overview of the techniques of software V&V
o What are the typical techniques in the development

process?

 Development life cycle models
o What is the role of V&V in the different life cycle models?

3

Motivation

What are the quality needs regarding software and what is offered by the
software industry?

What is the role of software verification and validation techniques?

4

Expectations

 Service Level Agreements (SLA)

o Availability (telco servers): 99,999% (5 min/year outage)

 Safety critical systems:

o Tolerable hazard rate (THR)

o Safety integrity levels (SIL)

SIL Probability of dangerous failure per hour
per safety function

1 10-6  PFH < 10-5

2 10-7  PFH < 10-6

3 10-8  PFH < 10-7

4 10-9  PFH < 10-8

Operation without
failure for approx.
11.000 years???

15 years lifetime:
1 failure in case of
750 equipment

5

Different kinds of faults

Development phase Operational phase

• Specification faults

• Design faults

• Implementation faults

• Hardware faults

• Configuration faults

• Operator faults

Fault tolerance

(e.g. redundancy)

V&V during

development

6

Software quality problems due to development faults

7

„Defibtech issues a worldwide recall of two of its defibrillator
products due to faulty self-test software that may clear a
previously detected low battery condition.” (February 2007)

„Cricket Communications recalls about 285,000 of its cell
phones due to a software glitch that causes audio problems
when a caller connects to an emergency 911 call. (May 2008)”

Statistics for software projects

 Typical code size of complex applications
o 10 kLOC … 1000 kLOC

 Development efforts:
o Big but average software: 0.1 – 0.5 person months / kLOC

o Safety critical software: 5-10 person months / kLOC

 Fault removal (review, testing, corrections):
o 45 - 75% of the whole development efforts

 Change of fault density
o 10 - 200 faults / kLOC occurring during development

o 0.1 - 10 faults / kLOC before operation

Verification techniques

8

How many bugs do we have to expect?

9

Source: K-R. Hase: „Open Proof in Railway Safety Software”, FORMS/FORMAT Conference, Braunschweig, Germany

A study in Hungary
 Number of faults in 1 kLOC (embedded software):

o Manual development and testing: ~ 10 faults

o Tool-supported automated development: ~ 1-2 faults

o Automated development with formal methods: < 1 faults

Hibák száma (hiba/ezer kódsor)

0

5

10

15

Implementation

Design

Requirements

Implementation 4,2 2,55 0 0

Design 4,4 2,2 1,6 0,1

Requirements 2,2 1,3 1 0,1

Traditional UML MDA MDA+formal

11

6
2.5

0.25

Number of faults / kLOC

0

5

10

15

Implementation

Design

Requirements

Implementation 4,2 2,55 0 0

Design 4,4 2,2 1,6 0,1

Requirements 2,2 1,3 1 0,1

Traditional UML MDA MDA+formal

11

6
2.5

0.25

10

Distribution and cost of bugs

Early V&V reduces cost!

11

V&V: Verification and Validation

Verification Validation

„Am I building the system right?” „Am I building the right system?”

Check correctness and consistency of
development phases

Check the result of the development

Conformance of designs/models and
their specification

Conformance of the (finished) system
and the user requirements

Objective (based on facts); can be
automated

Subjective (influenced by user
expectations); checking acceptance

Fault model: Design and
implementation faults

Fault model: problems in the
requirements are also included

Not needed if implementation is
automatically generated from
specification

Not needed if the specification is correct
(very simple)

12

Example: Development of flight control SW

13

Overview of the techniques
of software V&V

What are the typical techniques in the development process?

16

Who is concerned by V&V?

• Verifying requirement specification System Engineer

• Modeling and verifying designs Architect, Designer

• Verifying source code, unit testing Developer, Coder

• Designing test processes and techniques Test Designer

• Test automation, integration and system tests Test Engineer

• Assessment w.r.t. development standards Safety Engineer

17

What are the typical development steps?

18

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Schedule and sequencing
depends on the lifecycle model

(see later)
System
Engineer

Architect,
Designer

Developer,
Coder

Test Designer,
Test Engineer

19

 Task V&V criteria V&V technique

Defining functions,
actors, use cases

- Risks

- Criticality

- Checklists

- Failure mode and
 effects analysis

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Requirement analysis

System specification

20

Reality

Design
space

Implementation
space

Modeling
- structuring
- abstraction Designing

- decomposition

Implementation

Analysis

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

 Task V&V criteria V&V technique

Defining functional
and non-functional
requirements

- Completeness

- Consistency

- Verifiability

- Feasibility

- Reviews

- Static analysis

- Simulation

20

System specification

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

 Task V&V criteria V&V technique

Defining functional
and non-functional
requirements

- Completeness

- Consistency

- Verifiability

- Feasibility

- Reviews

- Static analysis

- Simulation

Review:

1. Assembling a checklist

2. Presentation by the developer

3. Answering the questions of reviewers

4. Discussion, preparing the review report

Types of peer review:

• Round robin: Different leader for reach module

• Walkthrough: The developer “guides” the reviewers

• Inspection: Based on a (formal) checklist

21

System specification

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

 Task V&V criteria V&V technique

Defining functional
and non-functional
requirements

- Completeness

- Consistency

- Verifiability

- Feasibility

- Reviews

- Static analysis

- Simulation

Example: Specification of an access control system (in Event-B):

Persons: prs  0, p  prs (set)

Buildings: bld  0, b  bld (set)

Authorization: aut  prs  bld (binary relation)

Situation: sit  prs  bld (complete function)

Invariant: sit  aut

An event (change of situation):
 pass = ANY p,b WHERE (p,b)aut  sit(p)b

 THEN sit(p):=b END

Automated analysis is possible: Checking invariant for each event

22

Abstraction

Formality

Analysis (structuring the design space)

Mapping

(automated)
Structuring

design space

and mapping

Design space

Implementation space

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Architecture design

 Task V&V criteria V&V technique

- Decomposing
modules

- HW-SW co-design

- Designing
communication

- Function coverage

- Conformance of
interfaces

- Non-functional
properties

- Static analysis

- Simulation

- Performance,
dependability,
security analysis

23

24

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Module design (detailed design)

 Task V&V criteria V&V technique

- Designing detailed
behavior
(data structures,
algorithms)

- Correctness of
algorithms and
protocols

- Static analysis

- Simulation

- Formal verification

- Rapid prototyping

Formal
verification

Rendszer modellje Requirement spec.

Automatikus
modellellen

OK Counter-
example

y n

System model

Automated
model checking

OK

25

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Module implementation

 Task V&V criteria V&V technique

- Software
implementation

Code is

- Safe

- Verifiable

- Maintainable

- Checking coding
conventions

- Code reviews

- Static code analysis

- Verifying module
implementation

- Conformance to
module designs

- Unit testing

- Regression testing

26

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

System integration

 Task V&V criteria V&V technique

- Integrating modules

- Integrating SW with
HW

- Conformance of
integrated
behavior

- Correct
communication

- Integration testing
(incremental)

27

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

System delivery and deployment

 Task V&V criteria V&V technique

- Assembling
complete system

- Conformance to
system specification

- System testing

- Measurements,
monitoring

- Satisfying user
expectations

- Conformance to
requirements and
expectations

- Validation testing

- Acceptance testing

- Alfa/beta testing

28

Tasks during operation and maintenance:
- Failure logging and analysis (for failure prediction)
- V&V of modifications depending on the affected life cycle phases

“Mini-lifecycle”
for each

modification

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Operation and maintenance

Development life cycle models

What is the role of V&V in the different life cycle models?

29

Development life cycle models

 The role of life cycle models
o Handling the complexity of development

• Dividing the development into phases, milestones
• Basis for distributed / concurrent design and then integration

o Change management
• Handling the effects of requirement changes, modification and

maintenance
• Introduction of new methods and tools

 Generic models of software development:
o Sequential development: Waterfall and V-model
o Evolutionary development: Rapid application development
o Iterative development: Spiral model
o Model based development: 4G model
o Iterative-incremental development: Unified Process

30

1. Waterfall model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

System

integration

System

testing

Operation,

maintenance

• Verification:
Precondition for proceeding to the
next step

• Validation:
Prerequisite for operation phase

31

1. Waterfall model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

System

integration

System

testing

Operation,

maintenance

 Modified waterfall model:
Checking the effects of
changes / corrections
(e.g., regression testing)

32

• Verification:
Precondition for proceeding to the
next step

• Validation:
Prerequisite for operation phase

2. The V-model

33

Requirement
analysis

System
specification

Architecture
design

Module

design

Module
implementation

Module

verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test

design

Integration test
design

System test
design

System val.
design

 Based on the
waterfall model

 Well-defined V&V
for each step

 Precise design of
the verification,
testing and
validation steps

Life cycle

-20%

-50%

Reduction
of efforts

100% 50

0% Manual coding

“Common” automated
code generator is used

Design using formal
methods and tools

Certified automated
code generator is used

-60%
estimated

40

Model based design: From V to Y model

Costs

34

3. Evolutionary development (RAD)

 Rapid development of an initial implementation then
refinement through several versions, based on user
feedback
o Explorative development: Discussed with users

• First version: Based on known requirements

o Rapid prototypes for the critical functions
• Validation using the prototype, re-working the prototype

o Can be applied in case of incompletely specified systems

 V&V characteristics:
o Increased role of prototype testing
o Increased role of integration testing

• Adding new functions

o Regression testing after modifications
• Existing functions remain correct

36

4. Iterative development: Spiral model

Planning the next

phase
Design and

verification

(cyclic)

Goals,

alternatives,

constraints

Analysis of risks

and prototype for

critical functions

Requirements,

life-cycle plan

Budget
1

Risk analysis
1

Risk analysis
2

Risk analysis
3

Risk analysis
4

Budget
2

Budget
3

Budget
4

Prototype 1

Proto -

type
2

Proto -

type
3

Proto -

type
4

Concept of

operation
Detailed

design

Code

Unit test

System

test
Acceptance

test
Implementation

plan

start

37

5. The “4G” model

 Model based development
o CASE tools

o Property preserving
refinement

o Model based verification

 Integration of approaches
o Well-specified requirements:

“Traditional” development

o Incompletely specified
requirements:
Rapid prototype development

o Formally specified
requirements:
Model based development

o With iterative design

38

6. Unified Process

 Incremental and iterative

o Phases divided into iterations (bound in time)

o Each iteration is a complete (mini) development cycle

o Different focus of verification in each phase

• Integration and regression testing is important

39

7. Agile software development

 Extreme Programming
o Short iterations, focusing on operational code, regular (daily)

integration and status tracking (developers, users)
• Using build frameworks, testing is included

o ”Test first programming” concept:
• Functional tests based on “story card”

• Testing after each modification (new functions)

 Test Driven Development
o Incremental, steps for each new function:

1. Writing test for the new function (test will fail)

2. Coding (for successful test)

3. Refactoring of the code with re-testing

o Uses automated unit testing

40

