
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Formalizing and checking properties:
Temporal logics CTL and CTL*

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Formal verification: Goals

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

2

Overview

 Branching time temporal logics

 CTL*: Computational Tree Logic *

o Operators

o Syntax and semantics

 CTL: Computational Tree Logic

o Operators

o Syntax and semantics

o Model checking CTL

 Outlook: Modal mu-calculus

o Operators

3

Illustration of linear and branching timelines

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s 2 s1 s 3

{Green} {Yellow} {Red}

s4

 {Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3 s3

{Red}

s4

{Red,Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red,Yellow}

s5

{Blinking}

Branching

Linear

Logical time on a time line (a concrete run)

Logical time:

on branching

timelines (all

possible runs)

4

Recall: LTL operators on execution paths

Construction of formulas: p, q, r, ...
 Atomic propositions (elements of AP): P, Q, ...
 Boolean operators: , , , 

 : conjunction, : disjunction, : negation , : implication

 Temporal operators: X, F, G, U informally:
o X p: “neXt p”

p holds in the next state
o F p: “Future p”

p holds eventually
 on the path

o G p: “Globally p”
p holds in all states
 on the path

o p U q: “p Until q”
p holds at least until q,
 which holds on the path

5

P P P P Q
P U Q

P P P P P
G P

P
F P

P
X P

Branching: Path quantifiers

In a given state,
we formulate properties on the outgoing paths
from the state:

 E p (Exists p): there exists at least one path
from the state for which p holds
o Requirement on a single path

o Existential operator

 A p (for All p): for all paths from the state
p holds
o Requirement on all possible paths

o Universal operator

s

s

6

Branching time temporal logics

 CTL*: Computational Tree Logic *
o An arbitrary combination of

• path quantifiers (E, A),

• and path-specific temporal operators (X, F, G, U)

o E.g., EXXX p, A(X p  F q)

 CTL: Computational Tree Logic
o Specific CTL operators are formed:

• Each temporal operator (X, F, G, U) is directly
preceded by a path quantifier (E, A)

o E.g. AX p, E(p U q)

7

CTL*: Computational Tree Logic *

Operators

Syntax and semantics

8

CTL* operators (informal)

 Path quantifiers (interpreted over states):

o A: “for All futures”,
for all possible paths from the current state

o E: “Exists future”, “for some future”,
for at least one path from the current state

 Path-specific operators (interpreted over paths):

o X p: “neXt”, for the next state p holds

o F p: “Future”, for a state along the path p holds

o G p: “Globally”, for each state of the path p holds

o p U q: “p Until q”, for a state of the path q will hold,
and until then for all states p holds

9

CTL* formula examples

 A(p  F q)

10

For all paths,
we have that …

if initially
p holds, …

then eventually … q holds.

 A(p  G q)

 For all possible paths: p holds (initially for the path)
and q holds continuously for the path.

 E(XXX p  F q)

 There exists a path such that

o p holds for its fourth state, or

o eventually q holds

CTL* syntax

 State formulas: evaluated over states
o S1: an atomic proposition P is a state formula
o S2: for state formulas p and q,

 p and pq are state formulas
o S3: for a path formula p,

 E p and A p are state formulas

 Path formulas: evaluated over paths
o P1: every state formula is a path formula
o P2: for path formulas p and q,

 p and pq are path formulas
o P3: for path formulas p and q,

 X p and p U q are path formulas

Well-formed formulas in CTL*: state formulas

11

CTL* semantics: Notation

 M = (S, R, L) Kripke structure

  = (s0, s1, s2,…) a path of M where
 s0∈I and i≥0: (si, si+1)R

o i = (si, si+1, si+2,…) the suffix of  from i

 M, |= p (for a path formula p):
in Kripke structure M, along path , p holds

 M,s |= p (for a state formula p):
in Kripke structure M, in state s, p holds

12

CTL* semantics: State formulas

 S1:

M,s |= P iff PL(s)
 S2:

M,s |= p iff not M,s |= p

M,s |= pq iff M,s |= p and M,s |= q
 S3:

M,s |= E p (for path formula p)
iff there exists a path =(s0, s1, s2,…) in M such that
s=s0 and M, |= p

M,s |= A p (for a path formula p)
iff for all paths =(s0, s1, s2,…) in M such that
s= s0 we have M, |= p

13

CTL* semantics: Path formulas

 P1:

M, |= p (for a state formula p) iff M, s0 |= p

 P2:

M, |= p iff not M, |= p

M, |= pq iff M, |= p and M, |= q

 P3:

M,  |= X p iff M,1 |= p

M,  |= p U q iff

 j |= q for some j≥0 and
 k |= p for all 0≤k<j

14

Background: Computational complexity of evaluation

 Worst-case time complexity:
at least O (|S|2  2|p|)

o |S|2 number of transitions in the model
 (Kripke structure) in the worst case

o |p| number of temporal operators in the formula

 The exponential complexity similar to LTL

o Although temporal requirements tend to be short

 Goal: simplifying CTL*

o Should remain usable in practice

o Should reduce worst-case time complexity

15

CTL: Computational Tree Logic

Operators

Syntax and semantics

16

CTL operators (informal introduction)

Complex operators over states:

 EX p: there exists a path where p holds in the next state

 EF p: there exists a path where p holds in the future

 EG p: there exists a path where p holds globally

 E(p U q): there exists a path where p holds until q
 eventually holds

 AX p: for all paths p holds in the next state

 AF p: for all paths p holds in the future

 AG p: for all paths p holds globally

 A(p U q): for all paths p holds until q eventually holds

17

Illustration for CTL operators (examples)

18

EX P EF P EG P

AX P AF P AG P

P

P P

P

P

CTL formulas (examples)

 AG EF Reset
 Starting from any reachable state*,

a state can eventually be reached where Reset holds
 AG AF Terminated

 Starting from any reachable state*,
a state will eventually be reached where Terminated holds

 AG (Request  AF Reply)
 Starting from any reachable state*,

if we encounter a state where Request holds,
then a state will eventually be reached where Reply holds.

 AF AG Normal
 Along all paths we will eventually reach a state

from which Normal will always hold

 EF AG Stopped
 It is possible for the system to reach a state after which Stopped will

hold in all states

* AG refers to states reachable from the initial state

19

Example: Formalizing requirements (1)

 Two processes in a system: P1 and P2

 The local properties of processes:

o In critical section: C1, C2

o Not in critical section: N1, N2

o Waiting to enter critical section: W1, W2

 Atomic propositions:
AP = {C1, C2, N1, N2, W1, W2}

20

Example: Formalizing requirements (2)

 There is at most one process in the critical section:
 AG ((C1  C2))

 If a process is waiting to enter the critical section, then it
will eventually enter the critical section:

 AG (W1  AF(C1))
 AG (W2  AF(C2))

 Processes enter the critical section in alternating order;
one exits, then the other enters:

 AG(C1  A(C1 U (C1  A((C1) U C2))))
 AG(C2  A(C2 U (C2  A((C2) U C1))))

21

P2 in critical
section

P2 not in
critical section

P1 enters the
critical section

CTL syntax

State formulas: The same as in CTL*
o S1: an atomic proposition P is a state formula

o S2: for state formulas p and q,
 p and pq are state formulas

o S3: for a path formula p,
 E p and A p are state formulas

Path formulas: Only a single rule

o P0: for state formulas p and q,
 X p and p U q are path formulas

24

• Path formulas cannot be directly nested (only state formulas in P0)
• Path formulas are only used in rule S3:

Path formulas X p and p U q can only be under E and A

Derived operators and example formulas

 Derived operators of CTL
o EF p means E (true U p)

o AF p means A (true U p)

o EG p means AF (p)

o AG p means EF (p)

 CTL* but not CTL
o E(X Red  F Yellow)

 Boolean operator between path formulas

o A(X G (Red  Yellow)), and E(XXX Red)

 Nested path formulas

26

CTL formal semantics

 State formulas:
o Rules S1, S2, S3 (see CTL*) remain unchanged

 Path formulas:
o Rules P1, P2, P3 are replaced by a new rule P0:

 P0: Only state formulas can be nested
o M, |= X p where p is a state formula iff

 M,s1 |= p

o M, |= p U q where p,q are state formulas iff
 M,sj

 |= q for some j≥0 and
 M,sk | = p for all 0≤k<j

Here we have state formulas according to syntax rule P0

27

Background: Computational complexity of evaluation

 Worst case time complexity: O (|S|2|p|)

o |S|2 number of transitions in the model
 (Kripke structure) in the worst case

o |p| number of temporal operators in the formula

 Complexity is lower than in case of CTL*

o No 2|p| factor

o Expressive enough for many practical requirements

• Safety requirements: AG

• Liveness requirements: EF, AF

 What is the cost?

o CTL* is more expressive than CTL

28

Expressive power

 A temporal logic is more expressive than another
temporal logic iff
o it is able to formalize all properties that the other logic

can,

o furthermore there is a property that can be expressed
in the logic but not in the other logic

 Experience so far:
o LTL can not consider branching

(implicitly „for all paths”)

o CTL is more restricted than CTL*,
hence it is less expressive

o CTL* also includes all properties expressible in LTL

29

Expressive power – Formally

 The expressive power of TL2 is at least as big as the
expressive power of TL1 iff
for all Kripke structure M and for all its states s:

 Iff this relation holds mutually then TL2 and TL1 have the
same expressive power.

30

1:

2 : (, | , |)

p TL

q TL M s p M s q

 

    

Expressive power of LTL, CTL, CTL*

CTL*

(A)LTL CTL

AF(p  Xq)
(implicit A
operator)

A(p U q)
(implicit A
operator)

AG EF p

AF(p  Xq)  AG EF p,

EXXX p, A(X G (p  q))

Implicit A
operator for paths

31

Expressive power of CTL and (A)LTL (in more detail)

 Cannot be expressed in (A)LTL: AG EF p
o In LTL there are no “possibilities”
o In case of GF p: a state in which p holds shall be always

reachable, while AG EF p allows paths without p

 Cannot be expressed in CTL: FG p (stability)
o AF EG p not good, since p will not hold on all paths
o AF AG p is too strict:

p q p

…

… …

…

AF AG p

…

FG p

…

…

OK!

OK!

There is
always a
potential
path for
which AG p
does not
hold

32

FairCTL: Specifying ”fair” paths

 Properties shall be checked on “fair” paths only
o Trivial counterexamples should be omitted:

e.g., all messages are lost, the system is always reset etc.

 Fair paths are characterized by a q path formula in the form of:
o GF r: The r state property occurs infinitely often (e.g., there is no starvation)

o FG r: The r state property hold almost everywhere (e.g., stability is reached)

 Modified path quantifiers for fair paths:
o Aq : for all “fair” paths

o Eq : there exists a “fair” path

 Semantics of the modified path quantifiers:
o AqF p means in CTL* A(q  F p)

o EqG p means in CTL* E(q  G p)

 Advantages of FairCTL:
o Checking is restricted to “fair” paths

o Complexity of checking FairCTL is less than the complexity of CTL*

33

CTL model checking

Semantics-based approach

34

Model based verification by model checking

Formal model:
Kripke structure M

Formalized property:
CTL property p

Model checker:
M,s |= p

OK Diagnostic trace

t f

35

Model checking approach

 Global model checking:

o In case of CTL formula p: computing Sat(p),
i.e., the set of states where p holds

o This way sSat(p) can be checked for the initial state

 Sat(p) is computed in an “incremental” way, labeling
the states with the sub-expressions of p

o First step: States are already labeled with the atomic
propositions of the formula

o Next step: Labeling with sub-expressions of p that are
composed by an operator from the existing labels

• E.g., if states are labeled with p and q then p U q label is assigned

o End of labeling: The original formula p is used as label

36

Labeling using sub-expressions

 Composition of a formula based on its syntactic structure
(from inside out):

 AF (P  E (Q U R)) Q and R labels are
included in the KS

E(_ U _) composition is applied,
E(Q U R) label will appear

_  _ composition is applied,
PE(Q U R) label will appear

AF _ composition is applied,
AF(PE(Q U R)) label will appear

• Rules: Having labels p and q we establish where we have labels

p, pq, EX p, AX p, E(p U q), A(p U q)

• We progress “outwards” from the inside of a complex formula

37

Labeling rules: Based on the semantics (1)

 P holds in states s where PL(s)

o Rule: P label is applied on states s where
there is no label P

 pq holds in states s where both p and q are true

o Rule: pq label is applied on states s where
both p and q labels are already present

More complex rules for temporal operators

 EX, AX refer to next states reachable from s

 E(U), A(U) refer to paths reachable from s

39

Labeling rules: Based on the semantics (2)

 EX p holds in states s which have at least one next state in which
p is true
o Rule: State s is labeled with EX p, if it has at least one next state

which is already labeled by p

 AX p holds in states s if p is true in all next states of s

o Rule: State s is labeled with AX p, if all of its next states are already
labeled by p

s
p

s
p

EX p

s
p

s

AX p

p

p

p

p

p

40

Labeling rules: Based on the semantics (3)

 Where does E(p U q) hold?

o Decomposition: E(p U q) = q  (p  EX E(p U q))

o „Recursive” expression (in finite paths the last state needs specific care)

 Which states can be labeled with E(p U q)?
o If state s is already labeled with q, or

o if s is labeled with p, and there is at least one next state (cf. EX) that is
already labeled with E(p U q)

 An iterative labeling algorithm is derived:
o E(p U q) label is applied first on states that are already labeled with q

o Then their predecessor states are checked:
If label p is on a predecessor state then it is labeled with E(p U q)

o … and so on until the set of labeled states increases

o This way those paths are explored that lead to state with label q through
states that are labeled with p

41

Example: Labeling with E(P U Q)

 Iteration is finished
when the set of
labeled states does
not change

{P,Q}

P P P

Kripke structure with
initial labeling

{P,Q}

P P P

E(P U Q) First step: Q

{P,Q}

P P P

E(P U Q)

E(P U Q)

Second step:

P  EX

{P,Q}

P P P

E(P U Q)

E(P U Q) E(P U Q)

Third steps:
P  EX

42

• Exploiting:
E(P U Q) =
Q  (P  EX E(P U Q))

Labeling rules: Based on the semantics (4)

 Where does A(p U q) hold?

o Decomposition: A(p U q) = q  (p  AX A(p U q))

o „Recursive” expression (on infinite paths)

 Which states can be labeled with A(p U q)?
o If state s is already labeled with q, or

o if s is labeled with p, and all its next states are already labeled with A(p U q)

 An iterative labeling algorithm is derived:
o A(p U q) label is applied first on states that are labeled with q

o Then their predecessor states shall be checked:
If label p is on a predecessor state and all its next states are already labeled
with A(p U q) then it is labeled with A(p U q)

o … and so on until the set of labeled states can be increased

This way all operators included in the formal syntax are covered.

43

Describing the labeling with set operations

 We need sets of states that have proper successor states
o E(p U q): “At least one successor state is labeled …”
o A(p U q): “All successor states are labeled …”

 Notation: If the set of states labeled with p is Z then
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z}

 i.e., at least one successor is in Z (already labeled)

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z}
 i.e., all successors are in Z (already labeled)

 Example: Iterative labeling with E(P U Q)
o Initial set: X0 = {s | QL(s)}

o Next iteration: Xi+1= Xi  (preE(Xi)  {s | PL(s)})

o End of iteration: If Xi+1= Xi, the set is not increased

States labeled so

far, plus …

… their predecessor states

that …

… are labeled

with P

45

CTL model checking: Summary

 Global model checking:
o States are labeled with (sub)expressions that hold in that state

o More and more complex (sub)expressions are used as labels until the
original property formula is used as label

 Labeling with a (sub)expression:
o Based on the existing labels (assigned in previous steps) applying

labeling rules determined by the semantics of the operators

o In case of EX, AX: Checking and labeling predecessor states

o In case of E(p U q), A(p U q): Iterative labeling on paths

• Initial set: Labeled on the basis of the q expressions

• Iteration: Labeling p predecessor states on the basis of the semantics

• End of iteration: The set of labeled states is constant

 Mathematical basis for model checking: Fixed-point iterations

47

Supplementary material:
Fixed-point iterations and mu-calculus

49

Recap: Describing the labeling with set operations

 We need sets of states that have proper successor states
o E(p U q): “At least one successor state is labeled …”
o A(p U q): “All successor states are labeled …”

 Notation: If the set of states labeled with p is Z then
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z}

 i.e., at least one successor is in Z (already labeled)

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z}
 i.e., all successors are in Z (already labeled)

 Example: Iterative labeling with E(P U Q)
o Initial set: X0 = {s | QL(s)}

o Next iteration: Xi+1= Xi  (preE(Xi)  {s | PL(s)})

o End of iteration: If Xi+1= Xi, the set is not increased

States labeled so

far, plus …

… their predecessor states

that …

… are labeled

with P

50

Background

 Iteration steps on sets can be given as a mapping (function)
: 2S  2S
o Mapping from a set Xi to another set Xi+1: Xi+1= (Xi)
o The iteration ends when the set does not change:

It is a fixed point in the application of the mapping, Xi+1== Xi

 Definitions:
o Least fixed point: lfp (z) is the smallest zS,

for which fixed point is reached: (z)=z
o Greatest fixed point: gfp (z) is the biggest zS,

for which fixed point is reached: (z)=z

 Theoretical background (theorems):
o If S is finite then for monotonous  there exist lfp  and gfp 
o Computation of lfp: lfp (z)= i

i () thus i0: lfp (z)= i0 ()
o Computation of gfp: gfp (z)= i

i (S) thus j0: gfp (z)= j0 (S)

51

Mathematical theorems (1)

 Theorem: Sat(EF p)= lfp (z)

o where (z) = Sat(p)  preE(z) recap: EF(p)=p  EX EF(p)

o where preE(z) = {s | t: (s,t)R és tz}, as defined earlier

 i.e., the set of states from which there is transition to a state in z

 Applying the fixed point computation theorem: Union of sets

o z0= 

o z1= (z0) = Sat(p)  preE() = Sat(p)

o zi+1= (zi) = Sat(p)  preE(zi) = Sat(p)  {s | t: (s,t)R és tzi}

o until zi+1== zi and here zi = lfp (z) = Sat(EF p)

 Here the fixed point computation:
looking for paths backwards to initial states from states satisfying p

o First step: , from which Sat(p) is the first set

o Then stepping backward on transitions according to preE(z)

52

Computation of the iteration

z1 = Sat(p) preE(z1)

 Sat(p) is the result of the first iteration step

 Union with preE(z) “steps” backwards on paths,
looking for initial states for paths that lead to Sat(p)

53

(z) = Sat(p)  preE(z)

preE(preE(z1))

Mathematical theorems (2)

 Theorem: Sat(EG p) = gfp (z)
o where (z)= Sat(p)  preE(z) recap: EG(p)=p  EX EG(p)

o where preE(z)={s | t: (s,t)R és tz} as defined earlier

 The iteration: Intersection of sets
o z0= S

o z1= (z0) = (S) = Sat(p)  preE(S)

o zi+1= (zi)= Sat(p)  {s | t: (s,t)R és tzi}

o until zi+1== zi and here zi = gfp (z) = Sat(EG p)

 Here the fixed point computation: looking for paths on which
p is true, backwards to initial states from states satisfying p
o First step: S

o Then stepping backward on transitions according to preE(z)

 Sat(E(p U q)) computation is similar

54

Modal mu-calculus

 Syntax of mu-calculus on KTS:

 p::= P | Z | p | pp | [a]p | <a>p | Z.p | Z.p

 It contains directly the fixed point operators

o Z.p is the greatest fixed point (where Z is a set variable, p is function of Z)

• It is the biggest set S*S, that we get back when we compute p(Z) with the
interpretation that Z is S*

o Z.p is the least fixed point (where Z is a set variable, p is function of Z)

 Rule: Z shall occur in the scope of an even number of negations
o This guarantees that functions (for iteration) will be monotonous,

this way Sat(p) can be computed with iteration

 Expressive power is higher than CTL*
o If a temporal logic is covered by the mu-calculus, then its model checking is

possible by applying fixed-point iterations

 Worst case time complexity of checking: O(|S|2|p|a)
o Here a is the number of nested alternating (i.e., least / greatest) fixed point

operations („alternation depth”)

55

CTL and the modal mu-calculus

 In case of CTL, the alternation depth of the corresponding
mu-calculus formula is 1

o E.g., AG EF p = Z.(Y.(p  EX(Y))AX(Z))

o There is no dependence between the nested fixed point operations:
The “inner” fixed point formula does not depend on the variables of the
“outer” fixed point formula

o This way Sat(p) can be evaluated “from inside to outside”, computation of
the iterations belonging to the operators one by one

 In general case: There may be dependencies

o E.g., Z.Y.(Z  <a>Y), means that there is a path consisting of a and b
actions, where b occurs infinitely often

o There is mutual dependency between the “inner” and “outer” fixed point
formula

o The iterations depend on each other, new inner iteration shall be computed
in each step of the outer iteration

56

Summary

 Branching time temporal logics

 CTL*: Computational Tree Logic *
o Operators

o Syntax and semantics

 CTL: Computational Tree Logic
o Operators

o Syntax and semantics

oModel checking

 Outlook: Modal mu-calculus
o Fixed-point iterations

oMu-calculus operators

57

