
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Formalizing and checking properties:
Temporal logics

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Recap: Goals of formal verification

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

2

Overview

 Formalization of requirements

o Frequent patterns

 Categories of temporal logics

o Linear time temporal logics

o Branching time temporal logics

 HML: Hennessy-Milner logic

o Temporal operators

oModel checking: Tableau method

3

Formalization of requirements

Frequent patterns of requirements

4

Handling textual requirements

 Specifying a requirement in natural language:

o Is the textual description easy to understand and
unambiguous?

o Structure is not clear (conditions, sequence, …)

If alarm is on and alert occurs, the output of safety should be
true as long as alarm is on.

If the switch is turned to AUTO, and the light intensity is LOW
then the headlights should stay or turn immediately ON,
afterwards the headlights should continue to stay ON in AUTO as
long as the light intensity is not HIGH.

5

Requirements in critical systems: result of a survey

A significant proportion of
requirements match to
certain patterns

http://patterns.projects.cis.ksu.edu/documentation/patterns.shtml

Figures: The distribution of matched
patterns for requirements from two
development teams

6

Groups of patterns

Pattern:

order or
occurrence

Scope:
relative to
further events

7

Patterns: Explanations

Occurrence:
 Absence: the referenced state/event never occurs

 Universality: the referenced state/event is always present

 Existence: the referenced state/event eventually occurs

 Bounded existence: the referenced state/event occurs at least k
times

Order:
 Precedence: the referenced state/event precedes another

state/event

 Response: the referenced state/event is followed by another
state/event

 Chain precedence: generalization of Precedence to sequences

 Chain response: generalization of Response to sequences

8

Examples of patterns

 Pattern Response in scope Global:

 Pattern Precedence in scope After:

At any time during execution,
if event Request occurs,
then it should be followed by either Reply or Reject.

After the occurrence of state NormalMode,
state ResourceGranted may only occur
if it is preceded by state ResourceRequest.

9

Composition of patterns

 Patterns can be composed

o Boolean operators (and, or, implication)

o Embedding patterns in other patterns

 Example: Patterns in textual form

When …, Ensure …
… = … …, after … occurs

When

Ensure

 , after occurs

… within …

 within 0.1 [sec] safety

alarm = ON alert

10

Outcome

 The majority of properties match certain patterns
o If … then …, Never …, After …, Before …

o Occurrence/ordering of states/events in given scope

o More complex requirements composed from simpler ones

 These properties can be formalized if the basic patterns can
be captured using a formal language
o Absence, universality, existence, precedence, response

o Temporal scope (globally, after, before)

 Formalization of requirements helps
o Verification of design: exhaustive analysis of executions

o Evaluation of test output, runtime monitoring: components can
be automatically generated

 Applied formalism: Temporal logic

15

Preview: Formalization of properties in LTL
Universality within scope Property in LTL Meaning of LTL expressions

Event P occurs in each step of the
execution globally.

G P Globally P

Event P occurs in each step of the
execution before event Q.

F Q  (P U Q) (Eventually Q) implies (P Until Q)

Event P occurs in each step of the
execution after event Q.

G (Q  G P) Globally (Q implies Globally P)

Event P occurs in each step of the
execution between events Q and R.

G ((Q  R  F R) 
(P U R))

Globally ((Q and not R and
Eventually R) implies (P Until R))

Existence within scope Property in LTL

Event P occurs in the execution
globally.

F P

Event P occurs in the execution
before event Q.

 Q W (P   Q)

Event P occurs in the execution after
event Q.

G (Q)  F (Q  F P))

Event P occurs in the execution
between events Q and R.

G (((Q  R)  (F R)) 
(R W (P  R)))

16

Temporal requirements
and temporal logics

Categories of temporal logics

17

Formalization of reachability properties

 Goal: Formalizing state reachability properties
o Occurrence of a state with local properties

• Name, valuation of variables, mode of operation, …

o Ordering of states: logical time
• “Current” point in time: active state

• “Subsequent” points in time: next state(s)

o Typical reachability properties
• Safety properties: Absence of “bad” state

(universal property, invariant)

• Liveness properties: Eventual occurrence of “good” state
(existential property)

 Language used for formalization: Temporal logics
o Formal system for evaluating changes in logical time

o Temporal operators: “always”, “eventually”, “before”, “while”, …

18

Checking reachability properties

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s 2 s1 s 3

{Green} {Yellow} {Red}

s4

 {Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3 s3

{Red}

s4

{Red,Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red,Yellow}

s5

{Blinking}

Branching

Linear

Linear sequence of states (a concrete run)

Branching

sequence

of states (all

possible runs)

19

Model:
Kripke

structure

Categories of temporal logics

 Linear:
o We consider individual executions of the system

o Each state has exactly one subsequent state

o Logical time along a linear timeline (trace)

 Branching:

o We consider tree of executions
of the system

o Each state possibly has
many subsequent states

o Logical time along a branching timeline
(so-called computation tree)

20

s 2 s1 s 3

{Green} {Yellow} {Red}

s4

 {Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3 s3

{Red}

s5

s2s1 s3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

Model based verification by model checking

Formal
model

Formalized
requirements

Model checking

OK Diagnostic trace

t f

• Basic mathematical formalisms
 (KS, LTS, KTS, TA)
• Also from higher level formalisms

Temporal logics:
 HML, LTL, CTL, CTL*

23

The Hennessy-Milner Logic

Syntax and semantics of temporal operators

24

The Hennessy-Milner logic

 Simple logic interpreted on LTS T=(S, Act, )
 Properties of finite action sequences (scenarios,

traces, test sequences) can be captured by HML

 Syntax: Rules for composing well-formed HML formula
(p and q are well-formed formula, a is an action):

 HML ::= true | false | pq | pq | [a]p | <a>p

 Informal semantics of temporal operators:

s
p

<a>p
a

s
p

[a]p

p
a

a

25

Formal semantics of the Hennessy-Milner logic

Model of HML: LTS T=(S, Act, )

Semantic rules: Specify when p is true (satisfied) on state s of LTS T

Notation: T,s |= p

 T,s |= true, T,s |= false

 T,s |= pq if and only if (iff) T,s |= p and T,s |= q
T,s |= pq iff T,s |= p or T,s |= q

 T,s |= [a]p iff s’ where s a s’: T,s’ |= p

 T,s |= <a>p iff s’: s a s’ and T,s’ |= p

HML examples:

 <a>true: satisfied if there exists an outgoing transition labeled with a

 [a]false: satisfied if there is no outgoing transition labeled with a

 <a><c>true: satisfied if there exists an action sequence a,b,c

26

Checking Hennessy-Milner Logic
properties

Tableau-based method

27

Introduction: Tableau for Boolean logic

 Goal: Determine the satisfiability of a logic formula

o Decomposing the original formula into subformulas in a tree structure

o In each node: subformula of the original formula to be satisfied

o Branches: determined by construction rules

 Construction rules of the tableau for Boolean logic

 Before decomposition, the formula shall be transformed
to a negated normal form:

o Negation only before variables (literals) and not before a composite formula

o De Morgan’s laws can be used, e.g., (pq) = (p)  (q)

p  q

p, q

p  q

p q

List of subformula:
All shall be satisfied

28

Branches of
subformula:

Alternatives for
satisfiability

Evaluation of the tableau

 Termination (closing) of a decomposition branch
o Only a list of variables or negated variables is found in the current node

o The satisfaction of the formula is given by assigning true to normal and false
to negated variables

• E.g., in case of list p, q the assignment is: p is true, q is false

 After the termination of a decomposition branch:
o “Contradictory” branch: A variable is found both with and without negation

(i.e., there is no valid assignment)

• E.g., contradiction in case of list p, p, q

o ”Successful” branch: There is no contradiction, the valid assignment satisfies
the original formula

 The “successful” branches determine the satisfiability of the
original formula

29

Example: Tableau for a Boolean logic formula

 Original formula:  ((X  Y)  (X  Y))

 Implication resolved:  ((X  Y)  (X  Y))

 Negated normal form: (X  Y)  (X  Y) =
 (X  Y)  ( X   Y)

 Construction of the tableau:

 One of the branches is contradictory, the other is not
o The original formula can be satisfied with X false, Y false

(X  Y)  ( X   Y)

X  Y,  X   Y

X,  X,  Y  X,  Y

Contradictory
branch

31

Checking HML by tableau construction (1)

 Tableau construction
o Boolean operators: Branches as in case of Boolean tableau construction
o Temporal operators:

• Shall be evaluated on the outgoing transitions of a state s of the LTS T
• The state of the LTS is part of the tableau
• Moving to a next state if a transition is involved in a property
• Notation: T,s |– p means looking for the satisfiability of property p in s of T

 Construction rules for the HML temporal operators:

T,s1 |– p, T,s2|– p, …, T,sn|– p

T,s |– [a]p
where
{s1,s2,..,sn}={s’ | s a s’}

32

s

s1

s2

sn

a

a

a

…

T,s |– <a>p

T,s2 |– p T,s1 |– p T,sn |– p …

Checking HML by tableau construction (2)

 The construction of the tableau is based on the model

 Successful branches:
o If T,s |- true is reached

o If T,s |- [a]p is reached where there is no outgoing transition labeled with a

 The role of successful branches:

o If the original formula is negated before the construction of the tableau:

The successful branch provides a counter-example for the original property

o This is the approach used in model checking

33

Summary

 Formalization of requirements

o Frequent patterns

 Categories of temporal logics

o Linear time temporal logics

o Branching time temporal logics

 HML: Hennessy-Milner logic

o Temporal operators

oModel checking: Tableau method

34

