Software Verification and Validation (VIMMDO052)

Formalizing and checking properties:
Temporal logics CTL and CTL*

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Formal verification: Goals

N\

“Informal”

“Informal”

[
design l properties
|
' ' '
|
Formal : Formalized
model \ properties

OK

/

|
l
l
l
l

Formal verification

- - - S S e

N\

Diagnostic trace

Overview

" Branching time temporal logics

= CTL*: Computational Tree Logic *
o Operators

o Syntax and semantics

= CTL: Computational Tree Logic
o Operators

o Syntax and semantics
o Model checking CTL

= Qutlook: Modal mu-calculus
o Operators

lllustration of linear and branching timelines

{Green} {Yellow} <{Red} {Red, Yellow}
sl ™ S2 ™ S3

\
Yellow}

{Blinking} {Bélyé}@\x
Branching

l[Red}

e

Linear @
1

{Green} {Yellow} {Red} {Red, Yellow}
O O O

Logical time on a time line (a concrete run)

{Green}

Logical time:
on branching

timelines (all
possible runs)

Recall: LTL operators on execution paths

Construction of formulas: p, g, 1, ...
= Atomic propositions (elements of AP): P, Q, ...

= Boolean operators: A, v, =, =
A: conjunction, v: disjunction, —: negation , =: implication
= Temporal operators: X, F, G, U informally:

o X p: “neXt p” o
p holds in the next state Xp O—Q@—) —O—(O—

o F p: “Future p”

p holds eventually FP O—O—) ».P o —>
on the path
o G p: “Globally p” p P p p P
p holds in all states P @—O0—0—0—0—
on the path

o pUqg:“pUntilg”

p p p p Q
p holds at least until g, PUQ O—0O—0—0C—0—
which holds on the path

Branching: Path quantifiers

In a given state,
we formulate properties on the outgoing paths
from the state:

" E p (Exists p): there exists at least one path o’
from the state for which p holds el

o Requirement on a single path 9\—’ ~
o Existential operator

= A p (for All p): for all paths from the state
p holds

o Requirement on all possible paths
o Universal operator

Branching time temporal logics

= CTL*: Computational Tree Logic *
o An arbitrary combination of
e path quantifiers (E, A),
* and path-specific temporal operators (X, F, G, U)
o E.g., EXXXp, A(Xp Vv Fq)

= CTL: Computational Tree Logic
o Specific CTL operators are formed:

* Each temporal operator (X, F, G, U) is directly
preceded by a path quantifier (E, A)

oE.g. AXp, E(p U Qq)

CTL*: Computational Tree Logic *

Operators
Syntax and semantics

CTL* operators (informal)

= Path quantifiers (interpreted over states):

o A: “for All futures”,
for all possible paths from the current state

o E: “Exists future”, “for some future”,
for at least one path from the current state

= Path-specific operators (interpreted over paths):
o X p: “neXt”, for the next state p holds
o F p: “Future”, for a state along the path p holds
o G p: “Globally”, for each state of the path p holds

o p Uqg: “p Until g”, for a state of the path g will hold,
and until then for all states p holds

CTL* formula examples
Alp=Fq
g holds. }
" A(p AGq)

For all possible paths: p holds (initially for the path)
and g holds continuously for the path.

if initially then eventually ...

For all paths,
p holds, ...

we have that ...

= E(XXXp Vv FQ)

There exists a path such that
o p holds for its fourth state, or
o eventually g holds

CTL* syntax

= State formulas: evaluated over states
o S1: an atomic proposition P is a state formula

o S2: for state formulas p and q,
—p and pAqg are state formulas

o $3: for a path formula p,
E p and A p are state formulas

= Path formulas: evaluated over paths
o P1: every state formula is a path formula

o P2: for path formulas p and q,
—p and pAq are path formulas

o P3: for path formulas p and q,
X p and p U g are path formulas

Well-formed formulas in CTL*: state formulas

CTL* semantics: Notation

= M= (S, R, L) Kripke structure

" 7T =(Sy, Sy, Sy,---) @ path of M where
so€l and Viz0: (s, s.,;)€R

O TU'= (S, Si,1, Siyo,---) the suffix of m from i

= M, |=p (for a path formula p):
in Kripke structure M, along path wt, p holds

= \M,s |=p (for a state formula p):
in Kripke structure M, in state s, p holds

CTL* semantics: State formulas

= S1:

M,s |= P iff PeL(s)
= S2:

M,s |=—=piffnot M,s |=p

M,s |=pAq iff M,s |=pand M,s |=q
= S3:

M,s |=E p (for path formula p)

iff there exists a path n=(s,, s, S,,...) in M such that
s=s, and M, [=p

M,s |= A p (for a path formula p)
iff for all paths n=(s,, s;, S,,...) in M such that
s=s, we have M, [=p

CTL* semantics: Path formulas

= P1:

M, |=p (for a state formula p) iff M, s, |=p
= P2:

M,T |=—=p iffnotM,nt |=p

M,t |=pAq iff M,mt |=pand M, |=¢

= P3:
M, t |=Xpiff M,t! |=p
M, T |=pU qiff

7 |= q for some j>0 and
n* | = p for all 0<k<;j

Background: Computational complexity of evaluation

= Worst-case time complexity:
at least O (|S|2x 2Irl)

o |S|? number of transitions in the model
(Kripke structure) in the worst case

o |p| number of temporal operators in the formula

= The exponential complexity similar to LTL
o Although temporal requirements tend to be short
" Goal: simplifying CTL*

o Should remain usable in practice

o Should reduce worst-case time complexity

CTL: Computational Tree Logic

Operators
Syntax and semantics

CTL operators (informal introduction)

Complex operators over states:

= EX p: there exists a path where p holds in the next state
= EF p: there exists a path where p holds in the future
= EG p: there exists a path where p holds globally

= E(p U q): there exists a path where p holds until g
eventually holds

= AX p: for all paths p holds in the next state
= AF p: for all paths p holds in the future
= AG p: for all paths p holds globally

= A(p U q): for all paths p holds until g eventually holds

lllustration for CTL operators (examples)

.5233\ §a\ s §a\

EXP EF P EG P

/? /2\
0003\3 Co 6o ud\

AF P AGP

CTL formulas (examples)

= AG EF Reset

Starting from any reachable state”,
a state can eventually be reached where Reset holds

= AG AF Terminated

Starting from any reachable state”,
a state will eventually be reached where Terminated holds

= AG (Request = AF Reply)

Starting from any reachable state”,
if we encounter a state where Request holds,
then a state will eventually be reached where Reply holds.

= AF AG Normal

Along all paths we will eventually reach a state
from which Normal will always hold

= EF AG Stopped

It is possible for the system to reach a state after which Stopped will
hold in all states

* AG refers to states reachable from the initial state

Example: Formalizing requirements (1)

= Two processes in a system: P1 and P2

= The local properties of processes:
o In critical section: C1, C2
o Not in critical section: N1, N2
o Waiting to enter critical section: W1, W2

= Atomic propositions:
AP ={C1, C2, N1, N2, W1, W2}

Example: Formalizing requirements (2)

= There is at most one process in the critical section:
AG (—(C1 A C2))

= |f a process is waiting to enter the critical section, then it
will eventually enter the critical section:
AG (W1 = AF(C1))
AG (W2 = AF(C2))

" Processes enter the critical section in alternating order;
one exits, then the other enters:
AG(C1 = A(C1 U (—C1 A A((—C1) U C2))))
AG(C2 = A(C2 U (—C2 A A((—C2) U C1))))

P1 enters the
critical section

P2 in critical P2 not in

section critical section

CTL syntax

State formulas: The same as in CTL*
o S1: an atomic proposition P is a state formula

o S2: for state formulas p and q,
—p and pAqg are state formulas

o S3: for a path formula p,
E p and A p are state formulas

Path formulas: Only a single rule

o PO: for state formulas p and q,
X p and p U g are path formulas

e Path formulas cannot be directly nested (only state formulas in PO)
e Path formulas are only used in rule S3:
Path formulas X p and p U g can only be under E and A

Derived operators and example formulas

= Derived operators of CTL
o EF p means E (true U p)
o AF p means A (true U p)
o EG p means —AF (—p)
o AG p means —EF (—p)

= CTL* but not CTL
o E(X Red v F Yellow)
Boolean operator between path formulas
o A(X G (Red A Yellow)), and E(XXX Red)
Nested path formulas

CTL formal semantics

= State formulas:
o Rules S1, S2, S3 (see CTL*) remain unchanged

= Path formulas:
o Rules P1, P2, P3 are replaced by a new rule PO:

PO: Only state formulas can be nested

o M, |= X p where p is a state formula iff
M,s; |[=p

o M, |=p U g where p,q are state formulas iff
M,s; | = q for some j=0 and
M,s, | = p for all 0<k<j

Here we have state formulas according to syntax rule PO

Background: Computational complexity of evaluation

= Worst case time complexity: O (|S|?x|p])

o |S|? number of transitions in the model
(Kripke structure) in the worst case

o |p| number of temporal operators in the formula
= Complexity is lower than in case of CTL*

o No 2!Pl factor
o Expressive enough for many practical requirements

e Safety requirements: AG

* Liveness requirements: EF, AF

= What is the cost?
o CTL* is more expressive than CTL

Expressive power

= A temporal logic is more expressive than another
temporal logic iff

o it is able to formalize all properties that the other logic
can,

o furthermore there is a property that can be expressed
in the logic but not in the other logic

= Experience so far:

o LTL can not consider branching
(implicitly ,for all paths”)

o CTL is more restricted than CTL¥,
hence it is less expressive

o CTL* also includes all properties expressible in LTL

Expressive power — Formally

" The expressive power of TL2 is at least as big as the
expressive power of TL1 iff

for all Kripke structure M and for all its states s:

Vp eTL1:
dgeTlL2: (M,s|=p & M,s|=0)

= [ff this relation holds mutually then TL2 and TL1 have the
same expressive power.

Expressive power of LTL, CTL, CTL*

Implicit A
operator for paths

AN

4 CTL* A
(A)LTL CTL

—
) ~ |

AF(p A Xq) AG EF p J

(implicit A

p
\operator) P /A(p U q) AF(p A Xqg) v AG EF p,
(implicit A EXXXp, AXG(pAQq))
\operator))\ -

Expressive power of CTL and (A)LTL (in more detail)

= Cannot be expressed in (A)LTL: AG EF p

o In LTL there are no “possibilities”

o In case of GF p: a state in which p holds shall be always
reachable, while AG EF p allows paths without p

. .l (. .
= Cannot be expressed in CTL: FG p (stability) m;;
o AF EG p not good, since p will not hold on all paths| potential
o AF AG p is too strict: P AG b
o o @ eren (™
SUTEEEE = o Bavd =

8
. By
P = A

FairCTL: Specifying "fair” paths

= Properties shall be checked on “fair” paths only

o Trivial counterexamples should be omitted:
e.g., all messages are lost, the system is always reset etc.

= Fair paths are characterized by a q path formula in the form of:
o GFr: The r state property occurs infinitely often (e.g., there is no starvation)
o FGr: The r state property hold almost everywhere (e.g., stability is reached)

= Modified path quantifiers for fair paths:
o A, :forall “fair” paths
o E,:there exists a “fair” path
= Semantics of the modified path quantifiers:
o A,F pmeansin CTL* A(g = F p)
o E,Gp meansin CTL* E(q A G p)
= Advantages of FairCTL:

o Checking is restricted to “fair” paths
o Complexity of checking FairCTL is less than the complexity of CTL*

CTL model checking

Semantics-based approach

Model based verification by model checking

Formal model: Formalized property:
Kripke structure M CTL property p

Model checker:
M,;s|=Dp

OK Diagnostic trace

Model checking approach

= Global model checking:

o In case of CTL formula p: computing Sat(p),
i.e., the set of states where p holds

o This way seSat(p) can be checked for the initial state

= Sat(p) is computed in an “incremental” way, labeling
the states with the sub-expressions of p

o First step: States are already labeled with the atomic
propositions of the formula

o Next step: Labeling with sub-expressions of p that are
composed by an operator from the existing labels

* E.g., if states are labeled with p and g then p U q label is assigned

o End of labeling: The original formula p is used as label

Labeling using sub-expressions

= Composition of a formula based on its syntactic structure
(from inside out):

AF (PAE (Q U R)) (QandRIabeIsare
- \\included in the KS
. \
\ E(_ U) composition is applied, }
E(Q U R) label will appear

AF _composition is applied,

AF(PAE(Q U R)) label will appear E/\E(Q U R) label will appear

|

A _ composition is applied, J

* Rules: Having labels p and g we establish where we have labels

—p, pAd, EXp, AXp, E(pUaq), AlpUaq)
* We progress “outwards” from the inside of a complex formula

Labeling rules: Based on the semantics (1)

= —P holds in states s where P¢L(s)

o Rule: —P label is applied on states s where
there is no label P

= pAg holds in states s where both p and q are true

o Rule: pAq label is applied on states s where
both p and q labels are already present

More complex rules for temporal operators

EX, AX refer to next states reachable from s
E(U), A(U) refer to paths reachable from s

Labeling rules: Based on the semantics (2)

= EX p holds in states s which have at least one next state in which
pis true

o Rule: State s is labeled with EX p, if it has at least one next state
which is already labeled by p

EXp
P ‘ P
O O

= AX p holds in states s if p is true in all next states of s

o Rule: State s is labeled with AX p, if all of its next states are already
labeled by p

Labeling rules: Based on the semantics (3)

= Where does E(p U g) hold?

o Decomposition: E(pUqg)=qv(p AEXE(pUQq))

o ,,Recursive” expression (in finite paths the last state needs specific care)
= Which states can be labeled with E(p U q)?

o If state s is already labeled with g, or

o if sislabeled with p, and there is at least one next state (cf. EX) that is

already labeled with E(p U q)

= An iterative labeling algorithm is derived:

o E(p U q) label is applied first on states that are already labeled with g

o Then their predecessor states are checked:
If label p is on a predecessor state then it is labeled with E(p U q)

O ...ahd so on until the set of labeled states increases

o This way those paths are explored that lead to state with label g through
states that are labeled with p

Example: Labeling with E(P U Q)

E(P U Q)

e g o
C{ {P.Q} F|rstStepQ/j s

E(P uaQ)

Kripke structure with
initial labeling

- P
e Exploiting: [Second stﬁ C{ { I?l}J Q)

E(PUQ) = P A EX
Qv (P AEXE(PUQ))

HPUQ) HPUQ
= |teration is finished
when the set of

P A EX E(PUQ)

labeled states does C{ P
P
not change [Third stepﬁ ha

Labeling rules: Based on the semantics (4)

= Where does A(p U g) hold?
o Decomposition: A(pUqg)=qvVv(p AAXA(p UQq))
o ,,Recursive” expression (on infinite paths)

= Which states can be labeled with A(p U g)?

o If state s is already labeled with g, or
o if sis labeled with p, and all its next states are already labeled with A(p U q)

= An iterative labeling algorithm is derived:
o A(p U q) label is applied first on states that are labeled with g

o Then their predecessor states shall be checked:
If label p is on a predecessor state and all its next states are already labeled
with A(p U g) then it is labeled with A(p U q)

o ...anhd so on until the set of labeled states can be increased

This way all operators included in the formal syntax are covered.

Describing the labeling with set operations

= We need sets of states that have proper successor states

o E(p U q): “At least one successor state is labeled ...”
o A(p U q): “All successor states are labeled ...”

= Notation: If the set of states labeled with p is Z then
o preg(Z) ={seS | there exists s, such that (s,s’)eR and s’ €Z}
i.e., at least one successor is in Z (already labeled)
o pre,(Z) ={seS | for all s’ where (s,s’)eR: s’ eZ}
i.e., all successors are in Z (already labeled)
= Example: Iterative labeling with E(P U Q)
o Initial set: X, =1{s | QelL(s)}
o Next iteration: X, ,=X U (prec(X) N {s | PeL(s)})

States labeled so ... their predecessor states ... are labeled
far, plus ... that ... with P

o End of iteration: If X.,,= X, the set is not increased

CTL model checking: Summary

= Global model checking:
o States are labeled with (sub)expressions that hold in that state
o More and more complex (sub)expressions are used as labels until the
original property formula is used as label
= Labeling with a (sub)expression:

o Based on the existing labels (assigned in previous steps) applying
labeling rules determined by the semantics of the operators

o In case of EX, AX: Checking and labeling predecessor states

o Incase of E(p U q), A(p U q): Iterative labeling on paths
* Initial set: Labeled on the basis of the g expressions
* Iteration: Labeling p predecessor states on the basis of the semantics
* End of iteration: The set of labeled states is constant

= Mathematical basis for model checking: Fixed-point iterations

Supplementary material:

Fixed-point iterations and mu-calculus

Recap: Describing the labeling with set operations

= We need sets of states that have proper successor states

o E(p U q): “At least one successor state is labeled ...”
o A(p U q): “All successor states are labeled ...”

= Notation: If the set of states labeled with p is Z then

o preg(Z) ={seS | there exists s, such that (s,s’)eR and s’ €Z}
i.e., at least one successor is in Z (already labeled)

o pre,(Z) ={seS | for all s’ where (s,s’)eR: s’ eZ}
i.e., all successors are in Z (already labeled)

ﬁ Example: lterative labeling with E(P U Q) \
o Initial set: X, =1{s | QelL(s)}
o Next iteration: X._,=X U (prec(X) N {s | PeL(s)})

—
States labeled so ... their predecessor states ... are labeled
far, plus ... that ... with P

\ o End of iteration: If X.,,= X, the set is not increased /

A e 50
mE TE

Background

= |teration steps on sets can be given as a mapping (function)
T: 2> —> 2°
o Mapping from a set X, to another set X,,;: X,,,= t(X))
o The iteration ends when the set does not change:
It is a fixed point in the application of the mapping, X.,,==

= Definitions:

o Least fixed point: Ifp t(z) is the smallest zcS,
for which fixed point is reached: t(z)=z

o Greatest fixed point: gfp t(z) is the biggest zcS,
for which fixed point is reached: t(z)=z

= Theoretical background (theorems):
o If Sis finite then for monotonous t there exist Ifp T and gfp t
o Computation of Ifp: Ifp 1(z)= LT (D) thus Fiy: Ifp 1(z)= t" (D)
o Computation of gfp: gfp t(z)= 7' (S) thus Jj,: gfp t(z)= " (S)

Mathematical theorems (1)

= Theorem: Sat(EF p)= Ifp t(z)

o where t(z) = Sat(p) U preg(z) recap: EF(p)=p Vv EX EF(p)

o where preg(z) = {s | 3t: (s,t)eR és tez}, as defined earlier

i.e., the set of states from which there is transition to a state in z

= Applying the fixed point computation theorem: Union of sets

0 z,= D

o z,= 1(z,) = Sat(p) L pre (D) = Sat(p)

o z;,,= T(z;) = Sat(p) U preg(z,) = Sat(p) U {s | 3t: (s,t)eR és tez}

o until z,,==z, and here z, = Ifp 1(z) = Sat(EF p)
= Here the fixed point computation:

looking for paths backwards to initial states from states satisfying p
o First step: &, from which Sat(p) is the first set

o Then stepping backward on transitions according to pre.(z)

Computation of the iteration

T(z) = Sat(p) L preg(z)
preE(preE(Zl)) preE(zl) Z1 = Sat(p)

= Sat(p) is the result of the first iteration step

= Union with preg(z) “steps” backwards on paths,
looking for initial states for paths that lead to Sat(p)

Mathematical theorems (2)

* Theorem: Sat(EG p) = gfp t(z)
o where t(z)=Sat(p) M prec(z) recap: EG(p)=p A EX EG(p)
o where preg(z)={s | 3t: (s,t)eR és tez} as defined earlier

= The iteration: Intersection of sets
O Z5=9S
o z,= t(zy) = ©(S) = Sat(p) M pre(S)
o z;,,= T(z;)=Sat(p) N {s | 3t: (s,t)eR és tez}
o until z,,==z, and here z, = gfp t(z) = Sat(EG p)
= Here the fixed point computation: looking for paths on which
p is true, backwards to initial states from states satisfying p
o First step: S

o Then stepping backward on transitions according to pre.(z)
= Sat(E(p U g)) computation is similar

Modal mu-calculus

= Syntax of mu-calculus on KTS:
p::=P | Z|—p | pap|[alp|<a>p | uZ.p | vip

= |t contains directly the fixed point operators
o VZ.p is the greatest fixed point (where Z is a set variable, p is function of 7)

* |tis the biggest set S*S, that we get back when we compute p(Z) with the
interpretation that Z is S*

o uZ.p isthe least fixed point (where Z is a set variable, p is function of 2)
= Rule: Z shall occur in the scope of an even number of negations

o This guarantees that functions (for iteration) will be monotonous,
this way Sat(p) can be computed with iteration

= Expressive power is higher than CTL*

o If atemporal logic is covered by the mu-calculus, then its model checking is
possible by applying fixed-point iterations

= Worst case time complexity of checking: O(|S|?x|p|?)

o Here ais the number of nested alternating (i.e., least / greatest) fixed point
operations (,,alternation depth”)

CTL and the modal mu-calculus

= |n case of CTL, the alternation depth of the corresponding
mu-calculus formulais 1
o E.g., AGEF p=vZ(uY.(p v EX(Y))AAX(Z))

o There is no dependence between the nested fixed point operations:
The “inner” fixed point formula does not depend on the variables of the

“outer” fixed point formula
o This way Sat(p) can be evaluated “from inside to outside”, computation of
the iterations belonging to the operators one by one

= |n general case: There may be dependencies
o E.g., vZ.uY.(Z v <a>Y), means that there is a path consisting of a and b
actions, where b occurs infinitely often
o There is mutual dependency between the “inner” and “outer” fixed point
formula
o The iterations depend on each other, new inner iteration shall be computed
in each step of the outer iteration

" Branching time temporal logics

= CTL*: Computational Tree Logic *
o Operators
o Syntax and semantics

= CTL: Computational Tree Logic
o Operators
o Syntax and semantics
o Model checking

= Qutlook: Modal mu-calculus

o Fixed-point iterations
o Mu-calculus operators

