Software Verification and Validation (VIMMDO052)

Verification of the Architecture

Design

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Overview

= Motivation
o Architecture design and languages
o What is determined by the architecture?
o What kind of verification methods can be used?

= Requirements based architecture analysis
o ATAM: Architecture Trade-off Analysis

= Systematic analysis methods
o Interface analysis
o Fault effects analysis
= Model based quantitative evaluation

o Performance evaluation
o Dependability evaluation

Motivation

Architecture design and languages
What is determined by the architecture?
What kind of verification methods can be used?

Inputs and outputs of the phase

Software requirements
specification

System architecture
design

Designing the
software
architecture

Software quality
assurance plan

“Local”
checking

Software architecture

design (specification)

Software architecture
verification report

Z

Software (/hardware)
integration test plan

{For integration

testing

Lo

Architecture design

= \What is the architecture?

o Components (with properties)
o Relations among them (use of service, deployment, ...)

= Design decisions

o ldentifying components and specifying their relations
* Implementing system functions by interactions of components
* Hardware-software separation and interactions

o Specifying properties of components
* Performance, redundancy, safety, ...

o Using architecture design patterns
* E.g., MVC, N-tier, ...
o Re-use off-the-shelf (OTS) and existing components

Typical languages for architecture design

= UML
= SysML (e.g., Block diagram)

= AADL: Architecture Analysis and Design Language

Components

Mapping to hardware

O
O
O
o Properties for analysis

thread implementation CoinPublisher.impl

calls(u: subprogram updateTotal;);
properties

Compute Exscution Time => 30ms .. 40ms;
Dispatch Protocel => (| Sporadic);
annex behaviocr {**

compute (Sms) ;

compute (10ms) ;

compute (15ms) ;

raise (availableContent) ;

. 1;

end CoinPublisher.impl;

Relations: Data/event interchange on ports

Nav_Autopilot System

P_Nav_Con

Typical languages for architecture design: SysML

/ \ / ibd [block] Anti-LockController ‘ \

bdd [package] VehicleStructure [ABS-Block Definition Diagram]
[Internal Block Diagram]

Elhhl ;crl;:_:_ ublocks rTTTTTTTT :
Anti-Lock —1{] s1:Sensor |
Electronic Controller c2:sensor | '
Processor Interfface | —————————- |
N\
d1:Traction
— Detector
" c1:modulator
w blaq K «blocks «blocks Interface
Traction Brake Sensor || m1:Brake
Detector Modulator Modulator
Activity Sequence State Machine Use Case Block Definition Internal Block .
Diagram Diagram Diagram Diagram Diagram Diagram Package Diagram

Paramefric .!
Diagram |

Same as UML 2

[WModified from UML 2

H MNew diagram type

---.

Typical languages for architecture design: AADL

AADL: Architecture Analysis and Design Language

(v2: 2009)
o For embedded systems (SAE)

= Software components

System
o System: Hierarchic structure of components
o Process: Protected address range | Process |
o Thread group: Logic group of threads = ey
. 1 Thread group | I
o Thread: Concurrently schedulable execution @ s======
unit pr——
f Thread B
o Data: Sharabledata === ==
o Subprogram: Sequential, callable code unit Data

Subprograﬁ/

Typical languages for architecture design: AADL

= Hardware components

o Processor, Virtual Processor: Platform for
scheduling of threads/processes I Virtual Proc. 1;,'

o Memory: Storage for data and executable

code E?Memowﬁj
o Bus, Virtual Bus: Physical or logical unit of A N
:) '
connection “.\ﬂﬁt.u.a.'.B.U.S. s

o Device: Interface to/from external
environment Device l

Processor

= Mapping

o Between software and hardware

o Between logical (virtual) and physical
components

Typical languages for architecture design: AADL

= Example: Mapping between components

/ Nav_Autopilot System

P_Nav _Con

AP Toggle
_ QQ<

A
______ R p, g

e o o e o -

| = J

Typical languages for architecture design: AADL

= Relations
o Data and event flow on
pOFtS
" Property specification
for analysis
o Timing
o Scheduling

o Error propagation
(using an extension of
AADL)

= Models in graphical,
textual, XML formats

] —~ *—
Mav signal e Mavigation ! :::: To
: Sensor Partitions
{ Frocesﬂng :
|From ' _
Partitions - -
51 N L 4 {20Hz
data Integrateh ki
¥ Navigation | MG““’““CE
|_’ F"ra-::E s's.lng GP data
] L
il —
-, -
—J»Flight Plan ".-
y, Processing = | ep data
Aircraft - J"" data
Performance !
Fuel data) Calculation

thread implementation CoinPublisher.impl
calls(u:
properties

Compute Execution Time => 30ms ..

subprogram updateTotal;);

40ms;

Dispatch Protocel =»> (Sporadic);

annex behavior {**
compute (5ms) ;
compute (10ms) ;
compute (15ms) ;

raise(availableContent):

& };

end CoinPublisher.impl;

What is influenced by the architecture? 1/2

= Performance

o Resource assignment: Parallel processing, queuing policy,
deployment of critical services

o Resource management: Scheduling of resources, dynamic
resource assignment, load balancing

= Dependability
o Error detection: Push/pull monitoring, exception handling

o Fault tolerance: Static redundancy, dynamic redundancy,
forward/backward recovery

o Fault handling: Reconfiguration, graceful degradation
= Security

o Protection of sensitive data: Components for
authentication, authorization, data hiding

o Detection of intrusion: Confinement of illegal access
o Recovery after intrusion: Maintenance of data integrity

What is influenced by the architecture? 2/2

= Maintainability
o Encapsulation: Semantic coherence

o Avoiding domino effect of changes: Information hiding,
confinement, usage of proxies

o Late binding: Runtime registration, configuration
descriptors, polymorphism

= Testability
o Assuring controllability and observability
o Separation of interfaces and implementation
o Recording and replaying interactions
= Usability
o Separation of user interface

o Maintenance of user model, task model, system model in
runtime

Example: Safety architecture 1/2

SCADA system: Supervisory Control
and Data Acquisition

Control

Communication
protocol

Example: Safety architecture 2/2

Error detection: Independent software
,channels” with comparison at I/0 and HMI

Channel 2 (N)
GUI /
Bitmap A Bitmap B 1
A A
Database |4 » Database
Input Control —— » Control Input
i Communication i i Communication i
] protocol i] protocol i

Summary: System properties and the design space

System property Related design decisions (examples)

Performance Resource assignment,
resource management

Dependability Error detection, fault tolerance and fault
handling with redundancy

Security Protection against illegal access,
detection of intrusion, recovery

Maintainability Encapsulation, avoiding domino effect,
late binding

Testability Controllability, observability, separation
of interfaces

Usability Separation and maintenance of user,
task and system models

Overview: What are the verification techniques?

= Review: Analysis of requirements and architecture
related decisions

o Architecture trade-off analysis (ATAM)

= Static analysis: Systematic architecture analysis
o Interface analysis
* Conformance of required and offered interfaces

o Fault effect analysis by combinational techniques
* Component level faults <> System level effects

= Quantitative analysis: Model based evaluation
o Evaluation of extra-functional properties by
constructing and solving an analysis model

* Computing system level properties on the basis of the local
properties of components and relations

Analysis of requirements and

architecture related decisions

ATAM: Architecture Trade-off Analysis

Requirements based architecture analysis

= Architecture Tradeoff Analysis Method (ATAM) goals

o What are the quality objectives and their attributes?
* What are the relations and priorities of the quality objectives?

o How does the architecture satisfy the quality objectives?

* Do the architecture level design decisions support the quality
objectives and their priorities? What are the related risks?

= Basic ideas

o Systematic collection of quality objectives and attributes:
Utility tree with priorities

o Capturing and understanding the objectives:
Scenarios (that exemplify the role of the quality attribute)

o Architecture evaluation: What was the design decision,
what are the related sensitivity points, tradeoffs, risks?

ATAM conceptual analysis process

Business Quality

. . Scenarios
drivers attributes

Analysis

Architectural Architectural Architectural
plan approaches decisions

Sensitivity

Tradeoffs 33

Non-risks &3

Risks

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

Collection of quality objectives: Utility tree structure

= Utility divided to quality objectives
= Quality objective is characterized by attributes
= Attributes are exemplified by scenarios

Objective

Objective

Collection of quality objectives: Utility tree

Quality
objectives

Utility

—Performance—

(M,L) Minimize storage latency
— on customer DB to 200 ms.

Data Latency

Transaction

— Availability—

— Security —

Priority:

Low, Medium, High

____H/W failure —

L COTS S/W

— Data

W /\wg.ggg% of time

Throughput

MNew product

— Modifiability { categories

Change COTS —

|{(H.M) Deliver video in real time

(L.H)} Add CORBA middleware

in < 20 person-months

(HsL}Change web user interface
in < 4 person weeks

(LH)Power outage at Site 1 requires

traffic re-direct to Site 2 in < 3 secs

M.M , . . .
(kestart after disk failure in < 5 mins

failures

Data
confidentiality —

ﬁmhetwork failure is detected and

recovered in < 1.5 mins

(L,H)

— Credit card transactions are
secure 99.999% of time

ﬁH}Customer database authaorization

Implementation complexity:
Low, Medium, High

Attributes
belonging to
quality
objectives
and their

\refinements

Scenarios for
capturing
(refined)
attributes

Steps of the analysis — with examples

= Analysis of the architectural support for the scenarios
o Scenario: Recovery in case of disk failure shall be performed in < 5 min
o Reaction as design decision: Replica database is used

= Analysis of sensitivity points

o The use of replica database influences availability

o The use of replica database influences also performance
* Synchronous updating of the replica database: Slow
* Asynchronous updating of the replica database: Faster, but potential data loss

= Analysis and optimization of the tradeoffs

o The use of replica database influences both availability and performance —
depending on the updating strategy

o Tradeoff (decision): Asynchronous updating of the replica database
= Analysis of the risks of tradeoffs

o Replica database with asynchronous updating (as an architecture design
decision) is a risk, if the cost of data loss is high

* The decision is optimal only in context of the given needs and costs constraints

The process of ATAM 1/2

Presentation of the method <- evaluation leader

2. Presentation of business drivers <- development leader
o Functions, quality objectives, stakeholders
o Constraints: technical, economical, management

3. Presentation of the architecture <- designers
Identification of the design decisions <- designers

5. Construction of the utility tree <- designers, verifiers
o Refinement of quality objectives and attributes

o Assignment of scenarios to capture objectives
* Inputs, effects that are relevant to the quality objective
* Environment (e.g., design-time or run-time)

* Expected reaction (support) from the architecture

o Assignment of priorities to the scenarios (objectives)

The process of ATAM 2/2

6.

Analysis of the architecture <- verifiers

o Architectural support

o Sensitivity points

o Tradeoffs

o Risks

Extending the scenarios <- stakeholders
o Contribution of testers, users, etc.

o Brainstorming: Aspects of testability, maintenance, ergonomics, etc.
o Assignment of priorities

Continuing the architecture analysis <- verifiers

o In case of scenarios with priorities that are high enough

Presentation of results <- verifiers

o Preparation of a summary document

Advantages of ATAM

= Quality objectives are explicit and clarified
o Refinement of objectives, assignment of scenarios
o Assignment of priorities

= Early identification of risks

o Explicit analysis of the effects of architecture design
decisions (model based analysis may be used)

o Investigation of tradeoffs
= Stakeholders are involved

o Designer, tester, user, verifier

o Communication among the stakeholders

= Documenting architecture related decisions and risks

Systematic analysis methods

1. Interface analysis
2. Fault effects analysis

1. Interface analysis

= Goals
o Checking the conformance of component interfaces
o Completeness: Systematic coverage of relations and interfaces

= Syntactic analysis
o Checking function signatures (number and types of parameters)

= Semantic analysis
o Based on the description of the functionality of the components
o Analysis of contracts (contract based specifications)

= Behavioral analysis
o Based on the behavior specification of components
o Behavioral conformance is checked (e.g., in case of protocols)

o Precise behavioral equivalence relations are defined (e.g.,
bisimulation), also timing can be checked

Example: Interface analysis

= ,Contract-based” specification of component functionality: JML

public class Purse {
final int MAX_BALANCE;
int balance;
/*@ invariant pin != null && pin.length == 4 @*/
byte[] pin;
/*@ requires amount >= 0;
@ assignable balance;

@ ensures balance == \old(balance) — amount
&& \result == balance;

@ signals (PurseException) balance == \old(balance);
@*/
int debit(int amount) throws PurseException {

if (amount <= balance) {
balance -= amount;
System.out.printIn("Debit placed"); return balance; }

else {
throw new PurseException("overdrawn by " + amount); }}

= Contract based tools: for proving of properties (Esclava2),
runtime verification (jmlc)

2. Fault effects analysis

= Goal: Analysis of the fault effects and the evolution of
hazards on the basis of the architecture

o What are the causes for a hazard?

o What are the effects of a component fault?

= Results:

o Hazard catalogue

o Categorization of hazards rate trigger | severity

* Rate of occurrence

» Severity of consequences - Consequence
— Risk matrix

o These results form the basis for risk reduction

Categorization of the techniques

= Analysis approach:

o Cause-consequence view
* Forward (inductive): Analysis of the effects of faults and events
* Backward (deductive): Analysis of the causes of hazards

o System hierarchy view
e Bottom-up: From the components to subsystems / system level
* Top-down: From the system level down to the components

= Systematic techniques are used
A. Fault tree analysis
B. Event tree analysis
C. Cause-consequence analysis
D. Failure modes and effects analysis

2.A. Fault tree analysis

= Analysis of the causes of system level hazards

o Top-down analysis
o ldentifying the component level combinations of
faults and events that may lead to hazard
= Construction of the fault tree

1. ldentification of the foreseen system level hazard:
on the basis of environment risks, standards, etc.

2. ldentification of intermediate events (pseudo-events):
Boolean (AND, OR) combinations of lower level events
that may cause upper level events

3. ldentification of primary (basic) events:
no further refinement is needed/possible

Set of elements in a fault tree

Top level or intermediate event

Primary (basic) event

Event without further analysis

Normal event (i.e., not a fault)

AND combination of events

OR combination of events

O
<>
O Conditional event
(1
I

Example: Fault tree of an elevator

Boolean Elevator ‘ Top level event

relation \ stuck (hazard)
[ill 5

, Intermediate

event
Power Control /
Ourtf%e fault
/ [
| 380V UPS Controller Control
Event without outage outage hardware fault software
further analysis f\ fault

Primary

Primar
Y — proc. fault
evens

Secondary

proc. fault

Qualitative analysis of the fault tree

= Fault tree reduction: Resolving intermediate

events/pseudo-events using primary events
— disjunctive normal form (OR on the top of the tree)

= Cut of the fault tree:
AND combination of primary events

= Minimal cut set: No further reduction is possible
o Minimal cut: There is no other cut that is its subset
" Qutputs of the analysis of the reduced fault tree:

o Single point of failure (SPOF)
o Events that appear in several cuts

Example: Reduced fault tree of the elevator

Elevator
stuck

@
’ ﬁ N

380V UPS
outage outage

Control
software
fault

Primary Secondary \

proc. fault proc. fault

I Il I S - -y,

/

Potential \ N p

SPOF o _7;'\

-_—ee e e s s =

Quantitative analysis of the fault tree

= Computing the probability of the system level hazard

o Using: Probabilities of the primary events
(component level data, experience, or estimation)

= Computation is based on the combinations (gates)
of primary events

o AND gate: Product of event probabilities (if independent)
* Exact calculation: P{A and B} = P{A} - P{B| A}

o OR gate: Sum of probabilities (worst case estimation)
e Exactly: P{A or B} = P{A} + P{B} - P{A and B} <= P{A} + P{B}

o Probability as time function can also be used in

computations (e.g., reliability, availability)
" Limitations of the analysis
o Correlated faults (not independent), fault sequences

Example: Fault tree of the elevator with probabilities

Elevator P, +P,P5H(P,PsHPE)

stuck
t i|| I
p |
L Power |P2P3 Control |P4P5"Ps
OLPE%E fault
o, T
Py Ps3 I
330V UPS Controller Control
outage outage hardware fault software

[

fault

Primary Secondary
proc. fault proc. fault

2.B. Event tree analysis

" Forward (inductive) analysis:
Investigates the effects of an initial event

o Initial event: component level fault/event

o Related events: faults/events of other components
o Ordering: causality, timing

o Branches: depend on the occurrence of events

" |nvestigation of hazard occurrence ,,scenarios”
o Path probabilities (on the basis of branch probabilities)

= Advantages: Investigation of event sequences
* Example: Checking protection systems (protection levels)

= Limitations of the analysis
o Complexity, multiplicity of events

&
Q
=)
(0p)]
>
(Vs
-
O
)
@)
Q
e’
O
-
Q.
(qV)
(T
O
()
Q
-
)
s
C
Q
>
LL]

Example:

=
A O
U O
QO 2
O S
| -
a5
)
S
=
'
G
t ©
eV
oo ©
%m
x 2
N
oY)
c o
“r
(e =
O.I
o8
| -
o 2
s 3
O-I
a O
—i
b0 @
cC oo
=
S w
o9

| NO

no

| no

no

yes

LN
(o
[}
< <
(o (ol
[J [}
™ M ™ LN ~
m o o o o o
[} e o [} [}
— — <« —i —i —i
(D)} o o o o o o
e
Vp]
> m
Vp]
A O
- g2
@) ° 2
o — a wun ol ol wn 4 o)l lTs}
._a > cla > cla
T Tt
) Q
(@) =
S <
£
(© 2 O <
(¢o}
f ee (%) P
<t O
@) o = QW,PnL
) ~
(D] oo
ul £ 9
= B ’ o| 2
O '= e3
._m o & >| o
)]
>
Ll T
. = 3
v S ~
ol a 4
(@X ~
m n;l__ V,Dl
R
—i
L a0 o
52
i 5 2
S 3|

2.C. Cause-consequence analysis

= Connecting event tree with fault trees
o Event tree: Scenarios (sequence of events)

o Connected fault trees: Analysis of event occurrence,
computing the probability of occurrence

= Advantages:

o Sequence of events (forward analysis) together with
analysis of event causes (backward analysis)

" Limitations of the analysis:

o Complexity: Separate diagrams are needed for all
initial events

Example: Cause-consequence analysis

High

Valve 1 |
opens #
Yes| No |
Operato
fault
Valve 2 I
opens
Yes| No |

Example: Cause-consequence analysis

High

Valve 1
opens B
Yes| No :Pl - pa+pb
Operato
fault
pd
Valve 2 ?
opens B
Yes| No :PZ = bc + pd

PO P0-P1 P0-P1+P2

2.D. Failure Modes and Effects Analysis (FMEA)

= Tabular representation and analysis of components, failure
modes, probabilities (occurrence rates) and effects

= Advantages:
o Systematic listing of components and failure modes

o Analysis of redundancy

= Limitations of the analysis

o Complexity of determining the fault effects (using simulators,
analysis models, symbolic execution etc.)

Detecting that > L not detected 65% Over-heating

a temperature
value is greater
than L

< L detected 35% Process is
stopped

Model based quantitative evaluation

Performance evaluation

Model based quantitative evaluation

Goal: Evaluation of architecture solutions
= Analysis models are constructed and solved on the basis of the
architecture model, e.g.
o Performance model
o Dependability model
o Safety analysis model

= Analysis models are mathematical models

o Capture how local parameters of components and relations influence
system level properties

o The solution of the model (= computation of selected model
characteristics) provide system level properties

= Modular construction of analysis models (possibly automated)
o Architecture: Components and relations
o Analysis model: Submodels (modules) for components and relations

General approach for model based evaluation

Architecture design:
Components + Relations

' AnaIyS|s modules belonging to

l

Parameters of
relations

components and relations

Analysis System

)

Parameters of
components

model properties

Captures how local parameters
of components and relations
influence the system level
properties

(&

>

Typical analysis models

Performance Dependability Safety analysis
model model model
Component | Local execution Fault occurrence rate, | Fault and hazardous
parameters | time of functions, | error delay, event occurrence rate
priorities, repair rate,
scheduling error detection
coverage, ...
Relation Call forwarding Error propagation Hazard scenario,
parameters | rate, call probability, hazard combinations
synchronization conditions of error
propagation,
repair strategy
Model Queuing network | Markov chain, Petri net | Markov chain, Petri net
System Request handling | System level reliability, | System level hazard
properties time, throughput, | availability, occurrence rate,
(computed) | processor MTTF, MTTR, MTBF criticality

utilization

Performance modeling

Performance Dependability Safety analysis
model model model
Component | Local execution Fault occurrence rate, | Fault and hazardous
parameters | time of functions, | error delay, event occurrence rate
priorities, repair rate,
scheduling error detection
coverage, ...
Relation Call forwarding Error propagation Hazard scenario,
parameters | rate, call probability, hazard combinations
synchronization conditions of error
propagation,
repair strategy
Model Queuing network | Markov chain, Petri net | Markov chain, Petri net
System Request handling | System level reliability, | System level hazard
properties time, throughput, | availability, occurrence rate,
(computed) | processor MTTF, MTTR, MTBF criticality
utilization

Performance modeling: Formalisms

= Typical formalism: Queuing networks
o Servers, hosts, requests and replies, waiting queues

= Example: Layered Queuing Network (LQN)
o Suitable for distributed client-server applications

= Model elements
o Client submitting requests to (remote) servers

o Servers (called “tasks” by convention)
* Queuing of incoming requests
* Entry points for service threads (called “functions”) with
priorities
* Forwarding function calls to other servers

o Hosts (called “processors”)

Example: Elements of an LQN model

Client: A
* Request (service
/Task (server): A call) rates
* Functions (service call interfaces)

/
: . .)
* Queuing of requests 0 Function (service):

e Priorities among functions * Local execution time
e Call forwarding rate

)

Processor:
* Deployment
* Scheduling

policy

Webserver | connect() | display() order()

Call forwarding:

 Synchronous /
asynchronous

Example: Results of the analysis of an LON model

¢ Client:
Computed system level * Request (service

properties (average and call) rates
worst-case):

* Request handling time
* Task throughput

* Processor utilization

Webserver | connect() | display() order()

Example: Layers in complex LOQN models

acquireLoop | VideoController I User IUsers
[1.8] rate=0.5/sec '
imm im
procOnelmage | AcquireProc readCard JCardReader
[1.5.0] [1.0] '
J’n,m @
alloc | BufferManager admit IAccessComrollerI
[0.5. 0] [3.9,0.2]
! (forwarded) \ (0.0)
\
bufEntry I Buffer \ a[l;ig]n IAIHMI\
(1, f“/ \; 0) (1,0) "\ (forwarded)
(0,02 A
getlmage [passimage IAcquirerGEI storel mﬂgEISlorerc T lock 1T ock
[12,0] [0.9, 0] [3.3.0] [0, 500]
lﬂp’) / il/m nN @
network | Network releaseBquBu[N[gTQI writelmg [readRights|writeEvent] DataBase
[0.1] (infinite) [0.5, 0] [7.2. 0] [1.8.0] [1.8. 0] 10 threads
($B. D]l (04, U]l (1. ﬂll
@ writeBlock| readData | writeRec Disk
[1.0] [1.3. 0] 3. 0] (2 threads)

Example: Architecture model with interactions

Browser

-interact() {delay =5 sec}

WebServer

- connect()
- display()
- reserve()
- confirm()

TicketDb

- queryTDB()
- updateTDB()

UserNode

Browser

<< AN>>

ServerNode

WebServer

TicketDB

| Browser | [WebSrvr | [TktDB |

[
Think Z=5 :

| |

; 'Myﬁ
| I

| |

| |

l - -

|

|

Classes and objects
with local parameters

Servers and
deployment

M

Interactions
(calls)

Example: Mapping architecture to analysis model

= S

[T == |

[EBrowser | [wWebsivr | [Tkioe=s |
v v

| R —

SecaerTIode

I B SRS TS R 1

I Taicl=c=tIL >ES |

Classes (objects)

Deployment

'
' er s T I ES
—]
H
e — — L1
'
'
'

mfteract

[Z=55]

Browser

o

confirm

WebServer

N

queryIDB

updateTDB

TicketDB

EE er e

(i

Interactions

\ / Model
transformation

LQN performance
model

Example: Analysis workflow

UML Model
(in XMEformat)

UML Tool

Architecture
design
patterns

can be
identified to
assign analysis
modules

import perf.
results into
UML model

UML to LQN
Transformation

Analysis
results

Performance
Model

LQN Tool

- —— - -

1
-7 1 Client 1
R ; Sever |
,- ClientServer ~ ==----- \
client [1=n__ 1| server
Y
N '
\..‘r ’l

hhhhhh
———————

Client

Client is blocked
waiting for reply
continue
work

undefined

Model based quantitative evaluation

Supplementary topic: Dependability evaluation
(requires the knowledge of Stochastic Activity Networks or Petri nets)

Dependability modeling

Performance Dependability Safety analysis
model model model
Component | Local execution Fault occurrence rate, | Fault and dangerous
parameters | time of functions, | error delay, event occurrence rate
priorities, repair rate,
scheduling error detection
coverage, ...
Relation Call forwarding Error propagation Hazard scenario,
parameters | rate, call probability, hazard combinations
synchronization conditions of error
propagation,
repair strategy
Model Queuing network | Markov chain, Petri net | Markov chain, Petri net
System Request handling | System level reliability, | System level hazard
properties time, throughput, | availability, occurrence rate,
(computed) | processor MTTF, MTTR, MTBF criticality
utilization

Example: UML based dependability modeling

UML architecture model

Analysis subnets

sfsme
El fsm
attributes
operations // ErorDetected pejectedEmor HWTrigger
Dependabilit
fsrm_Da e Disa p y periadic‘res: ErrorNotDetected
_/’F‘srmanamFau\ls J,/".
m o e f " taskl_Errors
«tasks atazks ; —
Hoats HoDiag t t 1 mum:m"““
attributes attributes co n S ru c Io n internalPropagation
operations operations
classes clagses
Data_Key/ \ NoDiag_ﬁ \K@.ag_ﬂs
Data_Cp s . . F
shis bz whies & (< N hw1_task1_Errors o task1_Failure
5 kevboard Bepu Dreza v * task1_activation
attributes attributes attributes 1ag_Rs e ’ 4 »
operations operations operations ‘J 1 S
claszes classes claszes 1 Z v 4 *, B q
ahnnre 1 E —
pa_
< - - .
- - - Hpszaz] 1 _~ duplicatedExecution FaikifeDetected gerectedFailure T2SKTrigger
' attiibutes I 1 attributes 1 1 attributes 2 @ ¢
operations operations operations o4 L Failuré™_ // TN
clasees classes classes “\.“‘_ —
L ~ FailureNotDetecled yngetectedFailure Hazards
control lonitoring

Submodel
Mission

1,2E-06

1,0E-06

submode| —_ 8,0E-07 \
EvC 6,0E-07

Submaodel 4,0E-07
: —
EVC - comm-DMI I
2,0E-07 ' ' ' '
05 0,6 07 08 0,9

Control flow checking coverage

Submodel

Dl

Hazard rate

System level dependability model
(Stochastic Activity Network) Analysis results

MUEGYETEM 1782

Example: An extended architecture model

==Redundancy Manager==
Iser

N

/Components:
- Type (HW, SW)

in a redundancy

ddprnpagatinnb/

=<SFE_Hy=>

- Role
. ==8FE_SW; Redundancy Manager; Variantl== ==8FE_SW; Redundancy Manager; Wariant2==
* Vanant, Munkaallomas_»A fMunkaallomas_B
* manager

\:ﬁprnpagatiunbb

=<SFE_H=>

-

Relations:
- Fault propagation

properties:
* propagation
probability

-

_AZ=SLE_SWis=

Adatgyujto_A 1

==8LE_SW==
Adatgyujto_A_ 2

==8LE_SW==
Adatgyujto_B_ 2

ﬁdprnp\?!atiunb:

Hprnpa\%tinnbb

ﬂﬁprup%atinnw

Structure Munkaallomas_&_Hw Munkaallomas_B_HW
- Fault occurrence
. ==propagation== ==propagation==

propertles. ==BLE_Hiy=> ==5LE_SVW; Variant! == <<SLE_SW; Variant2=» <<GLE_HwW=>
* komm_A_ HW komm_A komm_B kaomm_B_Hw

fault rate,
* l[atency,
* . .

repa|r time / gatidn== <=propagation== ==propagation== ==prgpagation==

==5LE_SW==
Adatgvujto_B_1

ddp\iaagatinn::

==5LE_Hiy==
Adatgyujto_A_ 1 HWW

==5LE_Hiy==
Adatgyujto_A 2 HW

==5LE_Hi==
Adatgyujto_B_ 2 HWY

==5LE_HW==
Adatgyujto_B_1_HW

Example: Elements of a SAN analysis model

= Stochastic Activity Network (SAN)

= Places: Represent conditions
o Valid if marked with a token ?ﬂﬁnletected

= Transitions: Events with cases

o Occurrence of a case removes m:th}.c/m\—

a token from each input place
and puts a token to each output place

o Rate of the event (or delay distribution)

o Probabilities of different cases

Example: Analysis model of a hardware resource

Detection of permanent

Detected errors trigger a fault W
faults with periodic testing

handling (e.g., stopping)

< "l @

ErrorDetected petactedErmor HWTrigger

periodicTest ErrorNotDetected

PermanentFaults
task1_Errors

+@

task2_Errors

faultOccurrence Error . _
internalPropagation

A

Propagation of errors towards tasks
that use this resource (according to
the proportion of usage)

J

Occurrence of
permanent or
transient faults

Example: Analysis model of error propagation

|

Errors in the resource W

relevant for the task

task1_Errors

task1_activation

AN

task1_Failure

\/‘I’ask execution rate with \

potential error activation:

- Activated error,
remaining in the system

- Activated error,
overwritten

- Qverwritten error
with no effect

/

Example: Analysis model of a task

Error detection technique Detected failures will trigger
with given rate and coverage fault handling (e.g., stopping)

/

L

.| v@®

duplicatedExecttion FajlureDetected getectedFailure TaskTrigger

task1
Failure

'I
FailureNotDetected | ndetectedFailure Hazards
controlFlowMonitoring

|

-

=

Error detection technique Undetected failure
with given rate and coverage becomes a hazard

Example: Analysis of hazard rate

Hazard rate

1,1E-06
1,0E-06
9,0E-07
8,0E-07
7,0E-07
6,0E-07
5,0E-07
4,0E-07
3,0E-07
2,0E-07

—e— Mmin
—=— mean value
max

0,5

0,6 0,7 0,8

Control flow checking coverage

0,9

Outcome: If the coverage falls below 50% then the SIL2
requirement (107 < Hazard rate < 10®) is not satisfied

Example: Summary of the analysis steps

Redundancy and
tJeT(IEechl)gc?)l «---+ fault handling
: design patterns
| ;
UML - SAN <~ — | Library of analysis
mapping sub-models
Dependability -
model (SAN) -

External solver

System level ﬁ/
properties

= Motivation

o What is determined by the architecture?

o What kind of verification methods can be used?
= Requirements based architecture analysis

o ATAM: Architecture Trade-off Analysis

= Systematic analysis methods
o Interface analysis
o Fault effects analysis

= Model based evaluation

o Performance evaluation
o Dependability modeling and analysis

