
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Model checking:
Introductory examples

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Formal verification: Goals

Formal model:
KS, LTS, TA

Formalized properties:
CTL

Formal verification:
Model checking

OK Diagnostic trace

t f

“Informal” design “Informal” properties

2

Example 1:
Mutual exclusion protocol

3

An engineering task

 Let us consider a concurrent (multi-process) system

 At most one process is allowed to access a shared
resource at a time (mutual exclusion is required)
o Example: Use of communication channel

o Access to resource: “Critical sections” in the programs;
at most one process is allowed to be in critical section

o The platform (OS, framework) does not give support:
no semaphore, no monitor, etc.

o Only shared variables can be used (atomic reading/writing)

 How to do it?
o Classical solutions (Peterson, Lamport, Fischer etc.)

o Custom algorithm

4

Algorithm for mutual exclusion

 2 processes, 3 shared variables (H. Hyman, 1966)
o blocked0: process 1 (P0) wants to enter

o blocked1: process 2 (P1) wants to enter

o turn: which process is allowed to enter (0 for P0, 1 for P1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section

blocked1 = false;

// Do other things

}

Is the algorithm correct?

P0 P1

5

The model in UPPAAL (version 1)

Declarations:
bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

Automaton P0:

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

6

Used modeling artefacts:
• Global variables
• Variables with restricted domain

The model in UPPAAL (version 2)

Declarations:
bool blocked[2];
int[0,1] turn;
P0 = P(0);
P1 = P(1);
system P0,P1;

Template P with parameter const int pid:

Used modeling artefacts:
• Global variables
• Variables with restricted domain
• Variables of array type
• Modeling common behavior with

templates
• Template instantiation with

parameters

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

7

Properties to verify in the example

 Mutual exclusion:
o At most one process is allowed to be in the critical

section

 The expected behavior is possible:
o For P0 it is possible to enter the critical section

o For P1 it is possible to enter the critical section

 Starvation freedom:
o P0 shall eventually enter the critical section

o P1 shall eventually enter the critical section

 Deadlock freedom:
o It is not possible that processes are just waiting

8

How to do model checking in UPPAAL?

 Atomic propositions:
o Values of variables can be referred: e.g., a!=1

• Using integer arithmetic and bit operations

o Control locations can be referred: e.g., Train.cross
• For parameterized processes: forall, exists quantifiers

o Deadlock (no action): Specific deadlock proposition

 Boolean operators:
o and, or, imply, not, ? : (this latter is the “if-then-else”)

 Temporal operators: Restricted CTL
o Notation: [] instead of G, and <> instead of F

• This way we have CTL operators: A[], A<>, E[], E<>
• [] is also interpreted on finite paths (till the last state)

o Temporal operators cannot be nested
• But there is a special operator: p-->q means A[] (p imply A<> q)

9

Configuring model checking in UPPAAL

 Set of properties can be provided
o Model checking can be initiated one-by-one

 Diagnostic trace (counter-example or witness) can be
generated
o Some, shortest, or fastest
o It is loaded into the simulator (for debugging)

 Search order in the state space:
o Depth-first, random depth-first
o Breadth-first

 State space representation:
o Compact data structure
o Under- / over-approximation
o Hash table size can be specified

10

UPPAAL: Formalizing requirements

 Mutual exclusion:

At most one process is allowed to be
in the critical section

A[] not (P0.cs and P1.cs)

 The expected behavior is possible:

o For P0 it is possible to enter the critical section: E<>(P0.cs)

o For P1 it is possible to enter the critical section: E<>(P1.cs)

 Starvation freedom:

P0 shall eventually enter the critical section: A<>(P0.cs)

P1 shall eventually enter the critical section: A<>(P1.cs)

 Deadlock freedom:

It is not possible that processes are just waiting: A[] not deadlock

11

Labels for critical
sections:
P0.cs and P1.cs

UPPAAL: Results of model checking

 Mutual exclusion is not ensured
o Counterexample: specific interleaving between the processes

(can be replayed in simulator)

 No deadlock

 The expected behavior is possible

 Starvation freedom cannot be checked without extending
the model with timing
o Trivial counterexample: Time elapses indefinitely in the initial

location
• Valid timed behavior in the model

• Enforcing progress: urgent location, or location invariants

o Starvation freedom?
• The system is not starvation free (cyclic counterexample exists)

12

Fixing the algorithm: Mutual exclusion ensured

Peterson’s algorithm

 For process P0
(P1 analogously):

Peterson:

while (true) {
blocked0 = true;
turn=1;
while (blocked1==true &&

turn!=0) {
skip;

}

// Critical section
blocked0 = false;
// Do other things

}

Hyman:

while (true) {
blocked0 = true;
while (turn!=0) {
while (blocked1==true) {

skip;
}
turn=0;

}
// Critical section
blocked0 = false;
// Do other things

}

13

Hyman’s algorithm

 For process P0
(P1 analogously):

Example 2:
Dice game

Dr. Tamás Bartha, BME

14

The problem

Game: Rolling a dice

 n players, 1 referee

 Each player rolls a dice once

 Then tells the result to the
referee

 The referee
o Collects all results

o Finds the largest result(s)

o Announces the winner(s)

 Players count the number of
their winning rounds

 The winner of the game is
who won 10 rounds

What do we have to solve:

 Generate random value

 Communication
o Value passing

o Broadcast communication

o Handling channel arrays

o Ordering of update sections

 Data structures

 Functions

 Concurrency and timing

 Model checking

15

Basic idea for the solution: Sketch of the models

16

Player

Referee

Possibilities for modelling transitions in UPPAAL

 Selection
o Non-deterministic choice

from the domain of a
variable

 Guard
o Enabling condition (logical

expression)

 Synchronization
o Synchronization on a

channel between process
“pairs”

 Update
o Expression evaluated

during the transition
(may have side effect)

• Evaluation order of expressions:

Select » Guard » Sync » Update

17

Solution: System and the player

Player:

Player(id_t pid)

int[0,wins] count = 0;

clock x;

System:

system Player, Referee;

const int players = 3;

const int wins = 10;

typedef int[0,players-1] id_t;

typedef int[0,6] dice_t;

struct {

id_t who;

dice_t what;

} roll;

id_t winner;

chan say;

broadcast chan announce;

18

Solution: Referee

Referee:

int [0,players] ans = 0;

dice_t rolls[id_t];

dice_t best = 0;

clock x;

void find_winner() {

int[0,players] i;

for (i = 0; i < players; i++) {

if (rolls[i] > best) {

best = rolls[i];

winner = i;

}

}

best = 0;

}

void reset_rolls() {

int[0,players] i;

for (i = 0; i < players; i++) rolls[i] = 0;

}

19

Player:

 In each execution, there is a player who is the winner of the game

o The count of the highest rolls reaches the value of wins

A<> exists (i : id_t) (Player(i).count == wins)

 Referee decides if all players made their rolls

o This happens at least once:

E<> Referee.Decision && forall (i : id_t) (Referee.rolls[i] > 0)

o This happens eventually on all paths:

A<> Referee.Decision && forall (i : id_t) (Referee.rolls[i] > 0)

 The system has no deadlock

o There is no such state, which has no enabled transition to another state

A[] not deadlock

Let’s check the behavior (dice_roll_1.0)

20

Let’s check the behavior (dice_roll_1.0)

21

Let’s check the behavior (dice_roll_1.0)

22

Deadlock-freeness: aborted
• Win counters may overflow in

the current model
• (We will not correct it now)

It is possible to reach a state
where every player has sent their
result and the referee has noted
them.

Let’s check the behavior (dice_roll_1.0)

23

Let’s check the behavior (dice_roll_1.0)

24

Lehetséges, hogy eljussunk
olyan állapotba, amelyben
minden játékos eljuttatta a
bíróhoz a saját eredményét, és
azokat a bíró feljegyezte.

But there is a path where no such
state is reachable!

• Trivial counterexample: Timing

• Other counterexample: Wrong
use of concurrency

Avoiding trivial counterexample by state invariants

 If we examine all possible paths
(e.g. A<>) then UPPAAL also
checks the possibility of not
leaving a state (if it is a valid
behavior)

 Solution: State (location) invariant

o Add a clock variable

o Initialize when entering the state

o Not leaving a state is valid until the
state invariant holds
(here in the example: for at most 1
time units)

25

Wrong concurrency – why?

26

Player(0) rollsPlayer(1) rolled

Player(0) will overwrite the shared variable Player(1) will “send” wrong one

Avoiding wrong concurrency (dice_roll_1.1)

 Problem: Concurrent activities of the players on shared variable
o Registering the results: writing to the roll shared variable
o Communication with the referee: using roll with the say! transition

 Potential solution:
o Implementing atomic “update and send” operations by introducing

a “committed” state (it must be left instantly)

27

Player(0): Player(1):

Special constructs that can be used (dice_roll_2.0)

28

 Monitoring an array of channels
o The receiving process checks all

channels “at once” using a Select
construct

o Synchronization is performed on
the channel that is ready

• Channel id can be used in the
Update section

o Model checker will examine all
potential synchronizations

 Using iterators in functions
void reset_rolls() {

for (i : id_t) rolls[i] = 0;

}

void find_winner() {

for (i : id_t) {

if (rolls[i] > best) {

best = rolls[i];

winner = i;

}

}

best = 0;

}

“Compact” model

• Using arrays of
channels

• Applying operator
“? :”

• Collecting results in a
single state

• Using iterators

• Reset state can be
omitted

29

Player:

Referee:

Other modeling advices and practices

 Order of evaluating arc expressions:
Select » Guard » Sync » Update

o On a synchronized arc, Update of the sender is evaluated before the Update
of the receiver (but not before the evaluation of the Guard of the receiver)

o Cannot test (in a guard) a global variable that was set by synchronized arc

 Using functions: Debugging is difficult

o Statement by statement simulation is not possible

 When verifying properties such as A<> q, clock variables must be
used to avoid the trivial counterexample (not leaving a state)

o Note: A<> is also included in “leads to”: p --› q means A[] (p imply A<> q)

o Do not forget to reset clock variables when necessary

 The model checker of UPPAAL cannot check deadlocks when using
channel or automata level priorities (these should be avoided)

30

