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Formal verification: Goals 
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Overview 

 Branching time temporal logics 

 CTL*: Computational Tree Logic * 

o Operators 

o Syntax and semantics 

 CTL: Computational Tree Logic 

o Operators 

o Syntax and semantics 

o Model checking CTL 

 Outlook: Modal mu-calculus 

o Operators 
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Illustration of linear and branching timelines 

s5   

  

s 2   s1   s 3   s4   

{Green}   {Yellow}   {Red}   {Red, Yellow}   

{Blinking}   

  

s 2   s1 s 3   

{Green}   {Yellow}   {Red} 

s4   

  {Red, Yellow}     

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

Branching 

Linear 

Logical time on a time line (a concrete run) 

Logical time:  

on branching  

timelines (all 

possible runs) 

4 



Recall: LTL operators on execution paths 

Construction of formulas: p, q, r, ... 
 Atomic propositions (elements of AP): P, Q, ... 
 Boolean operators: , , ,    

 : conjunction, : disjunction, : negation , : implication 

 Temporal operators: X, F, G, U informally: 
o X p: “neXt p” 

p holds in the next state 
o F p: “Future p” 

p holds eventually  
  on the path 

o G p: “Globally p” 
p holds in all states  
  on the path 

o p U q: “p Until q” 
p holds at least until q,  
  which holds on the path 
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Branching: Path quantifiers 

In a given state,  
we formulate properties on the outgoing paths 
from the state: 

 

 E p (Exists p): there exists at least one path  
from the state for which p holds 
o Requirement on a single path 

o Existential operator 
 

 A p (for All p): for all paths from the state 
p holds 
o Requirement on all possible paths 

o Universal operator 

s 

s 
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Branching time temporal logics 

 CTL*: Computational Tree Logic * 
o An arbitrary combination of 

• path quantifiers (E, A), 

• and path-specific temporal operators (X, F, G, U) 

o E.g., EXXX p, A(X p  F q) 

 

 CTL: Computational Tree Logic 
o Specific CTL operators are formed: 

• Each temporal operator (X, F, G, U) is directly 
preceded by a path quantifier (E, A) 

o E.g. AX p, E(p U q) 
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CTL*: Computational Tree Logic * 

Operators 

Syntax and semantics 
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CTL* operators (informal) 

 Path quantifiers (interpreted over states): 

o A: “for All futures”, 
for all possible paths from the current state 

o E: “Exists future”, “for some future”,  
for at least one path from the current state 

 Path-specific operators (interpreted over paths): 

o X p: “neXt”, for the next state p holds 

o F p: “Future”, for a state along the path p holds 

o G p: “Globally”, for each state of the path p holds 

o p U q: “p Until q”, for a state of the path q will hold, 
and until then for all states p holds 
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CTL* formula examples 

   A(p  F q) 

10 

For all paths, 
we have that … 

if initially 
p holds, … 

then eventually … q holds. 

 A(p  G q) 

 For all possible paths: p holds (initially for the path)  
and q holds continuously for the path. 

 E(XXX p  F q)  

 There exists a path such that 

o p holds for its fourth state, or 

o eventually q holds 



CTL* syntax 

 State formulas: evaluated over states 
o S1: an atomic proposition P is a state formula 
o S2: for state formulas p and q, 

  p and pq are state formulas  
o S3: for a path formula p, 

  E p and A p are state formulas  
 

 Path formulas: evaluated over paths 
o P1: every state formula is a path formula 
o P2: for path formulas p and q, 

  p and pq are path formulas  
o P3: for path formulas p and q, 

  X p and p U q are path formulas  

 
Well-formed formulas in CTL*: state formulas 
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CTL* semantics: Notation 

 M = (S, R, L) Kripke structure 

  = (s0, s1, s2,…) a path of M where 
 s0∈I   and i≥0: (si, si+1)R 

o i = (si, si+1, si+2,…) the suffix of  from i 

 

 M, |= p (for a path formula p): 
in Kripke structure M, along path , p holds 

 

 M,s |= p (for a state formula p): 
in Kripke structure M, in state s, p holds 
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CTL* semantics: State formulas 

 S1:  

M,s |= P iff PL(s) 
 S2:  

M,s |= p iff not M,s |= p 

M,s |= pq iff M,s |= p and M,s |= q  
 S3:  

M,s |= E p (for path formula p)  
iff there exists a path =(s0, s1, s2,…) in M such that 
s=s0 and M, |= p 

M,s |= A p (for a path formula p)  
iff for all paths =(s0, s1, s2,…) in M such that 
s= s0 we have M, |= p 
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CTL* semantics: Path formulas 

 P1:  

M, |= p (for a state formula p) iff M, s0 |= p 

 P2:  

M, |= p    iff not M, |= p 

M, |= pq   iff M, |= p and M, |= q  

 P3:  

M,  |= X p iff M,1 |= p 

M,  |= p U q iff 

   j |= q for some j≥0 and 
  k |= p for all 0≤k<j 
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Background: Computational complexity of evaluation 

 Worst-case time complexity:  
at least O (|S|2  2|p|) 

o |S|2 number of transitions in the model  
      (Kripke structure) in the worst case 

o |p| number of temporal operators in the formula 

 The exponential complexity similar to LTL 

o Although temporal requirements tend to be short 

 Goal: simplifying CTL* 

o Should remain usable in practice 

o Should reduce worst-case time complexity 
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CTL: Computational Tree Logic 

Operators 

Syntax and semantics 
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CTL operators (informal introduction) 

Complex operators over states: 
 

 EX p: there exists a path where p holds in the next state 

 EF p: there exists a path where p holds in the future 

 EG p: there exists a path where p holds globally 

 E(p U q): there exists a path where p holds until q  
 eventually holds 

 

 AX p: for all paths p holds in the next state 

 AF p: for all paths p holds in the future 

 AG p: for all paths p holds globally 

 A(p U q): for all paths p holds until q eventually holds 
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Illustration for CTL operators (examples) 
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CTL formulas (examples) 

 AG EF Reset   
 Starting from any reachable state*, 

a state can eventually be reached where Reset holds 
 AG AF Terminated  

 Starting from any reachable state*, 
a state will eventually be reached where Terminated holds 

 AG (Request  AF Reply)  
 Starting from any reachable state*, 

if we encounter a state where Request holds, 
then a state will eventually be reached where Reply holds. 

 AF AG Normal  
 Along all paths we will eventually reach a state 

from which Normal will always hold 

 EF AG Stopped 
 It is possible for the system to reach a state after which Stopped will 

hold in all states 
 
* AG refers to states reachable from the initial state  
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Example: Formalizing requirements (1) 

 Two processes in a system: P1 and P2 

 The local properties of processes: 

o In critical section: C1, C2 

o Not in critical section: N1, N2 

o Waiting to enter critical section: W1, W2 

 Atomic propositions: 
AP = {C1, C2, N1, N2, W1, W2} 
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Example: Formalizing requirements (2) 

 There is at most one process in the critical section: 
 AG ((C1  C2)) 

 If a process is waiting to enter the critical section, then it 
will eventually enter the critical section: 

 AG (W1  AF(C1)) 
 AG (W2  AF(C2)) 

 Processes enter the critical section in alternating order; 
one exits, then the other enters:  

 AG(C1  A(C1 U (C1  A((C1) U C2)))) 
 AG(C2  A(C2 U (C2  A((C2) U C1)))) 
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CTL syntax 

State formulas: The same as in CTL* 
o S1: an atomic proposition P is a state formula 

o S2: for state formulas p and q, 
  p and pq are state formulas  

o S3: for a path formula p, 
  E p and A p are state formulas  

 

Path formulas: Only a single rule 

o P0: for state formulas p and q, 
  X p and p U q are path formulas  
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• Path formulas cannot be directly nested (only state formulas in P0) 
• Path formulas are only used in rule S3: 

Path formulas X p and p U q can only be under E and A 



Derived operators and example formulas 

 Derived operators of CTL 
o EF p means E (true U p) 

o AF p means A (true U p) 

o EG p means AF (p) 

o AG p means EF (p) 
 

 CTL* but not CTL 
o E(X Red  F Yellow)  

 Boolean operator between path formulas 

o A(X G (Red  Yellow)), and E(XXX Red) 

 Nested path formulas 
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CTL formal semantics 

 State formulas: 
o Rules S1, S2, S3 (see CTL*) remain unchanged 

 Path formulas: 
o Rules P1, P2, P3 are replaced by a new rule P0: 

 

    P0: Only state formulas can be nested 
o M, |= X p where p is a state formula iff 

  M,s1 |= p 

o M, |= p U q where p,q are state formulas iff 
  M,sj

 |= q for some j≥0 and 
  M,sk | = p for all 0≤k<j 

 

Here we have state formulas according to syntax rule P0 
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Background: Computational complexity of evaluation 

 Worst case time complexity: O (|S|2|p|) 

o |S|2 number of transitions in the model  
      (Kripke structure) in the worst case 

o |p| number of temporal operators in the formula 

 Complexity is lower than in case of CTL* 

o No 2|p| factor 

o Expressive enough for many practical requirements 

• Safety requirements: AG 

• Liveness requirements: EF, AF 

 What is the cost? 

o CTL* is more expressive than CTL 
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Expressive power 

 A temporal logic is more expressive than another 
temporal logic iff  
o it is able to formalize all properties that the other logic 

can, 

o furthermore there is a property that can be expressed 
in the logic but not in the other logic 

 Experience so far: 
o LTL can not consider branching  

(implicitly „for all paths”) 

o CTL is more restricted than CTL*,  
hence it is less expressive 

o CTL* also includes all properties expressible in LTL 
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Expressive power – Formally 

 The expressive power of TL2 is at least as big as the 
expressive power of TL1 iff 
for all Kripke structure M and for all its states s: 

 

 

 

 Iff this relation holds mutually then TL2 and TL1 have the 
same expressive power. 
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Expressive power of LTL, CTL, CTL* 

CTL* 

(A)LTL CTL 

AF(p  Xq) 
(implicit A 
operator) 

A(p U q) 
(implicit A 
operator) 

AG EF p  

AF(p  Xq)  AG EF p, 

EXXX p,   A(X G (p  q)) 

Implicit A 
operator for paths 
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Expressive power of CTL and (A)LTL (in more detail) 

 Cannot be expressed in (A)LTL: AG EF p 
o In LTL there are no “possibilities” 
o In case of GF p: a state in which p holds shall be always 

reachable, while AG EF p allows paths without p 

 Cannot be expressed in CTL: FG p (stability) 
o AF EG p not good, since p will not hold on all paths 
o AF AG p is too strict: 

p q p 

… 

… … 

… 

AF AG p 

… 

FG p 

… 

… 

OK! 

OK! 

There is 
always a 
potential 
path for 
which AG p 
does not 
hold 
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FairCTL: Specifying ”fair” paths 

 Properties shall be checked on “fair” paths only 
o Trivial counterexamples should be omitted:  

e.g., all messages are lost, the system is always reset etc. 

 Fair paths are characterized by a q path formula in the form of: 
o GF r: The r state property occurs infinitely often (e.g., there is no starvation) 

o FG r: The r state property hold almost everywhere (e.g., stability is reached) 

 Modified path quantifiers for fair paths: 
o Aq : for all “fair” paths 

o Eq : there exists a “fair” path 

 Semantics of the modified path quantifiers: 
o AqF p means in CTL* A(q  F p) 

o EqG p means in CTL* E(q  G p) 

 Advantages of FairCTL: 
o Checking is restricted to “fair” paths 

o Complexity of checking FairCTL is less than the complexity of CTL* 
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CTL model checking 

Semantics-based approach 
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Model based verification by model checking 

Formal model: 
Kripke structure M 

Formalized property: 
CTL property p 

Model checker: 
M,s |= p 

OK Diagnostic trace 

t f 
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Model checking approach 

 Global model checking: 

o In case of CTL formula p: computing Sat(p), 
i.e., the set of states where p holds 

o This way sSat(p) can be checked for the initial state 

 Sat(p) is computed in an “incremental” way, labeling 
the states with the sub-expressions of p 

o First step: States are already labeled with the atomic 
propositions of the formula 

o Next step: Labeling with sub-expressions of p that are 
composed by an operator from the existing labels 

• E.g., if states are labeled with p and q then p U q label is assigned 

o End of labeling: The original formula p is used as label 
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Labeling using sub-expressions 

 Composition of a formula based on its syntactic structure 
(from inside out): 

    AF ( P  E (Q U R)) Q and R labels are 
included in the KS 

E(_ U _) composition is applied, 
E(Q U R) label will appear  

_  _ composition is applied,  
PE(Q U R) label will appear 

AF _ composition is applied, 
AF(PE(Q U R)) label will appear 

• Rules: Having labels p and q we establish where we have labels 

p,   pq,   EX p,   AX p,   E(p U q),   A(p U q) 

• We progress “outwards” from the inside of a complex formula 
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Labeling rules: Based on the semantics (1) 

 P holds in states s where PL(s) 

o Rule: P label is applied on states s where  
there is no label P 

 pq holds in states s where both p and q are true 

o Rule: pq label is applied on states s where  
both p and q labels are already present 

 

More complex rules for temporal operators 

 EX, AX refer to next states reachable from s 

 E( U ), A( U ) refer to paths reachable from s 
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Labeling rules: Based on the semantics (2) 

 EX p holds in states s which have at least one next state in which  
p is true 
o Rule: State s is labeled with EX p, if it has at least one next state  

which is already labeled by p 
 

 

 

 
 AX p holds in states s if p is true in all next states of s 

o Rule: State s is labeled with AX p, if all of its next states are already 
labeled by p 
 

 

 

 

s 
p 

s 
p 

EX p 

s 
p 

s 

AX p 

p 

p 

p 

p 

p 
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Labeling rules: Based on the semantics (3) 

 Where does E(p U q) hold? 

o Decomposition: E(p U q) = q  (p  EX E(p U q)) 

o „Recursive” expression (in finite paths the last state needs specific care) 

 Which states can be labeled with E(p U q)? 
o If state s is already labeled with q, or 

o if s is labeled with p, and there is at least one next state (cf. EX) that is 
already labeled with E(p U q) 

 An iterative labeling algorithm is derived: 
o E(p U q) label is applied first on states that are already labeled with q 

o Then their predecessor states are checked:  
If label p is on a predecessor state then it is labeled with E(p U q) 

o … and so on until the set of labeled states increases 

o This way those paths are explored that lead to state with label q through 
states that are labeled with p 
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Example: Labeling with E(P U Q) 

 Iteration is finished 
when the set of 
labeled states does 
not change 

{P,Q} 

P P P 

Kripke structure with 
initial labeling 

{P,Q} 

P P P 

E(P U Q) First step: Q 

{P,Q} 

P P P 

E(P U Q) 

E(P U Q) 

Second step:  

P  EX 

{P,Q} 

P P P 

E(P U Q) 

E(P U Q) E(P U Q) 

Third steps:  
P  EX 
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• Exploiting: 
E(P U Q) =  
Q  (P  EX E(P U Q)) 



Labeling rules: Based on the semantics (4) 

 Where does A(p U q) hold? 

o Decomposition: A(p U q) = q  (p  AX A(p U q)) 

o „Recursive” expression (on infinite paths) 

 Which states can be labeled with A(p U q)? 
o If state s is already labeled with q, or 

o if s is labeled with p, and all its next states are already labeled with A(p U q) 

 An iterative labeling algorithm is derived: 
o A(p U q) label is applied first on states that are labeled with q 

o Then their predecessor states shall be checked:  
If label p is on a predecessor state and all its next states are already labeled 
with A(p U q) then it is labeled with A(p U q) 

o … and so on until the set of labeled states can be increased 

 

This way all operators included in the formal syntax are covered. 
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Describing the labeling with set operations 

 We need sets of states that have proper successor states 
o E(p U q): “At least one successor state is labeled …” 
o A(p U q): “All successor states are labeled …” 

 Notation: If the set of states labeled with p is Z then  
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z} 

 i.e., at least one successor is in Z (already labeled) 

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z} 
 i.e., all successors are in Z (already labeled) 

 Example: Iterative labeling with E(P U Q) 
o Initial set:   X0    = {s | QL(s)} 

o Next iteration:   Xi+1= Xi  (preE(Xi)  {s | PL(s)})  
 

 

 

o End of iteration: If Xi+1= Xi, the set is not increased 

States labeled so 

far, plus …  

… their predecessor states 

that … 

… are labeled 

with P 
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CTL model checking: Summary 

 Global model checking: 
o States are labeled with (sub)expressions that hold in that state 

o More and more complex (sub)expressions are used as labels until the 
original property formula is used as label 

 Labeling with a (sub)expression: 
o Based on the existing labels (assigned in previous steps) applying 

labeling rules determined by the semantics of the operators 

o In case of EX, AX: Checking and labeling predecessor states 

o In case of E(p U q), A(p U q): Iterative labeling on paths 

• Initial set: Labeled on the basis of the q expressions 

• Iteration: Labeling p predecessor states on the basis of the semantics 

• End of iteration: The set of labeled states is constant 

 Mathematical basis for model checking: Fixed-point iterations 
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Supplementary material:  
Fixed-point iterations and mu-calculus 
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Recap: Describing the labeling with set operations 

 We need sets of states that have proper successor states 
o E(p U q): “At least one successor state is labeled …” 
o A(p U q): “All successor states are labeled …” 

 Notation: If the set of states labeled with p is Z then  
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z} 

 i.e., at least one successor is in Z (already labeled) 

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z} 
 i.e., all successors are in Z (already labeled) 

 Example: Iterative labeling with E(P U Q) 
o Initial set:   X0    = {s | QL(s)} 

o Next iteration:   Xi+1= Xi  (preE(Xi)  {s | PL(s)})  
 

 

 

o End of iteration: If Xi+1= Xi, the set is not increased 

States labeled so 

far, plus …  

… their predecessor states 

that … 

… are labeled 

with P 
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Background 

 Iteration steps on sets can be given as a mapping (function) 
: 2S  2S 
o Mapping from a set Xi to another set Xi+1:   Xi+1= (Xi) 
o The iteration ends when the set does not change: 

It is a fixed point in the application of the mapping, Xi+1== Xi 

 Definitions: 
o Least fixed point:   lfp (z) is the smallest zS,  

for which fixed point is reached: (z)=z 
o Greatest fixed point:   gfp (z) is the biggest zS,  

for which fixed point is reached: (z)=z 

 Theoretical background (theorems): 
o If S is finite then for monotonous  there exist lfp  and gfp  
o Computation of lfp:  lfp (z)= i

i () thus i0: lfp (z)= i0 () 
o Computation of gfp:  gfp (z)= i

i (S) thus j0: gfp (z)= j0 (S) 
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Mathematical theorems (1) 

 Theorem: Sat(EF p)= lfp (z) 

o where (z) = Sat(p)  preE(z)  recap: EF(p)=p  EX EF(p)  

o where preE(z) = {s | t: (s,t)R és tz}, as defined earlier 

 i.e., the set of states from which there is transition to a state in z 

 Applying the fixed point computation theorem: Union of sets 

o z0=  

o z1= (z0) = Sat(p)  preE() = Sat(p) 

o zi+1= (zi) = Sat(p)  preE(zi) = Sat(p)  {s | t: (s,t)R és tzi} 

o until zi+1== zi and here zi = lfp (z) = Sat(EF p) 

 Here the fixed point computation: 
looking for paths backwards to initial states from states satisfying p 

o First step: , from which Sat(p) is the first set 

o Then stepping backward on transitions according to preE(z) 
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Computation of the iteration 

z1 = Sat(p) preE(z1) 

 Sat(p) is the result of the first iteration step 

 Union with preE(z) “steps” backwards on paths,  
looking for initial states for paths that lead to Sat(p) 
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(z) = Sat(p)  preE(z) 

preE(preE(z1)) 



Mathematical theorems (2) 

 Theorem: Sat(EG p) = gfp (z) 
o where (z)= Sat(p)  preE(z)   recap: EG(p)=p  EX EG(p) 

o where preE(z)={s | t: (s,t)R és tz} as defined earlier 

 The iteration: Intersection of sets 
o z0= S 

o z1= (z0) = (S) = Sat(p)  preE(S) 

o zi+1= (zi)= Sat(p)  {s | t: (s,t)R és tzi} 

o until zi+1== zi and here zi = gfp (z) = Sat(EG p) 

 Here the fixed point computation: looking for paths on which 
p is true, backwards to initial states from states satisfying p 
o First step: S 

o Then stepping backward on transitions according to preE(z) 

 Sat(E(p U q)) computation is similar 
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Modal mu-calculus 

 Syntax of mu-calculus on KTS: 

  p::= P | Z | p | pp | [a]p | <a>p | Z.p | Z.p  
 

 It contains directly the fixed point operators 

o Z.p  is the greatest fixed point (where Z is a set variable, p is function of Z) 

• It is the biggest set S*S, that we get back when we compute p(Z) with the 
interpretation that Z is S* 

o Z.p  is the least fixed point (where Z is a set variable, p is function of Z) 

 Rule: Z shall occur in the scope of an even number of negations 
o This guarantees that functions (for iteration) will be monotonous,  

this way Sat(p) can be computed with iteration 

 Expressive power is higher than CTL* 
o If a temporal logic is covered by the mu-calculus, then its model checking is 

possible by applying fixed-point iterations 

 Worst case time complexity of checking: O(|S|2|p|a) 
o Here a is the number of nested alternating (i.e., least / greatest) fixed point 

operations („alternation depth”) 
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CTL and the modal mu-calculus 

 In case of CTL, the alternation depth of the corresponding  
mu-calculus formula is 1 

o E.g., AG EF p = Z.(Y.(p  EX(Y))AX(Z)) 

o There is no dependence between the nested fixed point operations: 
The “inner” fixed point formula does not depend on the variables of the 
“outer” fixed point formula 

o This way Sat(p) can be evaluated “from inside to outside”, computation of 
the iterations belonging to the operators one by one 

 In general case: There may be dependencies 

o E.g., Z.Y.(<b>Z  <a>Y), means that there is a path consisting of a and b 
actions, where b occurs infinitely often 

o There is mutual dependency between the “inner” and “outer” fixed point 
formula 

o The iterations depend on each other, new inner iteration shall be computed 
in each step of the outer iteration 
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Summary 

 Branching time temporal logics 

 CTL*: Computational Tree Logic * 
o Operators 

o Syntax and semantics 

 CTL: Computational Tree Logic 
o Operators 

o Syntax and semantics 

oModel checking 

 Outlook: Modal mu-calculus 
o Fixed-point iterations 

oMu-calculus operators 
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