
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Formalizing and checking properties:
Temporal logic LTL

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Recap: Goals of formal verification

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

2

Overview

 Temporal operators of LTL

 Formal syntax and semantics of LTL

o Extending LTL to LTS

 Examples

 Verification of LTL properties

o The model checking problem

o LTL model checking: Automata based approach

3

Linear Temporal Logic (LTL)

Temporal operators

Syntax and semantics

Examples

4

Illustration of linear and branching timelines

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s 2 s1 s 3

{Green} {Yellow} {Red}

s4

 {Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3 s3

{Red}

s4

{Red,Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red,Yellow}

s5

{Blinking}

Branching

Linear

Logical time on a time line (a concrete run)

Logical time

on branching

timelines (all

possible runs)

5

Linear temporal logic – Formulas

Construction of formulas: p, q, r, ...
 Atomic propositions (elements of AP): P, Q, ...
 Boolean operators: , , , 

 : conjunction, : disjunction, : negation , : implication

 Temporal operators: X, F, G, U informally:
o X p: “neXt p”

p holds in the next state
o F p: “Future p”

p holds eventually
 on the path

o G p: “Globally p”
p holds in all states
 on the path

o p U q: “p Until q”
p holds at least until q,
 which holds on the path

6

P P P P Q
P U Q

P P P P P
G P

P
F P

P
X P

LTL examples

 p  Fq
 If p holds (in the initial state), then eventually q holds.

• Example: Start  F End

 G(p  Fq)
 For all states, if p holds, then eventually q holds.

• E.g. : G (Request  F Reply); for all requests, a reply eventually arrives

 p U (q  r)
 Starting from the initial state, p holds until q or r eventually holds.

• Example: Requested U (Accept  Refuse)
A continuous request either gets accepted or refused

 GF p
 Globally along the path (in any state), eventually p holds

• There is no state after which p does not hold eventually
• Example: GF Start; the Start state is reached from all states

 FG p
 Eventually, p continuously holds

• Example: FG Normal
(After an initial transient) the system keeps operating normally

7

LTL syntax

Syntax: What are the well-formed formulas (wff)?

The set of well-formed formulas in LTL are given by
three syntax rules:

Let P ∈ AP and p and q be wffs. Then

 L1: P is a wff

 L2: p ∧ q and ¬p are wffs

 L3: 𝗫 q and p 𝗨 q are wffs

Precedence rules:

X, U >  >  >  >  > 
8

Derived operators

 true holds for all states
false holds in no state

 p  q means (p  q)
p  q means p  q
p  q means p  q  q  p

 Fp means true U p
Gp means F(p)

 “Before” operator:
p WB q = ((p) U q) (weak before)
p B q = ((p) U q)  F q (strong before)

9

Informally:
It is not true that p does

not occur until q

Included: q shall occur

LTL semantics – Notation

Rationale of having formal semantics:
 When does a given formula hold for a given model?

o The semantics of LTL defines when a wff holds over a path

 Allows deciding “tricky” questions:
o Does F p hold if p holds in the first state of a path?
o Does p U q hold if q holds in the first state of a path (without p)?

Notation:
 M = (S, R, L) Kripke structure
  = (s0, s1, s2,…) a path of M

 where s0 ∈ I and  i≥0 : (si, si+1)R

i = (si, si+1, si+2,…) the suffix of  from index i

 M, |= p denotes:
in Kripke structure M, along path , property p holds

10

LTL semantics

Defined recursively w.r.t. syntax rules:

 L1: M, |= P iff PL(s0)

 L2: M, |= pq iff M, |= p and M, |= q
 M, |= q iff not M, |= q.

 L3: M, |= X p iff 1 |= p

 M, |= (p U q) iff
 j |= q for some j≥0 and
 k |= p for all 0≤k<j

11

Formalizing requirements: Example

Consider an air conditioner with the following
operating modes:

AP={Off, On, Error, MildCooling, StrongCooling,
Heating, Ventilating}

 At a time, more than one modes may be active
o E.g. {On, Ventilating}

 When formalizing requirements, we may not yet
know the state space (all potential behaviors)
oWe use only the labels belonging to operating modes

12

Formalizing requirements: Example

Air conditioner with the following operating modes:
AP = {Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating}

 The air conditioner can (and will) be turned on
 F On
 At some point, the air conditioner always breaks down
 GF Error
 If the air conditioner breaks down, it eventually gets repaired
 G (Error  F Error)
 A broken air conditioner does not heat:
 G (Error  Heating)
 After finishing the heating, the air conditioner must ventilate:
 G ((Heating  X Heating)  X Ventilating)
 After ventilation the air conditioner must not cool strongly until it

performs some mild cooling:
 G ((Ventilating  X Ventilating) 

 X(StrongCooling U MildCooling))

13

Extending LTL for LTS

LTL: Transitions are labeled by actions

A path in LTS is an alternating sequence
of states and actions:

  = (s0, a1, s1, a2, s2, a3, …)

Extending the syntax:

 L1*: If aAct then (a) is a wff.

The corresponding case in semantics:

 L1*: M, |= (a) iff. a1=a
where a1 is the first action in .

Requirements for action sequences
o Example: G ((coin)  X ((coffee)  (tee)))

coin coin

coffee tea

15

Verification of LTL properties

The model checking problem

LTL model checking: The automata-based approach

16

Model based verification by model checking

Formal
model

Formalized
requirements

Model checker:
M, |= p

OK Diagnostic trace

t f

• Basic mathematical formalisms
 (KS, LTS, KTS)
• By default, checked on all paths

Temporal logic:
 LTL

17

Automata based approach

 A=(, S, S0, , F) automaton on finite words
o Here:  is formed as letters from the 2AP alphabet

• State labels L(s) are considered as letters

• E.g., {Red, Yellow} is a letter from the alphabet above

o The path =(s0, s1, s2, … sn) identifies a word as follows:
 (L(s0), L(s1), L(s2), … L(sn))

 Two automata are needed:
o Model automaton: Based on a model M=(S,R,L)

an automaton AM is constructed that accepts and only
accepts words that correspond to the paths of M

o Property automaton: Based on the expression p
an automaton Ap is constructed that accepts and only
accepts words that correspond to paths on which p is true

18

Model checking using the automata

 Model checking question: L(AM)  L(Ap) ?
o I.e., is the language of the model automaton included

in the language of the property automaton?

o If yes, them M, |= p for all paths of M

 Verifying L(AM)  L(Ap) by alternative ways
o Is the intersection of the following languages empty: L(AM)L(Ap)c

where L(Ap)c is the complement language of L(Ap)

o Is the language that is accepted by the AMAp
c product automaton empty,

where Ap
c is the complement of Ap

• In case of finite words (finite behavior): The language is empty if there is
no reachable accepting state in AM Ap

c

• In case of infinite words (cyclic behavior): Büchi acceptance criteria can
be used ( no cyclic behavior with accepting states)

• Ap
c construction (in fully defined and deterministic case):

swapping accepting states with non-accepting states and vice versa

L(Ap)
L(AM)

19

Overview of automata based model checking

p LTL expression M=(S,R,L) model

AMAp
c product automaton

Is the accepted
language empty?

Diagnostic
trace

n
p is true

y

Ap, Ap
c automata AM automaton

(In the following: Basic ideas will be discussed, not a complete algorithm.)

20

Example: Checking F P  G Q

M model

AM

automaton

Assume: Ap

automaton

belonging to

F P  G Q

Ap
c

automaton

Synchronous

product of

automata

AM and Ap
c

There is no accepting

state: No counter-

example for F P  G Q

21

Overview of automata based model checking

p LTL expression M=(S,R,L) model

AMAp
c automaton

Is the accepted
language empty?

Diagnostic
trace

n
p is true

y

Ap, Ap
c automaton AM automaton

23

Constructing AM on the basis of M

 Labels are moved to outgoing transitions

 In case of finite behavior (finite words):
o Accepting state sf is added

o Transitions are added from the end states
(without outgoing transition) to the
accepting state sf

 Formally the automaton:

 AM=(2AP, S{sf}, {s0}, , {sf})

 where the transitions relation is the following:

 ={ (s,L(s),t) | (s,t)R } 
 {(s,L(s),sf) | no t, such that (s,t)R }

24

Overview of automata based model checking

p LTL expression M=(S,R,L) model

AMAp
c automaton

Is the accepted
language empty?

Diagnostic
trace

n
p is true

y

Ap, Ap
c automaton AM automaton

25

Constructing Ap on the basis of p: The basic idea

 Ap automaton: Shall represent those paths on which p is true

 Basic idea: Decompose the expression similarly to the tableau
method and this way identify the states and transitions of Ap
o First decomposition: Identifies the initial state(s) of Ap

• Labels of the state: Based on the atomic propositions (i.e., without temporal
operators) resulting from the decomposition

• Outgoing transitions to next states: Identified by the (sub)expressions with
temporal operators, that have to be true from the next state

o New decomposition for each formula belonging to a next state

 Initial step: Construct the negated normal form of the expression
o For Boolean operators: de Morgan laws

o For temporal operators:

 (X p) = X (p)

 (p U q) can be handled by defining the R „release” operator:

 (p U q) = (p) R (q), from which p R q = q  (p  X (p R q))

26

Constructing Ap on the basis of p: Data structure

 Data structure (a record) to represent the decomposition:

o New: list of expressions to be decomposed

o Local: atomic propositions related to the current state

o Next: expression that has to be true from the next state

New:

Local:

Next:

N, p

List of formula may result
from the decomposition

27

Constructing Ap on the basis of p: Decomposition rules

 Decomposition rules for  and :

New:

Local:

Next:

N, pq

N, p N, pq

N, p, q

N, q

28

New:

Local:

Next:

Constructing Ap on the basis of p: Decomposition rules

 Decomposition rules for X and U:

New:

Local:

Next:

N, X p

N, q N, p U q

N

p

N, p

p U q

based on the rule p U q = q  (p  X(p U q))

29

New:

Local:

Next:

Constructing Ap on the basis of p: Decomposition rules

 Decomposition rule for R:

New:

Local:

Next:

N, q, p N, p R q

N, q

p R q

based on the rule p R q = q  (p  X(p R q))

30

Constructing Ap on the basis of the decomposition (1)

 States: A state of the Ap automaton is identified from a node of the
decomposition if:
o There are only atomic propositions in the New field of the node;

these are copied to the Local field and used to derive state labels,

o and there is no state in Ap that was identified based on a node with the
same Local and Next fields (otherwise the same state is identified again)

 Transitions: If a state s of the Ap automaton is identified then:
o A new decomposition is started from the expression that is in the Next field

of the node (copying it to the New field of a new node),
since the Next field identifies property to be satisfied from the next state

o Transitions of Ap are drawn from the state s to the states that result from the
new decomposition

 Summary:
o States of Ap are identified when the decomposition results in nodes with

atomic propositions (there is no further operator to be decomposed)

o Transitions from a state s are drawn to the states that result from the
decomposition of the formula in the Next field of the node belonging to s

31

Example: P U (Q  R)

32

Constructing Ap on the basis of the decomposition (2)

 Further elements of Ap:

o Initial state(s):

• State(s) resulting from the first decomposition

o Accepting states (in finite case):

• When the Next field is empty (no formula refers to the next state)

o Labeling of a state: All subsets of AP that are compatible
with the atomic propositions found in the Local field of the
node belonging to the state

• Each atomic proposition is included that is non-negated in Local

• There is no atomic proposition that is negated in Local

 Since each behavior is to be included in Ap that is allowed
by the propositions in the Local field

33

Example: P U (Q  R) with AP={P,Q,R}

34

Complexity of PLTL model checking

 Worst-case time complexity of model checking the expression p on
model M=(S,R,L):

O(|S|2  2|p|), where
o |S| is the number of states

o |p| is the number of operators in the LTL formula

o |S|2 is the number of transitions in the model automaton
 (maximum number of transitions; typically only linear with S)

o 2|p| is the number of transitions in the property automaton
 (maximum number of sub-expressions to be
 decomposed and resulting in new transitions)

o |S|22|p| results from the state space of the product automaton
 (in which accepting states or cycles shall be found)

 The exponential complexity seems frightening, but
o The LTL expressions are typically short (a few operators)

o Time needs result mainly from the size of the model automaton

35

The model checker SPIN

Notation for LTL operators:
 F is denoted by <>
 G is denoted by []

Labels (atomic
propositions) are
defined using the
variables of the model

Handling paths in the model

There is no X operator:
It is not supported by the states space
reduction that is applied in SPIN

36

Summary

 Temporal operators of LTL

 Formal syntax and semantics of LTL

o Extending LTL to LTS

 Examples

 Verification of LTL properties

o The model checking problem

o LTL model checking: Automata based approach

37

