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Overview 

 Temporal operators of LTL 

 Formal syntax and semantics of LTL 

o Extending LTL to LTS 

 Examples 

 Verification of LTL properties 

o The model checking problem 

o LTL model checking: Automata based approach 
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Linear Temporal Logic (LTL) 

Temporal operators 

Syntax and semantics 

Examples 
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Illustration of linear and branching timelines 

s5   

  

s 2   s1   s 3   s4   

{Green}   {Yellow}   {Red}   {Red, Yellow}   

{Blinking}   

  

s 2   s1 s 3   

{Green}   {Yellow}   {Red} 

s4   

  {Red, Yellow}     

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

Branching 

Linear 

Logical time on a time line (a concrete run) 

Logical time  

on branching  

timelines (all 

possible runs) 

5 



Linear temporal logic – Formulas 

Construction of formulas: p, q, r, ... 
 Atomic propositions (elements of AP): P, Q, ... 
 Boolean operators: , , ,    

 : conjunction, : disjunction, : negation , : implication 

 Temporal operators: X, F, G, U informally: 
o X p: “neXt p” 

p holds in the next state 
o F p: “Future p” 

p holds eventually  
  on the path 

o G p: “Globally p” 
p holds in all states  
  on the path 

o p U q: “p Until q” 
p holds at least until q,  
  which holds on the path 
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LTL examples 

 p  Fq  
 If p holds (in the initial state), then eventually q holds. 

• Example: Start  F End  

 G(p  Fq) 
 For all states, if p holds, then eventually q holds. 

• E.g. : G (Request  F Reply); for all requests, a reply eventually arrives 

 p U (q  r)  
 Starting from the initial state, p holds until q or r eventually holds. 

• Example: Requested U (Accept  Refuse) 
A continuous request either gets accepted or refused 

 GF p 
 Globally along the path (in any state), eventually p holds 

• There is no state after which p does not hold eventually 
• Example: GF Start; the Start state is reached from all states 

 FG p 
 Eventually, p continuously holds 

• Example: FG Normal 
(After an initial transient) the system keeps operating normally 
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LTL syntax 

Syntax: What are the well-formed formulas (wff)? 

The set of well-formed formulas in LTL are given by 
three syntax rules: 

 

Let P ∈ AP and p and q be wffs. Then 

 L1: P is a wff 

 L2: p ∧ q and ¬p are wffs 

 L3: 𝗫 q and p 𝗨 q are wffs 

 

Precedence rules: 

X, U >  >  >  >  >  
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Derived operators 

 true  holds for all states 
false holds in no state 

 p  q  means  (p  q) 
p  q means p  q 
p  q  means  p  q  q  p 

 Fp means true U p 
Gp means F(p) 

 “Before” operator: 
p WB q = ((p) U q)          (weak before) 
p B q = ((p) U q)  F q    (strong before) 
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Informally:  
It is not true that p does 

not occur until q 

Included: q shall occur 



LTL semantics – Notation 

Rationale of having formal semantics: 
 When does a given formula hold for a given model? 

o The semantics of LTL defines when a wff holds over a path 

 Allows deciding “tricky” questions: 
o Does F p hold if p holds in the first state of a path? 
o Does p U q hold if q holds in the first state of a path (without p)? 

 

Notation: 
 M = (S, R, L) Kripke structure 
  = (s0, s1, s2,…) a path of M  

   where s0 ∈ I   and  i≥0 : (si, si+1)R 

i = (si, si+1, si+2,…) the suffix of  from index i 

 M, |= p denotes: 
in Kripke structure M, along path , property p holds 
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LTL semantics 

Defined recursively w.r.t. syntax rules: 
 

 L1: M, |= P iff PL(s0) 

 L2: M, |= pq iff M, |= p and M, |= q 
 M, |= q  iff not M, |= q. 

 L3: M, |= X p iff 1 |= p 

 M, |= (p U q) iff 
  j |= q for some j≥0 and 
  k |= p for all 0≤k<j 
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Formalizing requirements: Example 

Consider an air conditioner with the following 
operating modes: 

AP={Off, On, Error, MildCooling, StrongCooling, 
Heating, Ventilating} 

 

 At a time, more than one modes may be active 
o E.g. {On, Ventilating} 

 When formalizing requirements, we may not yet 
know the state space (all potential behaviors) 
oWe use only the labels belonging to operating modes 
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Formalizing requirements: Example 

Air conditioner with the following operating modes: 
AP = {Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating} 
 
 The air conditioner can (and will) be turned on 
  F On 
 At some point, the air conditioner always breaks down 
  GF Error 
 If the air conditioner breaks down, it eventually gets repaired 
  G (Error  F Error) 
 A broken air conditioner does not heat: 
  G (Error  Heating) 
 After finishing the heating, the air conditioner must ventilate: 
  G ((Heating  X Heating)  X Ventilating) 
 After ventilation the air conditioner must not cool strongly until it 

performs some mild cooling:  
  G ((Ventilating  X Ventilating)   

    X(StrongCooling U MildCooling)) 
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Extending LTL for LTS 

LTL: Transitions are labeled by actions 

A path in LTS is an alternating sequence  
of states and actions: 

  = (s0, a1, s1, a2, s2, a3, …) 
 

Extending the syntax: 

 L1*: If aAct then (a) is a wff. 
 

The corresponding case in semantics: 

 L1*: M, |= (a) iff. a1=a 
where a1 is the first action in . 

 

Requirements for action sequences 
o Example: G ((coin)  X ((coffee)  (tee))) 

coin coin

coffee tea
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Verification of LTL properties 

The model checking problem 

LTL model checking: The automata-based approach 
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Model based verification by model checking 

Formal 
model 

Formalized 
requirements 

Model checker: 
M, |= p 

OK Diagnostic trace 

t f 

• Basic mathematical formalisms 
  (KS, LTS, KTS) 
• By default, checked on all paths 

Temporal logic: 
  LTL 
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Automata based approach 

 A=(, S, S0, , F) automaton on finite words 
o Here:  is formed as letters from the 2AP alphabet 

• State labels L(s) are considered as letters 

• E.g., {Red, Yellow} is a letter from the alphabet above 

o The path =(s0, s1, s2, … sn) identifies a word as follows:  
  (L(s0), L(s1), L(s2), … L(sn)) 

 Two automata are needed: 
o Model automaton: Based on a model M=(S,R,L)  

an automaton AM is constructed that accepts and only 
accepts words that correspond to the paths of M 

o Property automaton: Based on the expression p  
an automaton Ap is constructed that accepts and only 
accepts words that correspond to paths on which p is true 
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Model checking using the automata 

 Model checking question: L(AM)  L(Ap) ? 
o I.e., is the language of the model automaton included  

in the language of the property automaton? 

o If yes, them M, |= p for all paths of M 

 Verifying L(AM)  L(Ap) by alternative ways 
o Is the intersection of the following languages empty: L(AM)L(Ap)c  

where L(Ap)c is the complement language of L(Ap) 

o Is the language that is accepted by the AMAp
c product automaton empty, 

where Ap
c is the complement of Ap 

• In case of finite words (finite behavior): The language is empty if there is 
no reachable accepting state in AM Ap

c 

• In case of infinite words (cyclic behavior): Büchi acceptance criteria can 
be used ( no cyclic behavior with accepting states) 

• Ap
c construction (in fully defined and deterministic case):  

swapping accepting states with non-accepting states and vice versa 

L(Ap) 
L(AM) 
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Overview of automata based model checking 

p LTL expression M=(S,R,L) model 

AMAp
c product automaton 

Is the accepted 
language empty? 

Diagnostic 
trace 

n 
p is true 

y 

Ap, Ap
c automata AM automaton 

(In the following: Basic ideas will be discussed, not a complete algorithm.) 
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Example: Checking F P  G Q 

M model 

AM 

automaton 

Assume: Ap 

automaton 

belonging to 

F P  G Q 

Ap
c 

automaton 

Synchronous 

product of 

automata 

AM and Ap
c 

There is no accepting 

state: No counter-

example for F P  G Q  
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Overview of automata based model checking 

p LTL expression M=(S,R,L) model 

AMAp
c automaton 

Is the accepted 
language empty? 

Diagnostic 
trace 

n 
p is true 

y 

Ap, Ap
c automaton AM automaton 
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Constructing AM on the basis of M 

 Labels are moved to outgoing transitions 

 In case of finite behavior (finite words): 
o Accepting state sf is added 

o Transitions are added from the end states  
(without outgoing transition) to the  
accepting state sf  

 

 Formally the automaton: 

   AM=(2AP, S{sf}, {s0}, , {sf}) 

 where the transitions relation is the following: 

  ={ (s,L(s),t) | (s,t)R }   
  {(s,L(s),sf) | no t, such that (s,t)R } 
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Overview of automata based model checking 

p LTL expression M=(S,R,L) model 

AMAp
c automaton 

Is the accepted 
language empty? 

Diagnostic 
trace 

n 
p is true 

y 

Ap, Ap
c automaton AM automaton 
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Constructing Ap on the basis of p: The basic idea 

 Ap automaton: Shall represent those paths on which p is true 

 Basic idea: Decompose the expression similarly to the tableau 
method and this way identify the states and transitions of Ap 
o First decomposition: Identifies the initial state(s) of Ap 

• Labels of the state: Based on the atomic propositions (i.e., without temporal 
operators) resulting from the decomposition 

• Outgoing transitions to next states: Identified by the (sub)expressions with 
temporal operators, that have to be true from the next state 

o New decomposition for each formula belonging to a next state 

 Initial step: Construct the negated normal form of the expression 
o For Boolean operators: de Morgan laws 

o For temporal operators: 

 (X p) = X (p) 

 (p U q) can be handled by defining the R „release” operator:  

        (p U q) = (p) R (q), from which p R q = q  (p  X (p R q)) 
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Constructing Ap on the basis of p: Data structure 

 Data structure (a record) to represent the decomposition: 

o New: list of expressions to be decomposed 

o Local: atomic propositions related to the current state 

o Next: expression that has to be true from the next state 

New: 

Local: 

Next: 

N, p 

List of formula may result 
from the decomposition 
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Constructing Ap on the basis of p: Decomposition rules 

 Decomposition rules for  and : 

New: 

Local: 

Next: 

N, pq 

N, p N, pq 

N, p, q 

N, q 
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New: 

Local: 

Next: 



Constructing Ap on the basis of p: Decomposition rules 

 Decomposition rules for X and U: 

New: 

Local: 

Next: 

N, X p 

N, q N, p U q 

N 

p 

N, p 

p U q 

based on the rule p U q = q  (p  X(p U q)) 
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New: 

Local: 

Next: 



Constructing Ap on the basis of p: Decomposition rules 

 Decomposition rule for R: 

New: 

Local: 

Next: 

N, q, p N, p R q 

N, q 

p R q 

based on the rule p R q = q  (p  X(p R q)) 
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Constructing Ap on the basis of the decomposition (1) 

 States: A state of the Ap automaton is identified from a node of the 
decomposition if: 
o There are only atomic propositions in the New field of the node; 

these are copied to the Local field and used to derive state labels,  

o and there is no state in Ap that was identified based on a node with the 
same Local and Next fields (otherwise the same state is identified again) 

 Transitions: If a state s of the Ap automaton is identified then: 
o A new decomposition is started from the expression that is in the Next field 

of the node (copying it to the New field of a new node),  
since the Next field identifies property to be satisfied from the next state 

o Transitions of Ap are drawn from the state s to the states that result from the 
new decomposition 

 Summary: 
o States of Ap are identified when the decomposition results in nodes with 

atomic propositions (there is no further operator to be decomposed) 

o Transitions from a state s are drawn to the states that result from the 
decomposition of the formula in the Next field of the node belonging to s 
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Example: P U (Q  R) 
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Constructing Ap on the basis of the decomposition (2) 

 Further elements of Ap: 

o Initial state(s):  

• State(s) resulting from the first decomposition 

o Accepting states (in finite case): 

• When the Next field is empty (no formula refers to the next state) 

o Labeling of a state: All subsets of AP that are compatible 
with the atomic propositions found in the Local field of the 
node belonging to the state 

• Each atomic proposition is included that is non-negated in Local 

• There is no atomic proposition that is negated in Local 

 Since each behavior is to be included in Ap that is allowed 
by the propositions in the Local field 
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Example: P U (Q  R) with AP={P,Q,R} 
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Complexity of PLTL model checking 

 Worst-case time complexity of model checking the expression p on 
model M=(S,R,L): 

O(|S|2  2|p|), where 
o |S| is the number of states 

o |p| is the number of operators in the LTL formula 

o |S|2 is the number of transitions in the model automaton 
  (maximum number of transitions; typically only linear with S) 

o 2|p| is the number of transitions in the property automaton 
  (maximum number of sub-expressions to be  
  decomposed and resulting in new transitions) 

o |S|22|p| results from the state space of the product automaton  
  (in which accepting states or cycles shall be found) 

 The exponential complexity seems frightening, but 
o The LTL expressions are typically short (a few operators) 

o Time needs result mainly from the size of the model automaton 
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The model checker SPIN 

Notation for LTL operators: 
  F is denoted by <> 
  G is denoted by [] 

Labels (atomic 
propositions) are 
defined using the 
variables of the model 

Handling paths in the model 

There is no X operator:  
It is not supported by the states space 
reduction that is applied in SPIN 
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Summary 

 Temporal operators of LTL 

 Formal syntax and semantics of LTL 

o Extending LTL to LTS 

 Examples 

 Verification of LTL properties 

o The model checking problem 

o LTL model checking: Automata based approach 
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