Software Verification and Validation (VIMMDO052)

Verification of the Requirements
Specification

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

‘ﬂ..||..ﬂ‘
MUEGYETEM 1782

Overview

" |nputs and outputs of the phase

" Preparing the requirements specification
o Formal languages
o Semi-formal and structured methods
o Example: SysML

= Verification tasks
o General aspects and verification techniques
o Verifying completeness and consistency

= Managing requirements

o Traceability
o Basic tasks and tool support

Inputs and outputs of the phase

Inputs and outputs
Related: Software Quality Assurance Plan
and Software Verification Plan

Inputs and outputs of the phase

System requirements
specification

System architecture
design

Software quality
assurance plan

N\
!

Specifying software
requirements

“Local”
verification

Software requirements
specification (SRS)

Software requirements

verification report
L~

/

Software requirements
test specification

/

Plan for
validation
testing

TN

Software Quality Assurance Plan

= Goals:
o Preventing systematic faults and controlling residual faults
o Determining the required technical and control activities

= Main aspects to be included:
o Activities, their input and output criteria in the lifecycle
o Quantitative quality expectations (e.g., ISO/IEC 9126)
o Specification of it own review and maintenance

= Methods for checking external suppliers
o Compliance of the QA Plan of the supplier
o Verification of external software components

= |ssue tracking
o Documentation and feedback mechanisms
o Analysis of issues (root causes)
o Diagnosis and maintenance/repair activities and techniques
o Verification and validation of corrections
o Fault avoidance

Software Verification Plan

= Often a separate plan (especially in safety-critical systems)
= Planning the verification activities

o Planning the techniques and measures (from the development standard)
o Determining acceptance criteria

= Qverall aspects of verification:

IH

o “Local” checking of the given development step: Completeness, consistency

o Conformance checking: W.r.t. the output of previous phases

= Details:
o Participants roles and responsibilities
o Tools (e.g., test equipment)

o Evaluation of verification results (acceptance criteria)
* Checking the required test coverage

* Evaluation of quality requirements

Software requirements specification - Terminology

= Requirement

o Incoming need, vision, expectation
* From the future users
* From stakeholders (management, operator, authority, ...)

o Basis for validation

= Requirements specification

o Requirements in converted form, for the designers
* Result of requirement analysis
e Abstraction, structuring, filtering applied
o Several types of requirements
* Property specification, behavior specification, ...
* Later: architecture specification (/design), module specification, ...

o Basis for verification

Preparing the requirements specification

Formal languages
Semi-formal and structured methods
Example: SysML

Approaches for specifying requirements

= Contents of the requirements specification
o Functional requirements
o Extra-functional requirements
= Natural language based specifications
o Problems with unambiguity, verifiability
= Possible solutions:
o Using strict specification language (e.g., formal, or semi-formal)
o Using verified “specification patterns” (e.g., for safe behavior)
o Systematic verification after the requirement specification phase
= Example: Solutions proposed by EN 50128
o Formal methods (VDM, Z, B, TL, PN, ...)
o Semi-formal methods (diagram based techniques, SysML)
o Structured methods (JSD, SADT, SSADM, ...)
o Natural language based description (explanation) is mandatory

Overview of the types of formal languages

Model-oriented languages (VDM, Z, B, ...)
Algebraic languages (ADT, OBJ, ...)
Process description languages (CSP, CCS, ...)
Logic languages (HOL, CTL*%, ...)
Constructive languages (NUPRL, ...)

Hybrid or wide spectrum languages
(CPN, E-LOTQOS, ...)

Overview of the types of formal languages

Model-oriented languages

(VDM, Z, B, ...)

Algebraic Iangu S Mathematical model: A
* Elements in the system (set-theoretic
Process de n la structures like sets, subsets, relations)
. * Functions, operations, events (with
|-08|C Ia pre- and post-conditions, invariants))

Persons: prs # 0, p € prs (set)

Buildings: bld # 0, b € bld (set)
Authorization: aut € prs < bld (binary relation)
Situation: sit € prs > bld (complete function)
Invariant: sit ¢ aut

An event (change of situation):
pass = ANY p,b WHERE (p,b)ecaut A sit(p)#b

\ THEN sit(p):=b END

Example: Specification of an access control system (in Event-B): \\()

LOTOS, ...)

/

Overview of the types of formal languages

= Model-oriented languages

= Algebraic languages

Abstract data types: sorts (set of values),

operations, properties as equiations

Type Boolean is
sorts Bool
opns

false, true : -> Bool
not : Bool -> Bool
and : Bool, Bool -> Bool
eqns
forall x, y: Bool
ofsort Bool
not (true) = false;

not (false) true;

x and true

(VDM, Z, B, ...)
(ADT, OBJ, ...)

Abstract algebra and

category theory

* Abstract data types: values,
operations, properties

* First order logic is typical y

~

inguages
(CPN, E-LOTOS, ...)

—

Overview of the types of formal languages

Model-oriented langus

Algebraic languages

* Processes: Sequential execution of
statements

* Operations among the processes
(synchronization, communication)

Process description languages (CSP, CCS, ...)

LOgI Example: Process algebra language (CCS): \

Con Sender

Hybr Chan =

Proc =

= msg.ack.Sender

Receiver = msg.ack.Receiver
msgin.msgout.Chan + ackin.ackout.Chan
Sender [msgin/msg, ackout/ack] | Chan |

Receiver [msgout/msg, ackin/ack]

Sender Receiver
msg ack msg ack
msgin ackout Chan msgout ackin

Overview of the types of formal languages

= Model-oriented languages (VDM, Z, B, ...)
= Algebraic languages (ADT, OBJ, ...)
" Process description languages (CSP, CCS, ...)
" |ogic languages (HOL, CTL¥, ...)

= Constructive lan * Formal mathematical logic (first order A

or higher order logic)

» Temporal logics (with temporal
operators like “future”, “next time”,)
“until”, “before”)

o)

= Hybrid or wide spe

Overview of the types of formal languages

Model-oriented languages (VDM, Z, B, ...)

Algebraic Ianguages Constructive logic systems (computable A
Process description |

Logic languages

Cons

Hybr;

functions): Proof of a property of a
function at the same time provides a
construction (implementation)

)

tructive languages (NUPRL, ...)

f/ExampIe for a non-constructive proof (in mathematics)
* The existence of an artifact with a given property can be proven
without giving exactly what is that artifact
e Example: There exist a,b ¢ Q such thata® € Q

* Properties with non-constructive proof are not feasible for
software specification, this way restrictions are needed that

guarantee the synthesis of functions

~

Overview of the types of formal languages

= Model-oriented languages (VDM, Z, B, ...)

= Algebraic languages (ADT, OBJ, ...)
" Process description languages (CSP, CCS, ...)

" Logic languages (HOL, CTL*%, ...)
= Constructive languages (NUPRL, ...)

= Hybrid or wide spectrum languages

(CPN, E-LOTOS, ...)
I

* Properties and advantages of different
formalisms are combined, e.g.,
e LOTOS: process algebra + ADT

e CPN: Petri-nets + data manipulation (ML)
- /

Semi-formal languages: Examples

= Description of the structure:
o (Functional) block diagrams

= Description of data flow:
o Data flow diagrams, data flow networks
o (Message) sequence diagrams

= Description of the control flow:
o Control flow diagram, state machine, statechart

= Description of logic conditions:
o Truth tables
o Constraint languages (e.g., OCL with structure)

Structured methodologies: Historical examples

Jackson System Development (JSD)
o Entity structure: Entities + actions (ordering) + processes
o Network: Communicating sequential processes

Real-time Yourdon (Ward-Mellor)

o Basic: Environment (input events) + behavior (response)
o Construction: Processes (+ processors)

SSADM

o Data model (entity relationship diagram)

o Data flow diagram (processes, data storage)
o Entity diagram (life history)

o Entity effects

Structured Analysis and Design Technique (SADT)

o Activity-factor diagram: tasks + relations;
input, control, resource, output

ROOM: Real-Time Object-Oriented Modeling

Semi-formal requirements specification: SysML

= Systems Modeling Language

o UML subset and extensions for system modeling
o Novelties: Requirement and Parametric diagram

SysML Diagram

oM
SYSTEM
WODELIN l - | ? l
LARCUAG P LT
.i Structure

Behavior : Requirement
Diagram : Diagram Diagram
[“3
Activity Sequence State Machine Use Case Block Definition Internal Block .
Diagram Diagram Diagram Diagram Diagram Diagram Package Diagram

.-.-‘9-.-.
Parametric .!

Diagram]

Same as UML 2

[Wodified from UML 2

---.

New diagram type

Requirement diagram

Requirements (textual) with identifier are model elements
o <<requirement>> stereotype
o Id (identifier) and text (description) fields
o User-specified attributes: e.g., type, source, risk, ...
o Tabular form is also supported

Requirements can be grouped into hierarchic packages
o Functional, performance, etc. categories

Refinement among requirements (~ subclass), composition

Relations can be used (e.g., inserted as structured comments):
o Copy: between requirements (master — slave)
o Trace: between requirements (client — supplier)
o DeriveReqt: between requirements (source — derived)
o Refine: between requirements and design elements
o Satisfy: between requirements and design or implementation elements
®

Verify: between requirements and test elements

Example requirements diagram: Structure

sermguirem emtss

HybridSUV
\L "UR1.2" \L 'WR1.3 UR1.4"
corequirement>> <<requirem ent=>
'‘Eco-Friendliness’ Performance <requirement>
Ergonomics
“{*Zrequirerr'en:}} "{{re-quirement}}
Text = "Eco-Friendliness' Text = "Ferfom ance
Id ="UR"12 d="UR1.3
“erification method® = Analysis “erification methed' = Test
Risk = High Risk = Madium
Source ="Marketing" Source = "Marketing
Type ="Functional” Type = "Perform ance”
? -.l.- URT3AF
3 UR1.3.1" armguinEm Entes
UR12.1" =<requirem ent== Rﬂnge
TEEIEEED Acceleration '
Emissions UR1.3% URT33
<<reguinem ent=>
=<rEguirem enis
“* c<raquirem ent=> Braking Power
Text="The car shall meet 2010 Kyoto Ac
Id="UR12.1
Source = "Marketing" UR13Z
Type = "Performance” <<reguiremeni=>
Risk = Medium FuelEconomy
“Jerification method" = Test
** z<requirem ent==
e Text= "Users shall obtain fuel economy better than 35% of cars builtin 2004."
id ="UR1.3.2"
"erification method' = Test
Risk = High

Source = "Marketing
Type ="Performance’

JEGYETEM 1782

Requirements diagram: Decisions

= Special comments (with predefined stereotype) can
be assigned to any model element:

<<problem>>: Problem or proposal that needs decision
<<rationale>>: Rationale, solution, explanation

| bdd Master Cylinder requirements

i ublocks
wrequiremants
Loss of Fluid - . Brake System
=~ usatisfys
m:MasterCylinder
wrequirements e p
Reservair == -
asalisfyr

arationales

The best-practice solution consists in

asslqnlng ane reservair per brakeline.
See automotive di? hdb.dod

wproblems AN
& master cylinder in previous
version leaked.

Example requirements diagram: Relations

req [packapge] HSUVRequirements [HSLW Spec'rﬁcatbnu

[1]

[,

HSUVSpecificat
peciEation RefinedBy
o wuseCases HIUN Usaelases Accelerate
T | I.
arequiraments erequiraments]
Eco-Friendliness Performance H
! wrEqQUirements
¥ ! Power
:I e i
|I _"'! :
b [wderiveReqts] :
| [|
= 2 |
arequiremenis wrequirements wrequirements I
raking FuelEconomy Accelleration |
. [
f |
! L
wrequirements _,I !
Emissions ! .
Id="R12.1" VerifiedBy SatisfiedBy
text = “The vehicle shall meet Ulira-Low viestCases MaxAcceleration eblocks PowerSubsystem
Emissicns Vehicle standards.”

Block diagram

= Block: Element of the structure (black / white box)

o Component (not only software)
o In SysML: Based on UML 2.0 classes

= Block definition diagram: Types of blocks
= |nternal block diagram: Concrete roles of block types

bdd [package] VehicleStructure [ABS-Block Definition Diagram] ibd [block] Anti-LockController ‘
[Internal Block Diagram|]
E::_:;crl;” ublockn T T T TT T |
Anti-Lock) '
— | s1:Sensor |
Elri":;::;cr Controller 2 sensor | |
X Interface | —————————- '
a d1:Traction
mf 51 Detector
c1:modulator
{{blﬂqkn ublocks «blocks Interface
Trﬂ{:tlﬂn E-rake SEHSGT m1 :Erahe
Detector Modulator Modulator

Parametric diagram

= Goal: Verifiable quantitative requirements
(constraints) expressed using attributes

o Non-functional requirements
o Supporting analysis (e.g., performance, reliability)

= ConstraintBlock: Specifying interrelations
o Formal (e.g., MathML, OCL), or informal (textual)
o Adapted to analysis tool (not SysML specific)

= Parametric diagram: Concrete application
o Application of Constraint blocks in a given context

o Binding between values

Parametric diagram: Example

bdd [package] Analysis [Parametric Diagram;,

!

aconstraintBlocks W ublocks
StraightlineVehicla ——== VehicleStructure
Dynamics :Mehicle

xconstraintBlocks wconstraintBlocks €Ol
BrakingForceEquation AccelerationEquation W
consfraints consiraints
AF = (Pf)(1=t} {F = mi*a} {fa=dw
paramefars paramelars i
fiforce F:force aaccel
e mmass Wwyeloc
bfforoe avacceleration Etime
thloss

par [constraintBlock] StraightLine’ehicleDynamics [Parametric Diagramy

v.chassis.tire.

v.brake.abs.m1.

v.brake.rotor.

Friction: DutyCycle: BrakingForce: v.Weight:
tf: il b m:
I LI O l,/' L]
:BrakingForce :Accelleration
Equation e Equation
{f = (tF*bi)y*{1-11)} : {F = m*a}
A . m|
a
a:
- B - =
:DistanceEquation - [1 :VelocityEquation
{v = dx/fdf} e {a = dvidt}
g [J o
e

v.Position:

~

S

lllustration of the relations among diagrams

1. Structure 2. Behavior

I [Dicca) mgg aot Frevenilockup [Ewimlans I:ll.tnrarﬁ])
[IHETEJ (=% IJE;TITl] -;"a:'_l rerenis
walocates waliccabes
et ‘Tractan Debachor - Brak=hodulabor

fmmmnalm /
SoCRBIFTm gl
clmoduator JvtpDeectos l:,ﬂte' n i
Itertsce al\@ L] ~
x
A Fi {’;utmﬂ.u“m | TractlonLoss- _){’/_ Maodulate
5 il BrakabAaiulator Traotion - ﬁrulnuFum;}
[locatedFrom i SlncaterFom u\“\,\
#a??m‘ EIE'.]:E.'"’NUJE il o
| Tracion. oes akngroms \g'
‘u"al UE." . allocatedTo h
VallieS - - ptonnechorscd modulatorinisface
CayCycle: Pemantage blndlng_-hﬂ'\.,x , |
5 Eltl va par |mnsu-almabn:-hqurru.mum:l:uwam:s [Fara=smc I:llauram])
req [packape] Vehide Bpegiioadons
remenss O - Araking Se=qul W uham:thn. v.brake.abs.m1. v.brake rofor.
[Regurement: Disgrm - fraking Requinments] Friotion: DutyCyoie: ErakingForna: w-Welght:
Vehlole Syctem Braking Subcycism
3 paciaation 3 pacifaation
L1
araquirsmants araguiramiants :BrakingFones Acelleration
toppingDictanos &niti-LookFPerformanoes Equation F' Eguaticn
[F = (Hbf)" -] . F = ma]
Id=" 102 = 337 I‘""\-
fext="The vehicle shall siop ext="Eraking subsystem ac
from &0 mph within 150 ft shall prevent wheel kckup LE
of & Clean dry surtsoe " undar all braking conditicns o ™y
WerfleoSy SarshedEy :DictanosEquation ‘Valootty Equation
winteracton: MinmumSops sblocksArt-LockControlier [v = dxdf] 3 =]
ngD's@nce \ i o |.|_.| _p-"'l
| |
: —
1
vieriveRegis \T\ I g 1K
l.t.i‘l.l":
L

4. Parametrics

3. Reqmrements

Verification tasks

General aspects and verification techniques
Verifying completeness and consistency

fuligng:
YETEM 1782

How the Project
Leader understood it

FELLiL

How the project was How the customer was
documented billed

MUEGYETEM 1782

General criteria for a good specification

= Complete
o Specified functions, references, tools, ...

= Consistent
o Internal and external consistency
o Traceability

= Verifiable
o Specific
o Unambiguous
o Quantifiable (if possible)

= Feasible

o Resources

o Usability

o Maintainability

o Risks: budget, technical, environmental

Example: Good specification on the basis of IEEE 830-1998

Correct

e Every requirement stated therein is one that the software shall meet
e Consistent with external sources (e.g. standards)

Unambiguous

e Every requirement has only one interpretation
e Formal or semi-formal specification languages can help

Complete

e For every (valid, invalid) input there is specified behavior
e TBD only possible resolution

Consistent

¢ No internal contradiction, well-defined terminology

Ranked for importance and/or stability

* Necessity of requirements

Verifiable

® Can be checked whether the requirement is met

Modifiable

¢ Not redundant, structured

Traceable

¢ Source is clear, effect can be referenced

Example: Good specification on the basis of IEEE 29148-2011

Necessary

e If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation-free

¢ Avoids placing unnecessary constraints on the design

Unambiguous

e |t can be interpreted in only one way; is simple and easy to understand

Consistent

¢ |s free of conflicts with other requirements

Complete

* Needs no further amplification (measurable and sufficiently describes the capability)

Singular

e Includes only one requirement with no use of conjunctions

Feasible

e Technically achievable, fits within system constraints (cost, schedule, regulatory...)

Traceable

e Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

* Has the means to prove that the system satisfies the specified requirement

Techniques for verification

= Static analysis

o Checking documents, code or other artifacts

o Without execution
= Basis for static analysis: Checklists

o Examples: Criteria for good specification

o Completeness of the checklist is always questionable
" |mplementation of static analysis

o Manual review (all aspects)

o Tool-support (esp. for checking consistency)

Manual review: Terminology and steps

Types of review:

= Informal review
o No formal process
o Peer or technical lead reviewing

= Walkthrough
o Meeting led by author
o May be quite informal
= Technical review

o Review meeting with experts

o Pre-meeting preparations for
reviewers

= |nspection
o Formal (well-documented) process
o Led by a trained moderator

Steps of a review:

1.

2.

3.

4.

5.

6.

Planning

O Defining review criteria

o Allocating roles
Kick-off

o Distributing documents

o Explaining objectives
Individual preparation

o Reviewing artifacts

o Collecting defects, questions
Review meeting

o Discussing and logging results

® Making decisions
Rework

o Fixing defects

o Recording updated status
Follow-up

o Checking fixes

o Checking exit criteria

Tool support for verification of the specification

= Natural languages
o Static analysis by manual review

"= Semi-formal languages
o Precise syntax, but informal semantics
o Automated checking of syntax and well-formedness
(missing or contradictory elements)
* Formal languages
o Mathematically precise syntax and semantics
o Automated checking of syntax / well-formedness

o Automated checking of behavior

* Operational semantics: Reachable states of computation
(e.g., model checking, equivalence/refinement checking)

* Axiomatic semantics: Properties of computation
(e.g., theorem proving for invariants, post-conditions)

Tool support: Checking state machines

Yakindu Statechart Tools

default maein region

interface:
/I Define events and
/f and vanables here

52

s1 |
r2 ri

<name > <21 ‘
Tasks 'ﬁ_ Problems &3 Properties

Yerrors, 1 warning, 0 others

Description - Resource Path

w 3 Errors (4 items)
£ A state must have a name, default.sct fyakindu-test
£ Mode is not reachable. default.sct fyakindu-test
£ Region must have a 'default’ entry. default.sct fyakindu-test

&3 Target state has regions without 'default’ entr default.sct

w (& Warnings (1 item)

fyakindu-test

= Missing trigger. Transition is never taken, Use default.sct fyakindu-test

https://www.youtube.com/

watch?v=uO6MASCBPrg

IAR visualSTATE

/ M1 [SeiCountec> 19)

Verification result log for all steps:

Conflicting transitions: (Emor)

Event1:

State3: Event1() / -> State1

State3: All() [SelfCounter > 10] / -> Finall
3

'
!

1

Event2:

State3: Event2() / -> State2

)State3: All{) [SelfCounter > 10] / -> Final1

https://www.youtube.com/

watch?v=05ITlymLugM

https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=05lTlymLugM
https://www.youtube.com/watch?v=05lTlymLugM
https://www.youtube.com/watch?v=05lTlymLugM
https://www.youtube.com/watch?v=05lTlymLugM

Verifying completeness and consistency

Incompleteness or inconsistency: major source of failures

= Statistics of faults found during the system testing of Voyager and
Galileo spacecraft:
78% (149/192) faults resulting from specification problem
o 23%: missing state transitions (stuck in dangerous state)
o 16%: missing time constraints for data validity
o 12%: missing reaction to external event
o 10%: missing assertions to check input values

= 60-70% of IT project failures can be traced back to insufficient
requirements — Meta Group (2003)

= “Significantly more defects were found per page at the earlier
phases of the software life cycle.”
o Inspection of 203 documents

o An analysis of defect densities found during software inspections (JSS, DOI:
10.1016/0164-1212(92)90089-3)

Example: Review criteria for reactive systems

Groups of criteria (developed by N. Leveson, Safeware)
= State definition

" |[nputs (events)

= Qutputs

= Qutputs and triggers

= Transitions

* Human-machine interface

Controlled

Operator systems

Example: Review criteria for reactive systems

= State definition Initial state is safe
In case of missing input
there is a timeout,
0 Outputs and no action is allowed

" |nputs (events)

= Qutputs and triggers
= Transitions
= Human-machine interface

Controlled

Operator systems

Example: Review criteria for reactive systems

= State definition For every input in every
state there is a specified

" |[nputs (events) Salbavion

- Outputs Reactions are unambiguous
(deterministic)

= Qutputs and triggers Input is checked (value,

timeliness)

" Transitions Handling of invalid inputs is

= Human-machine interfa @il
Rate of interrupts is limited

Controlled

Operator systems

Example: Review criteria for reactive systems

State definition
Inputs (events)
Outputs
Outputs and triggers
Transitions

Human-machine interface

Operator

Credibility checks are
specified

There is no unused output
Processing capability of the
environment is respected

Controlled
systems

Example: Review criteria for reactive systems

State definition
Inputs (events)
Outputs

Outputs and triggers
Transitions
Human-machine interface

Operator

e Effect of outputs is checked
through the inputs
e Control loop is stable

Controlled
systems

Example: Review criteria for reactive systems

State definition
Inputs (events)
Outputs

Outputs and triggers
Transitions

Operator

Every state is reachable
statically (incoming path)

Transitions are reversible
(there is a way back)

More than one transitions
from dangerous to safe states
Confirmed transitions from

safe to dangerous states

Controlled
systems

Example: Review criteria for reactive systems

= State definition
Priority of events to the

" |Inputs (events) operator is defined
Update rate is defined
- OUtpUtS * Processing capability of the

= Qutputs and triggers operator is respected

" Transitions

= Human-machine interface

Controlled

Operator systems

Managing requirements

Traceability
Basic tasks and tool support

The role of traceability

= Traceability of requirements: Managing links among requirements
and design artifacts

o Among various levels of requirements: User —> System —> Module

o Among requirements and design artifacts:
Req. specification —> Architecture design —> Module design —>
Source code —> Test —> Test result

= Analysis possibilities based on traceability links
o Impact analysis: handling the changes
* What is affected by a changed requirement?

o Derivation analysis: handling utility and rewards
* Why is this artifact here? What is the related requirement?

o Coverage analysis: handling the status of development

* What requirements are refined / implemented / tested?

Typical tasks of requirement management tools

Storing the requirements:

Hierarchic grouping

Handling the lifecycle and changes
of requirements:

Using versions, attributes, timestamps,
showing timeline of changes

Storing the relations:

Support traceability:

Several types: Composition, derivation,
refinement, implementation, ..

Requirements — Design (models) —
Source code — Test — Test results

Navigation on relations:

Forward: e.g., impact analysis
Backward: e.g., derivation analysis

Generation of coverage lists:

ldentify uncovered requirements or
extra functionality

Handling authorization:

Defining roles and allowed activities

Sending notifications:

Messages in case of changes

Assuring integrity:

Detecting unintentional changes

Requirement management tools

B ‘ImplementationRequest’ current 0.0 in /Change_Basic (Formal module) - DOORS

Ele ERt Yew Insert Lok fnelysis Toble Took Discussions User ChangeManagement Help

| QB ||zam || fgyPFin |esglg
(View [1R s View Il |[avevels =] || i s |[PHeF < 8 7 P AL 4 2
8 ‘vd‘erLer*a"o"Reww D | Implementatioriequest 8] csint_ir_dcterms:desciiptior] csin_i_dctems:ttle | csint_ir_d csint_ir_osle_crstatus = I B M Ra t I O n al Do 0 RS
51 User -
1.1 Extiactrequitements ! | 1 User requirements " User requirements User requirements 4 r_assigned
1.2 Develop requirements st 2 | 1.1 Extract requirements ¥ User requirements User requirements 4 ir_assigned =
1.3 Organise requiements : »
iromieagte || 3| 12Developrecuirements e roqaorens e 4 s Next Generation
1.5 Accept user tequitement structure
1.6 Drganise requiements . -
2 Sohnai eqEenenis 4 1.3 Organise requirements
21 Develop logical model 5 | 1.4 Review user requirements
22 Define constraints 6 A
D s TG 1.5 Accepl.: user re.qurrements
2.4 Review software requie 7 | 1,6 Organise requirements
2.5 Accept soltware requirer 8 H
o 3ciockaddotn Q2 e tauicamanty
-4 Detailed design .1 Develop logical model|
Some i | 22Define constrants https://www.youtube.com/
521;,9':,,,3,\ 11 2.3 Define software
5.3 Accept software il _requirements h — YK7 4F 44
& [ZAReviow softwers watch?v=q g4Fy
requirements
13 2,5 Accept software
requirements
14 3 Architectural design
15 3.1 Outline major design v
e S [o
[Usemame: arsieswa [Exclusive edt mode %
If [SR <ProR>
[7 Project Explarer 22} = 0| [r) *Trafficlight.reqif [RI b = 0| 5= outline 2 =0
B S Y W Description [Link = || + 1 specifications
+ = 2012-01_ProR_Radin_integ e ‘Given Domains r @ teration 0
3 = EMF Compare Ll Q sys System v+ [Iteration 1
v = ReConf i; g street itreet v @ Given Domains
. ars
Trafficlight reqif cars © sys
1.4 @ peds Pedestrians @ street
> 1= Sandbox
1.5 @ tl_cars Traffic Light Cars © cars
15.1 @ W-1.1 tl_cars have three lights: red, yellow, green 0@ 1 @ peds
® o synchronized located on th e Y@ tlears
wo synchronized tl_cars are located on the
Lz @ WLl2 treet according to Fig. 5.1 oFerF1 = @ Ww-1.1
[R-0.2 O W12
1.6 @ tl_peds Traffic Light Pedestrians > © tl_peds
Requl ' h F 1.6.1 @ W-1.3 tl_peds have two lights: red, green 0@ 1 > @ button
quirements Interchange ormat . .
L= R-0.3 > @ Designed Domain
Two synchronized t|_peds are located on the > @ Requirements
Lz @ W14 tract according to Fig. 5.1 0E@k1 .
> [R] Iteration 2
[= R-0.3 . .
terat 3
htt // t b / 17 © button Push Button i % fteratfun X
. - > [R] iteration
S WWW O u u e CO' I I Pressing any of the push buttons will send a = =
p = .V = L7 Q W-15 signal to the controller 0E@1 . + [R iteration 5
< I)< > > R4 ~ > [R] Final

watch?v=YC NrseqWcc

p——

> (@l Snacnhiacts

https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc
https://www.youtube.com/watch?v=YC_NrseqWcc

Example: IBM Rational DOORS

D Last Modffied By | Car user requirements E Pricirity Percentage cost | Comments
TRM-CSR-1 Bill Yeung 1 Introduction Mandatory 0.172833 \
TRM-CSR-2 Bill Young |This module contains the user Mandatory form
requirements for a new car to be te
commercially available by 1 August 2006,
Attributes]
a text field.
TRM-CSR-3 Bill Yeung 2 User tYIJES Desirable 1.370889
TRN-CSR-4 Bill Young 2.1 Nationalities Mandatory 0.642687
TRM-CSR-5 Bill Young The car will be used in the following Mandatory 0.769025
countries: UK, USA, Northern Europe, =
castern Europe, Japan, Russia, Australia. == ‘Structure Module’ current 0.0 in /New Family Car Projecﬂ...g@
TRM-CSR-6 Bill -"I'rl:ILlr'Ig 2 2 U5er SiZES Mand File Edit View Insert Link Analysis Table Tools Discussions User Publish Help
- - Hd®E ¥R [V |[zaa o A |
TRM-CSR-7| Bill Young Feof\e come in all shapes and § ps. The Mandi. : ; = S p—
ar : View |Standardwew [v] |NI levels [v] - o R A :
5 Madul :
ma fgfgf to g ém?uHr:ad;guf D | Structure Exermse- H |
Zm Requirement 1 TRN- 1 Headlng 1
f‘ Requiremert 2 DF4-1
Requirement 3 TRN- | Requirement 1
Req . ' (=2 Heading 3 DF4-8
i Requirement 5 TRN- | Requirement 2
ObjeCt Te)_(tual Requiemert & || DF4-8
identifier object TR Reqrement
Change DTFE’_“;; 2 Heading 3
mark Header TRN- Requirement 5
DF4-6
ObJeCt TRN- | Requirement 6
DF4-11
<] | [)]
H IerarChy ”Usemame: Bill Young Exclusive edit mode

Example: IBM Rational DOORS

User level requirement] Indicator for incoming relations]
The Instructor shall be able to Lower level requirements for satisfying
take control of any Student PC. the user level requirement
A
satisfies [The system shall provide a facility for the Instructor
| station to monitor a student PC >
satisfies (The system shall, when a student PC is being
monitored, provide a facility for the Instructor
station to take control of the selected student PC I+

satisfies (The system shall disable student PC input when]

| control is taken by the instructor station >

Requirement based verification tool-chains

Assigning verification activities to requirements

o Checking satisfaction of the req., collecting evidences

o Standard-based techniques and measures (e.g., for safety case)
Verification tool-chains (typically external)

o Analysis: Generating analysis model, performing analysis, post-
processing or visualization of results

o Testing: (Model based) test case generation, test execution, providing
test verdict

o Measuring: Configuring measurements, executing measurements,
data analysis

Verification tool-chains can be started from the requirement
management tool

o Scripts with triggers (verifiable requirement)

Registering the status of verification
o Successfully verified requirement + repository of evidences

Example: Starting verification tool chain from DOORS

| Formal module YDECOS_Te stBen:hV-Plans Components and Middiesare” current 0.0 - DOORS

Fle Edt Wiew Insert Link Anabesis Table Tools User Decos Help TOOI-Chain

BEE | & B0 ¥ 0 == 0o | EE iE E (AW R | E

[owerview =] [alevels 7] 3 TEETE o wBW WOI'kﬂOW
I HEE N e EEa (V&V tool spec.)

VPCMSZ 1 V-Plan Components Dot reads

and Middleware e —
VFCM1 Areh-gen.l L ready Cornpound ‘r
WPCME Arch-gen<ore-l " Completed Compound
VPCMS Arch-core-predictable transport-1 % Completed Elementary v
VPCM4 Arch-cove-ftclock-syne-1 ¥ Completed Elementary D t &
VPCIME drch.core.fault isclation.1 ¥ Cornpleted Corapound T I h H a a
VPCME Arch.core.fault hypothesis.1 " Corapleted Elementary ool-Chain
VPCMT Arch.core-never-give.up-1 d Cornpleted Elemer Docu ments
VPOME Arch-core-transient-faults-1 > Clarnpleted L . manager .
VPGMS Arch-core-consistont-diagnosis-1 % Gomsleted Tr[ggered from DOORS Re os'to
VPOMIO Arch-gen.core2 % Boe - y'y p ry

VPCOMI1l Arch.-DECOS high-level service~ *
VPCMIZ Arch.DECOS.exec.l
VPCMI1E Arch.DECOS.com--]

PO 14 PJ:h-PEG"" \ \ |
V&v- // /-7~ 3
Tools

Example tools:

— ITEM (Hazard and risk analysis)
— RACER (Formal verification)

— SCADE MTC (Simulation)

— LDRA (Testing)

— PROPANE (Fault injection)

— EMI Test Bench

" |nputs and outputs of the phase
" Preparing the requirements specification

o Formal languages
o Semi-formal and structured methods

= Verification tasks
o General aspects and verification techniques
o Verifying completeness and consistency

= Managing requirements
o Traceability

o Basic tasks and tool support

