
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Model checking case study:
Scheduling of tasks

Dr. Tamás Bartha

1

Software Verification and Validation (VIMMD052)

Formal verification: Goals

Formal model:
KS, LTS, TA

Formalized properties:
CTL

Formal verification:
Model checking

OK Diagnostic trace

t f

“Informal” design “Informal” properties

2

The problem

 Modeling tasks and threads in a simple operating
system (OS)

o Tasks are executed in fixed length periods

o At the beginning of each period, tasks decide (non-
deterministically) if they “apply” for running or if they
“decline” running in that period

o Each task requires a given percentage of CPU capacity

o Limited number of OS threads can run tasks, one task
may be assigned to a single thread

o At the end of a period, tasks are stopped

o The process above is repeated

3

The main components (1/2)

 Tasks and their parameters

o Affinity: willingness of a task
to “apply” for running

o Demand: the task requires
(10*Demand) percent of CPU
processing capacity

o Priority: priority level of the
task (higher number means
lower priority)

Tasks

Scheduler

CPU

4

• The total CPU load (i.e., sum of the demands of the tasks that are
selected for running) must be at most 100%

• Within this limit, tasks have to be selected based on their priority

The main components (2/2)

 Scheduler
o Selects running tasks from those that

“applied” for running

o There is a limited number of threads
that can run tasks

o Each task is allocated to a separate
thread

o I.e., no more tasks can be running
than the number of threads

 CPU
o Capability to run threads

o Two states: active, inactive

o Threads can run in the active state

o Extension (later): A preemptive
interrupt can occur in the active state

5

Tasks

Scheduler

CPU

Threads

Basic operation of the system

 The tasks
o Generate a random number p between 0 and 10 when

leaving their initial state

o This is compared to their Affinity parameter:

• if p ≥ Affinity, then they apply for running

• otherwise they decline running and become inactive

 The scheduler
o Collects tasks that apply for running

o Processes applied tasks: orders the tasks descending by
priority, while observing maximum CPU load

o Assigns the selected tasks to threads and stores this
assignment in a global data structure

6

Let’s start modeling!

 States of a Task
o Ready: initial state

o Decision: decides on running

o Waiting: applied for running

o Idle: declined, inactive

o Allowed: selected for running

o Running: runs

 States of the Scheduler
o Init: initial state

o Collect: collects applications
and declined statuses

o Forbid: notifies rejected tasks

o Allow: notifies selected tasks

o Waiting: waiting for period end

7

Modeling random choice: Alternatives

 Simple solution
o UPPAAL chooses

randomly from enabled
transitions

o Is it what we want?
No, because
probabilities should be
proportional to the
affinities of tasks

 Correct solution
o Generate random value

using the select
construct of UPPAAL

8

Modeling random choice: The select construction

9

variable : type declaration in
the Select section will result
in assigning a random value
to the variable (from the set
given by the type of the
variable) when taking the
transition.
This variable can only be
used in other expressions of
the same transition!

The generated value was stored in a
local variable (here: threshold) thus it
can be used in the proceeding steps.

The purpose of the Committed state is
that the two operations should not be
interleaved by other operations.

Declarations in the model

Global

typedef int[0,10] percent;

const int Levels = 3;
typedef int[0,Levels-1] p_level;

const int Tasks = 5;
typedef int[0,Tasks-1] t_id;
t_id current_t;

typedef struct {
percent affinity;
percent demand;
p_level pri;

} task_t;

// affinity, demand, priority
const task_t task[Tasks] = {

…
…

};

Local (Task)

clock x;

meta bool split = false;

percent threshold;

10

How does counting the tasks work in the scheduler?

11

• We are staying in state Collect until each task either applied or declined

• Applied tasks are stored in a local array applicant[]

• Functions sort_tasks() and select_tasks() are selecting tasks when
entering the state Forbid

Collecting applied and declined tasks

Task Scheduler

12

Using synchronous communication
and maintaining a global variable.

It is guaranteed by the model
semantics that the update part of
the sender is executed first!

Collecting applied and declined tasks: other solution

Task Scheduler

13

Modeling synchronous
communication using an array
of channels.

Task id is available as channel id.

Why should we reset temporary variables?

14

 Temporary variable

o In the state space: A set of
trajectories for each potential
value

o Results in large state space

o Can be reduced by resetting
the variable

 Other issue: Interleaving

o Between two successive
transitions of an automaton, the
transitions of another concurrent
automata may occur

o It can be controlled by
committed states

Let’s get back to the model of the scheduler!

15

• Applied tasks are stored in a local array applicant[]

• Functions sort_tasks() and select_tasks() are selecting tasks

– Ordering tasks decreasing by their priority and CPU requirement,
while observing the limit of CPU load

Selecting and rejecting tasks

 sort_tasks()

o Uses a 2D array for ordering:
typedef struct {

int[0,Tasks] length;

t_id task[Tasks];

} buffer_t;

buffer_t buffer[Levels];

 select_tasks()

o Collects selected tasks
decreasing by priority until a
CPU load limit is reached

 Let the task parameters be:

// affinity, demand, priority
const task_t task[Tasks] = {
{0, 2, 0},
{3, 3, 1},
{3, 4, 1},
{3, 1, 1},
{3, 5, 2}
};

 Example applicants: 0, 2, 3, 4

 Example order (priority levels):

buffer[0] = [0]

buffer[1] = [2, 3]

buffer[2] = [4]

 Selected: 0, 2, 3

 Rejected: 4

16

Ordering tasks based on CPU requirement

void sort_tasks() {
int i, j, pri, pos;
for (i = 0; i < applied; i++) {
pri = task[applicant[i]].pri;
for (j = 0, pos = -1; j < buffer[pri].length && pos < 0; j++) {
if (task[applicant[i]].demand > task[buffer[pri].task[j]].demand)
pos = j;

}
insert_at(pri, pos < 0 ? buffer[pri].length : pos, applicant[i]);
applicant[i] = 0;

}
}

void insert_at(p_level pri, int[0,Tasks] pos, t_id tid) {
int i;
for (i = buffer[pri].length; i > pos; i--) {
buffer[pri].task[i] = buffer[pri].task[i - 1];

}
buffer[pri].task[pos] = tid;
buffer[pri].length++;

}

17

Selecting tasks while observing limits

void select_tasks() {

int i, pri;

percent p = 0; // Collecting demands

rejected = 0; // Number of rejected tasks

thread.num = 0;

for (pri = 0; pri < Levels; pri++) {

for (i = 0; i < buffer[pri].length; i++) {

if (p + task[buffer[pri].task[i]].demand <= 10 &&

thread.num < Threads) {

thread.task[thread.num++] = buffer[pri].task[i];

p = p + task[buffer[pri].task[i]].demand;

}

else applicant[rejected++] = buffer[pri].task[i];

buffer[pri].task[i] = 0;

}

buffer[pri].length = 0;

}

}

18

Notification about selection and rejection

Task Scheduler

19

Selected and rejected tasks are notified
individually on separate channels.

Temporary variables are reset.

The model already works (v1, without a CPU)

20

Scheduler

Task

Intermediate checking of the model

 We already have a functional system
o It is recommended to check this intermediate system

 Some requirements (with 4 threads):
1. The system contains no deadlocks.

2. It is possible that a task is rejected by the scheduler.

3. When selecting task 4, not all threads can be occupied.

4. It is possible that all threads are occupied.

5. If a task is running then a thread is occupied.

21

Extending the model with a CPU

 Starting signal is sent by the scheduler on a
broadcast channel; after this:
o Tasks selected to run change to running state
o The scheduler changes to idle state until the end signal
o The CPU changes to active state, threads and tasks

running are stored in a global data structure

 The CPU sends an end signal when leaving active
state; after this:
o The CPU changes to inactive state
o The scheduler changes to initial state, the list of

running threads and tasks is cleared
o Tasks also change to their initial state

22

Starting and stopping with CPU

const int Threads = 4;

typedef struct {

int[0,Threads] num;

t_id task[Threads];

} thread_t;

thread_t thread;

chan apply, decline;

urgent chan allow[Tasks], forbid[Tasks];

broadcast chan start, end;

chan suspend[Tasks];

void reset_threads() {

while (thread.num > 0)

thread.task[thread.num-- - 1] = 0;

}

23

Let’s make the model more advanced: Interrupts

 An interrupt can occur in the active state of the CPU
o Certain tasks can be interrupted (preemptive) thus suspended

o CPU load for serving the interrupt determines which tasks will be interrupted

o At least as many tasks must be suspended (starting with the lowest priorities),
that result in enough CPU capacity for the interrupt
(the CPU requirements of the interrupt and the remaining tasks must be at
most 100%)

• The CPU selects the tasks to be suspended

• It also notifies the suspended tasks

• These tasks change to suspended state

o After the interrupt

• The CPU notifies the previously interrupted tasks

• These tasks change to running state

• The CPU also changes to running state

24

Modeling an interrupt (v2)

 Tasks are suspended by function backup_threads(), and restored
by function restore_threads()

 Tasks are notified individually on separate channels suspend[]
about suspending and restoring

25

Selecting tasks for suspending

void backup_threads() {

int i, p;

t_id tid;

for (i = 0, p = 0; i < thread.num; i++)

p += task[thread.task[i]].demand; // Collecting demands

buffer.length = 0;

for (i = 0; i < thread.num; i++) {

if (p + i_demand > 10) { // Demand over limit

tid = thread.task[thread.num - i - 1];

buffer.task[buffer.length++] = tid; // From thread to buffer

thread.task[thread.num - i - 1] = 0;

p -= task[tid].demand;

}

}

thread.num -= buffer.length;

}

26

Even more advanced: Overdue tasks

 When tasks are suspended for too long, they will
be overdue and they cannot be completed in the
current period

 Such overdue tasks will try to continue running in
the next period

 This is modeled by moving to the state where they
surely apply for running (after the end signal)

o I.e., they skip the random choice of applying or
declining

27

Extending the model of a task with overdue

28

Overdue tasks must also receive
messages on channels!

A threshold of 10 ensures application

We must introduce time limits

 A task has the following time

limits

o Clocks of the selected tasks, the

scheduler and the CPU start at the

same time

o The CPU can be active for at most 4

time units

o An interrupt can occur between

the 1st and 2nd time units

o The interrupt must last at most

until the 3rd time unit

o Suspended tasks become overdue

after the 2nd time unit

29

Time limits in the model

30

Task

CPU

We are ready!

31

Task

Scheduler

CPU

Requirements to be verified (examples)

1. The model is deadlock free.

2. It is possible that an applied task has to be rejected.

3. It is possible that all threads are busy, i.e., maximal number of tasks
are running.

4. If a task is running, the number of busy threads in the global data
structure is greater than 0.

5. It is possible that the CPU suspends more than 2 threads due to an
interrupt.

6. There is an execution path where no task is suspended in all of the
periods, but it is not possible for all paths, i.e., there is at least one
path where at least one task is suspended at least once.

7. It is not possible that a task is in suspended state after the 3rd time
unit.

32

Temporal logic expressions verified

33

1.

2.

3.

4.

5.

6.

7.

