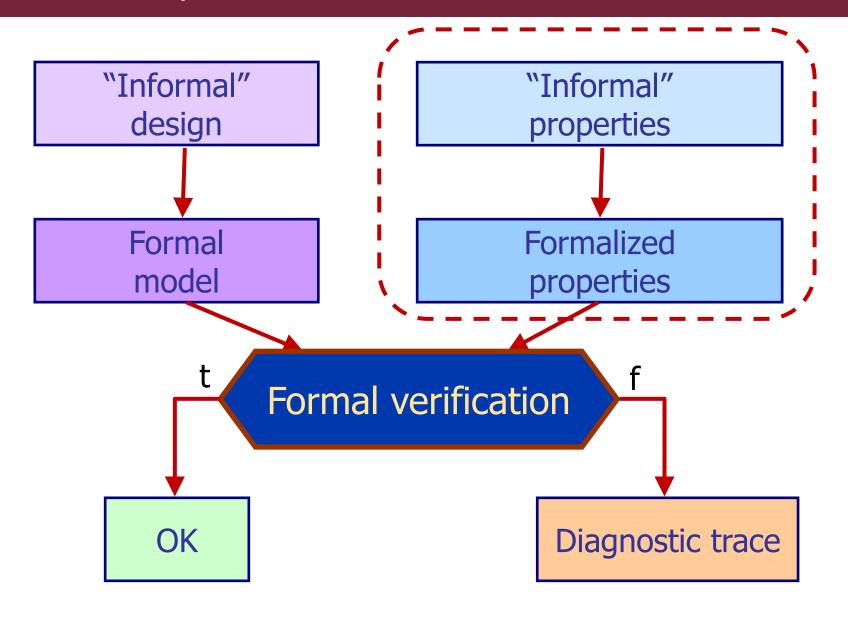
Software Verification and Validation (VIMMD052)

Formalizing and checking properties: Temporal logic LTL

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Recap: Goals of formal verification



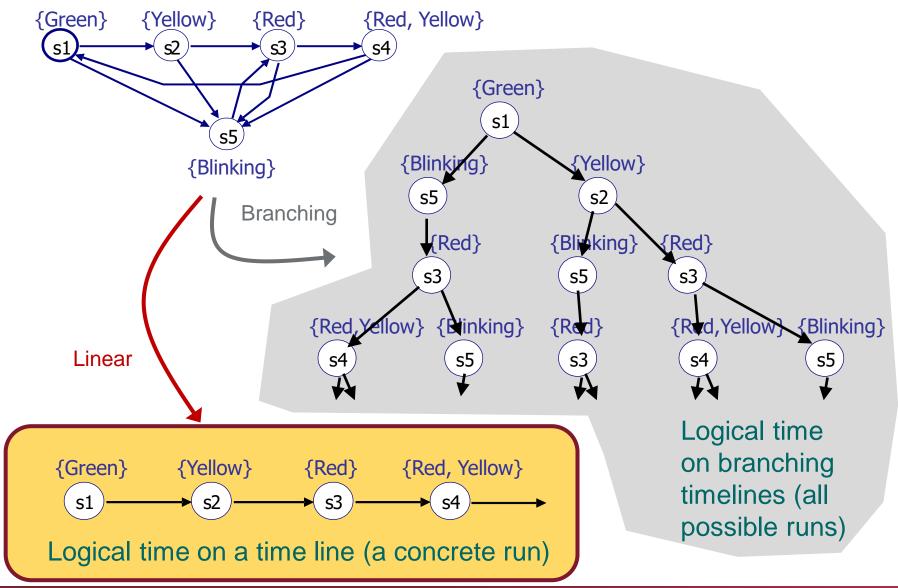
Overview

- Temporal operators of LTL
- Formal syntax and semantics of LTL
 - Extending LTL to LTS
- Examples
- Verification of LTL properties
 - The model checking problem
 - LTL model checking: Automata based approach

Linear Temporal Logic (LTL)

Temporal operators
Syntax and semantics
Examples

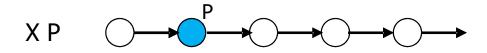
Illustration of linear and branching timelines

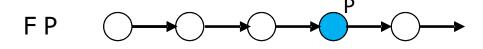


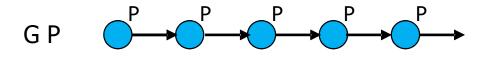
Linear temporal logic – Formulas

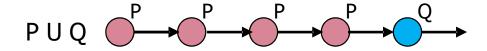
Construction of formulas: p, q, r, ...

- Atomic propositions (elements of AP): P, Q, ...
- Boolean operators: ∧, ∨, ¬, ⇒
 ∧: conjunction, ∨: disjunction, ¬: negation , ⇒: implication
- Temporal operators: X, F, G, U informally:
 - X p: "neXt p"p holds in the next state
 - F p: "Future p"p holds eventuallyon the path
 - G p: "Globally p"p holds in all stateson the path
 - p U q: "p Until q"
 p holds at least until q,
 which holds on the path









LTL examples

• p ⇒ Fq

If p holds (in the initial state), then eventually q holds.

- Example: Start ⇒ F End
- $G(p \Rightarrow Fq)$

For all states, if p holds, then eventually q holds.

- E.g.: G (Request ⇒ F Reply); for all requests, a reply eventually arrives
- p U (q ∨ r)

Starting from the initial state, p holds until q or r eventually holds.

- Example: Requested U (Accept V Refuse)
 A continuous request either gets accepted or refused
- GF p

Globally along the path (in any state), eventually p holds

- There is no state after which p does not hold eventually
- Example: **GF** Start; the Start state is reached from all states
- FG p

Eventually, p continuously holds

 Example: FG Normal (After an initial transient) the system keeps operating normally

LTL syntax

Syntax: What are the well-formed formulas (wff)?

The set of well-formed formulas in LTL are given by three syntax rules:

Let $P \in AP$ and p and q be wffs. Then

- **L1**: P is a wff
- **L2**: $p \wedge q$ and $\neg p$ are wffs
- L3: X q and p U q are wffs

Precedence rules:

$$X, U > \neg > \land > \lor > \Longrightarrow > \equiv$$

Derived operators

- true holds for all states false holds in no state
- \blacksquare p \vee q means $\neg(\neg p \land \neg q)$ $p \Rightarrow q \text{ means } \neg p \lor q$ $p \equiv q \text{ means } p \Rightarrow q \land q \Rightarrow p$
- Fp means true U p **G**p means $\neg \mathbf{F}(\neg \mathbf{p})$
- "Before" operator:

p WB q =
$$\neg$$
((\neg p) U q) (weak before)
p B q = \neg ((\neg p) U q) \wedge F q (strong before)

Informally:

It is not true that p does not occur until q

(weak before)

Included: q shall occur

LTL semantics - Notation

Rationale of having formal semantics:

- When does a given formula hold for a given model?
 - The semantics of LTL defines when a wff holds over a path
- Allows deciding "tricky" questions:
 - Does F p hold if p holds in the first state of a path?
 - Does p U q hold if q holds in the first state of a path (without p)?

Notation:

- M = (S, R, L) Kripke structure
- $\pi = (s_0, s_1, s_2,...)$ a path of M where $s_0 \in I$ and $\forall i \ge 0 : (s_i, s_{i+1}) \in R$ $\pi^i = (s_i, s_{i+1}, s_{i+2},...)$ the suffix of π from index i
- M,π |= p denotes: in Kripke structure M, along path π , property p holds

LTL semantics

Defined recursively w.r.t. syntax rules:

- **L1**: $M,\pi \mid = P \text{ iff } P \in L(s_0)$
- L2: $M,\pi \mid = p \land q \text{ iff } M,\pi \mid = p \text{ and } M,\pi \mid = q$ $M,\pi \mid = \neg q \text{ iff not } M,\pi \mid = q.$
- L3: M, π |= X p iff π^1 |= p

 M, π |= (p U q) iff π^j |= q for some $j \ge 0$ and π^k |= p for all $0 \le k < j$

Formalizing requirements: Example

Consider an air conditioner with the following operating modes:

AP={Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating}

- At a time, more than one modes may be active
 E.g. {On, Ventilating}
- When formalizing requirements, we may not yet know the state space (all potential behaviors)
 - We use only the labels belonging to operating modes

Formalizing requirements: Example

Air conditioner with the following operating modes:

AP = {Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating}

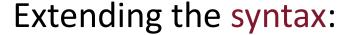
- The air conditioner can (and will) be turned on
 F On
- At some point, the air conditioner always breaks down
 GF Error
- If the air conditioner breaks down, it eventually gets repaired
 G (Error ⇒ F ¬Error)
- A broken air conditioner does not heat:
 - $G \neg (Error \land Heating)$
- After finishing the heating, the air conditioner must ventilate:
 - **G** ((Heating \land **X** \neg Heating) \Rightarrow **X** Ventilating)
- After ventilation the air conditioner must not cool strongly until it performs some mild cooling:
 - **G** ((Ventilating \land **X** \neg Ventilating) \Rightarrow **X**(\neg StrongCooling **U** MildCooling))

Extending LTL for LTS

LTL: Transitions are labeled by actions

A path in LTS is an alternating sequence of states and actions:

$$\pi = (s_0, a_1, s_1, a_2, s_2, a_3, ...)$$



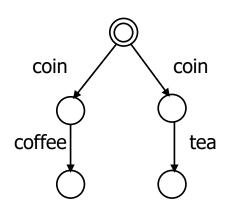
L1*: If a∈Act then (a) is a wff.

The corresponding case in semantics:

• L1*: M, π |= (a) iff. a_1 =a where a_1 is the first action in π .

Requirements for action sequences

○ Example: **G** ((coin) \Rightarrow **X** ((coffee) \lor (tee)))

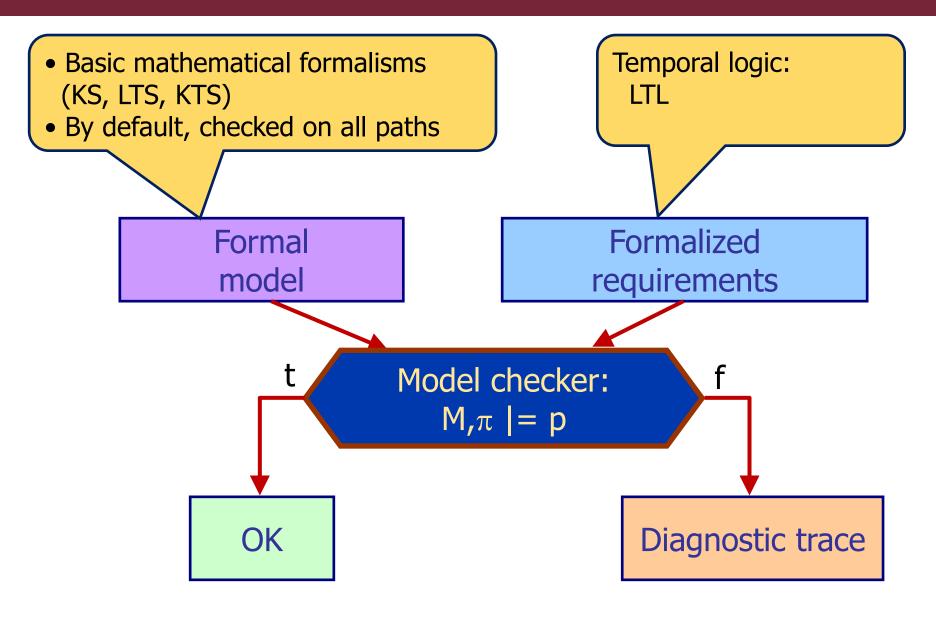


Verification of LTL properties

The model checking problem

LTL model checking: The automata-based approach

Model based verification by model checking

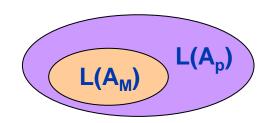


Automata based approach

- $A=(\Sigma, S, S_0, \rho, F)$ automaton on finite words
 - \circ Here: Σ is formed as letters from the 2^{AP} alphabet
 - State labels L(s) are considered as letters
 - E.g., {Red, Yellow} is a letter from the alphabet above
 - The path $\pi=(s_0, s_1, s_2, ... s_n)$ identifies a word as follows: $(L(s_0), L(s_1), L(s_2), ... L(s_n))$
- Two automata are needed:
 - Model automaton: Based on a model M=(S,R,L)
 an automaton A_M is constructed that accepts and only accepts words that correspond to the paths of M
 - \circ Property automaton: Based on the expression p an automaton A_p is constructed that accepts and only accepts words that correspond to paths on which p is true

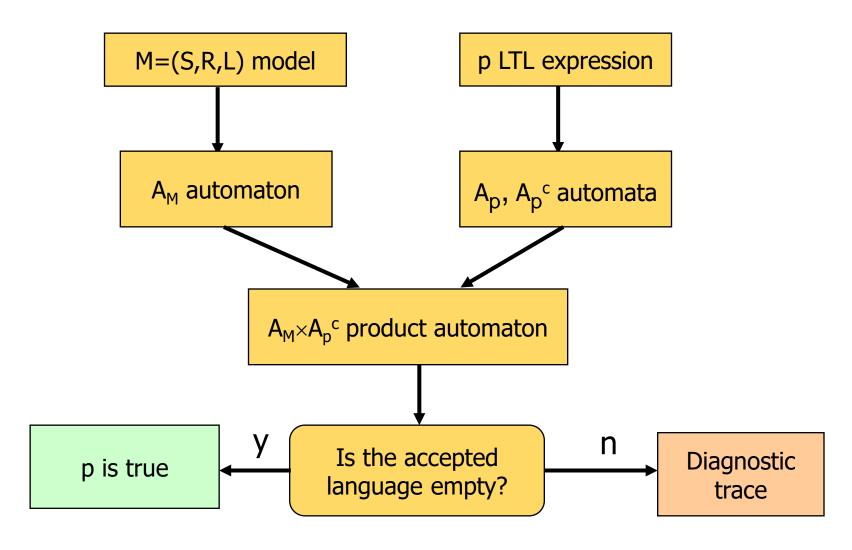
Model checking using the automata

- Model checking question: $L(A_M) \subseteq L(A_p)$?
 - I.e., is the language of the model automaton included in the language of the property automaton?



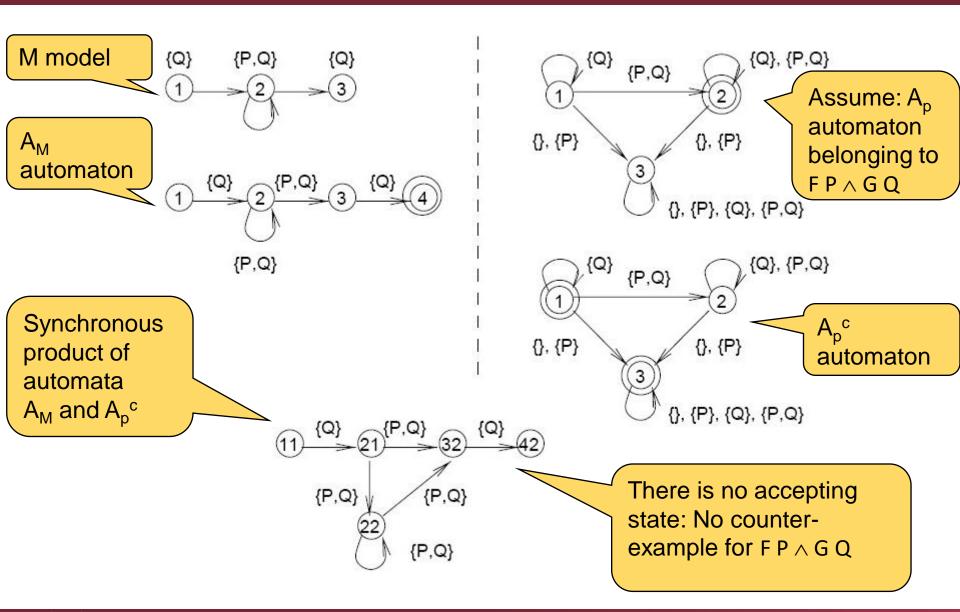
- \circ If yes, them M, π |= p for all paths of M
- Verifying $L(A_M) \subseteq L(A_p)$ by alternative ways
 - o Is the intersection of the following languages empty: $L(A_M) \cap L(A_p)^C$ where $L(A_p)^C$ is the complement language of $L(A_p)$
 - o Is the language that is accepted by the $A_M \times A_p^c$ product automaton empty, where A_p^c is the complement of A_p
 - In case of finite words (finite behavior): The language is empty if there is no reachable accepting state in $A_M \times A_p^c$
 - In case of infinite words (cyclic behavior): Büchi acceptance criteria can be used (→ no cyclic behavior with accepting states)
 - A_p^c construction (in fully defined and deterministic case): swapping accepting states with non-accepting states and vice versa

Overview of automata based model checking

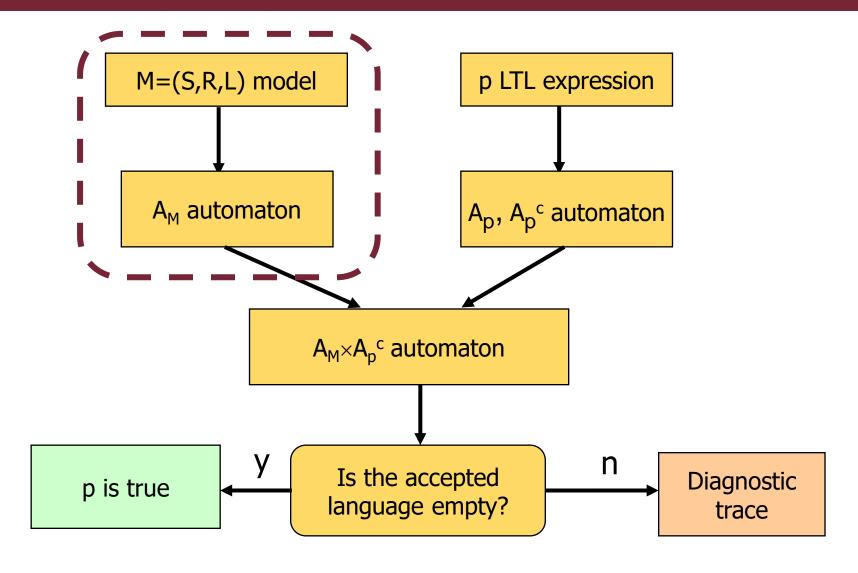


(In the following: Basic ideas will be discussed, not a complete algorithm.)

Example: Checking F P ∧ G Q

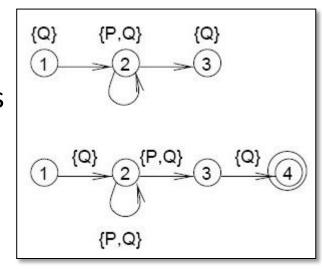


Overview of automata based model checking



Constructing A_M on the basis of M

- Labels are moved to outgoing transitions
- In case of finite behavior (finite words):
 - Accepting state s_f is added
 - Transitions are added from the end states (without outgoing transition) to the accepting state s_f



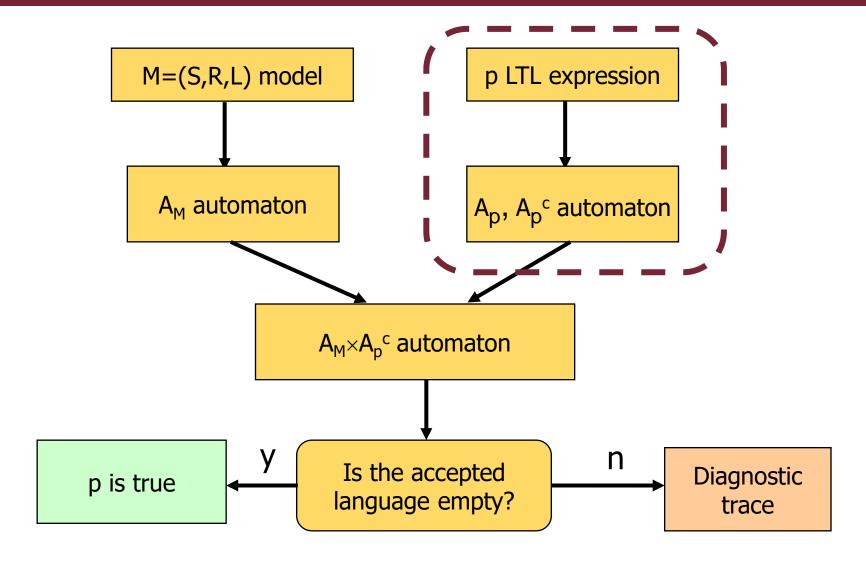
Formally the automaton:

$$A_{M}=(2^{AP}, S\cup \{s_{f}\}, \{s_{0}\}, \rho, \{s_{f}\})$$

where the transitions relation is the following:

$$\rho$$
={ (s,L(s),t) | (s,t) \in R } \cup {(s,L(s),s_f) | no t, such that (s,t) \in R }

Overview of automata based model checking



Constructing A_p on the basis of p: The basic idea

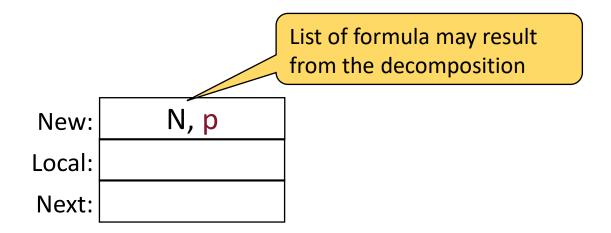
- A_p automaton: Shall represent those paths on which p is true
- Basic idea: Decompose the expression similarly to the tableau method and this way identify the states and transitions of A_p
 - First decomposition: Identifies the initial state(s) of A_p
 - Labels of the state: Based on the atomic propositions (i.e., without temporal operators) resulting from the decomposition
 - Outgoing transitions to next states: Identified by the (sub)expressions with temporal operators, that have to be true from the next state
 - New decomposition for each formula belonging to a next state
- Initial step: Construct the negated normal form of the expression
 - For Boolean operators: de Morgan laws
 - For temporal operators:

$$\neg(X p) = X (\neg p)$$

 \neg (p U q) can be handled by defining the R "release" operator: \neg (p U q) = (\neg p) R (\neg q), from which p R q = q \wedge (p \vee X (p R q))

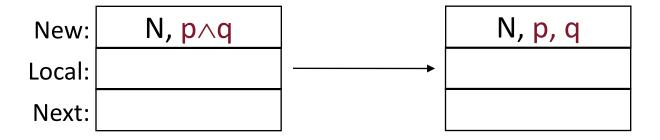
Constructing A_p on the basis of p: Data structure

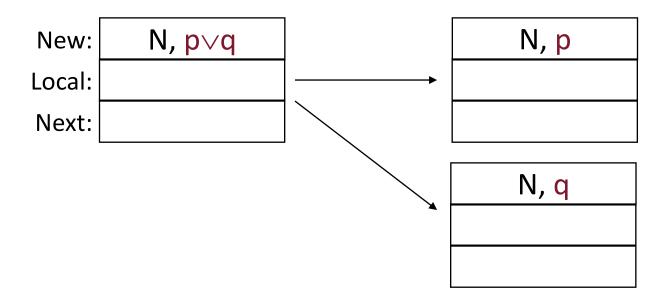
- Data structure (a record) to represent the decomposition:
 - New: list of expressions to be decomposed
 - Local: atomic propositions related to the current state
 - Next: expression that has to be true from the next state



Constructing A_p on the basis of p: Decomposition rules

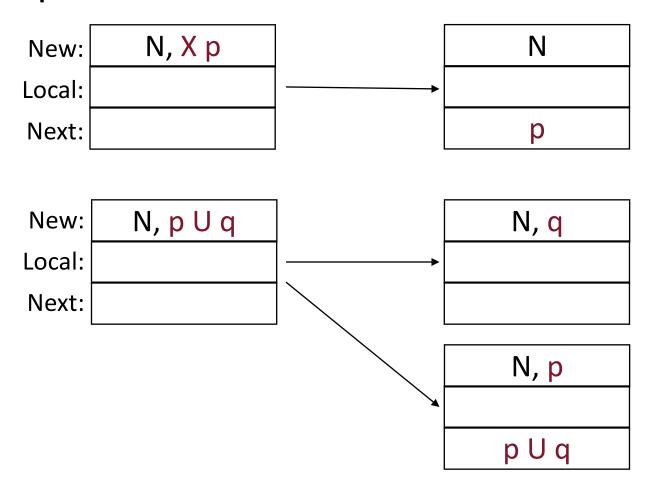
■ Decomposition rules for ∧ and ∨:





Constructing A_p on the basis of p: Decomposition rules

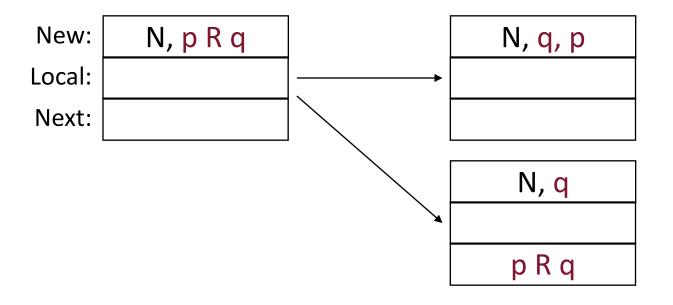
Decomposition rules for X and U:



based on the rule p U q = $q \lor (p \land X(p U q))$

Constructing A_p on the basis of p: Decomposition rules

Decomposition rule for R:

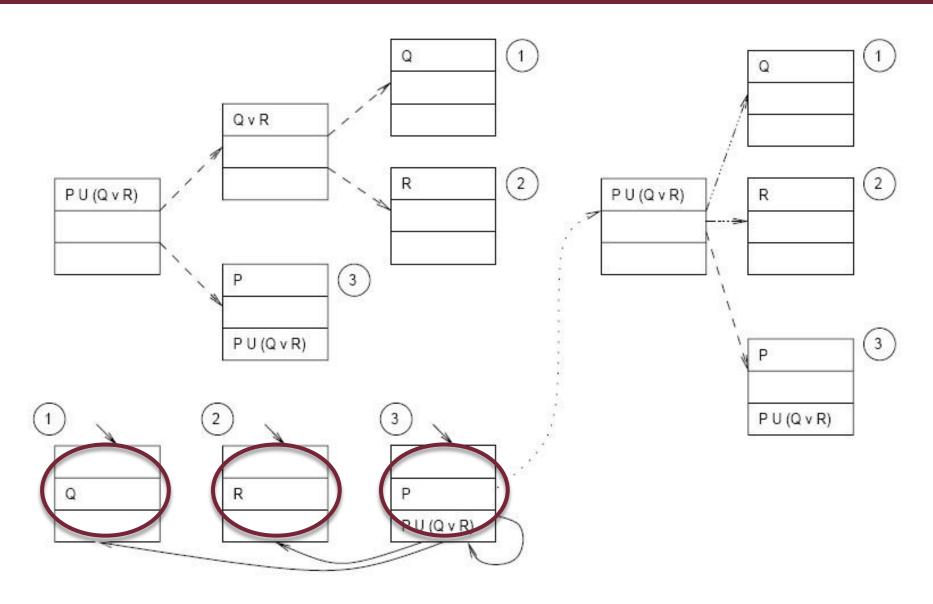


based on the rule p R q = $q \land (p \lor X(p R q))$

Constructing A_p on the basis of the decomposition (1)

- States: A state of the A_p automaton is identified from a node of the decomposition if:
 - There are only atomic propositions in the New field of the node;
 these are copied to the Local field and used to derive state labels,
 - and there is no state in A_p that was identified based on a node with the same Local and Next fields (otherwise the same state is identified again)
- Transitions: If a state s of the A_p automaton is identified then:
 - A new decomposition is started from the expression that is in the Next field of the node (copying it to the New field of a new node), since the Next field identifies property to be satisfied from the next state
 - Transitions of A_p are drawn from the state s to the states that result from the new decomposition
- Summary:
 - \circ States of A_p are identified when the decomposition results in nodes with atomic propositions (there is no further operator to be decomposed)
 - Transitions from a state s are drawn to the states that result from the decomposition of the formula in the Next field of the node belonging to s

Example: P U (Q V R)

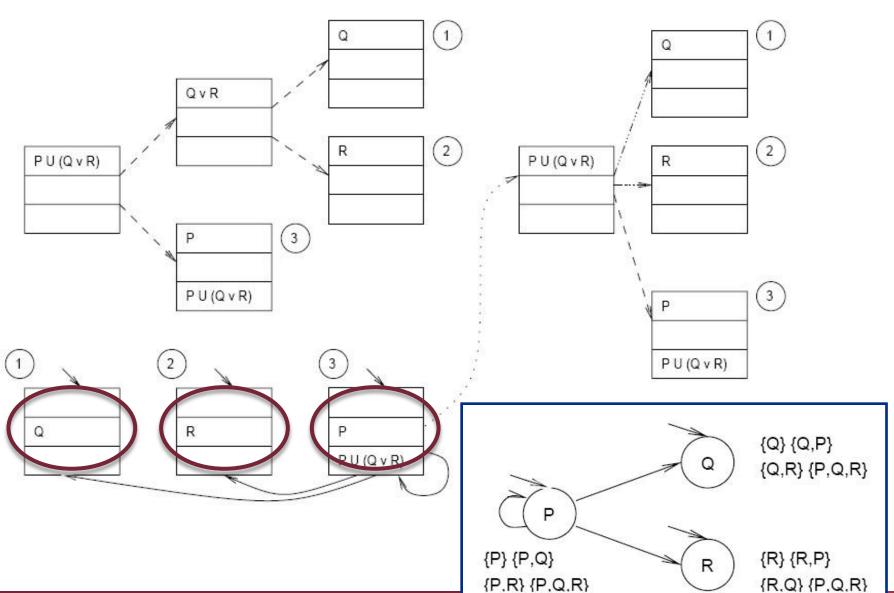


Constructing A_p on the basis of the decomposition (2)

- Further elements of A_p:
 - o Initial state(s):
 - State(s) resulting from the first decomposition
 - Accepting states (in finite case):
 - When the Next field is empty (no formula refers to the next state)
 - Labeling of a state: All subsets of AP that are compatible with the atomic propositions found in the Local field of the node belonging to the state
 - Each atomic proposition is included that is non-negated in Local
 - There is no atomic proposition that is negated in Local

Since each behavior is to be included in A_p that is allowed by the propositions in the Local field

Example: P U (Q \vee R) with AP={P,Q,R}



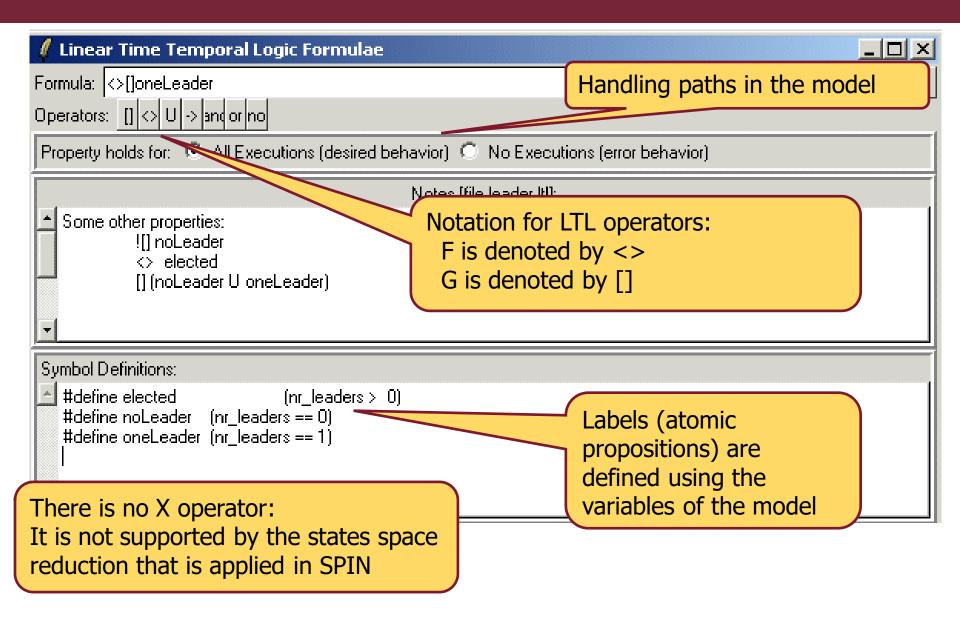
Complexity of PLTL model checking

 Worst-case time complexity of model checking the expression p on model M=(S,R,L):

$$O(|S|^2 \times 2^{|p|})$$
, where

- |S| is the number of states
- |p| is the number of operators in the LTL formula
- |S|² is the number of transitions in the model automaton
 (maximum number of transitions; typically only linear with S)
- 2^{|p|} is the number of transitions in the property automaton (maximum number of sub-expressions to be decomposed and resulting in new transitions)
- |S|²×2^{|p|} results from the state space of the product automaton (in which accepting states or cycles shall be found)
- The exponential complexity seems frightening, but
 - The LTL expressions are typically short (a few operators)
 - Time needs result mainly from the size of the model automaton

The model checker SPIN



Summary

- Temporal operators of LTL
- Formal syntax and semantics of LTL
 - Extending LTL to LTS
- Examples
- Verification of LTL properties
 - The model checking problem
 - LTL model checking: Automata based approach

