Software Verification and Validation (VIMMD052)

Formal verification of time-dependent behavior

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Motivation: Verification of real-time controllers

- Controllers: Time-dependent, state-based, event driven behavior
 - Time may be spent in given states
 - Conditions (guards) of transitions refer to time
 - Typical implementation: Timers measuring time by counting clock ticks
 - Actions to reset timers
- Typical properties to be checked
 - Satisfying deadlines:
 Reaching a given state in a given time interval
 - E.g., on request, a reply is received in (given) time
 - E.g., message that was sent is received in favorable time
 - Satisfying safety properties in given time interval:
 A property holds in each state that is reachable in a given time interval
 - E.g., the behavior is safe during a mission

Formalizing the properties

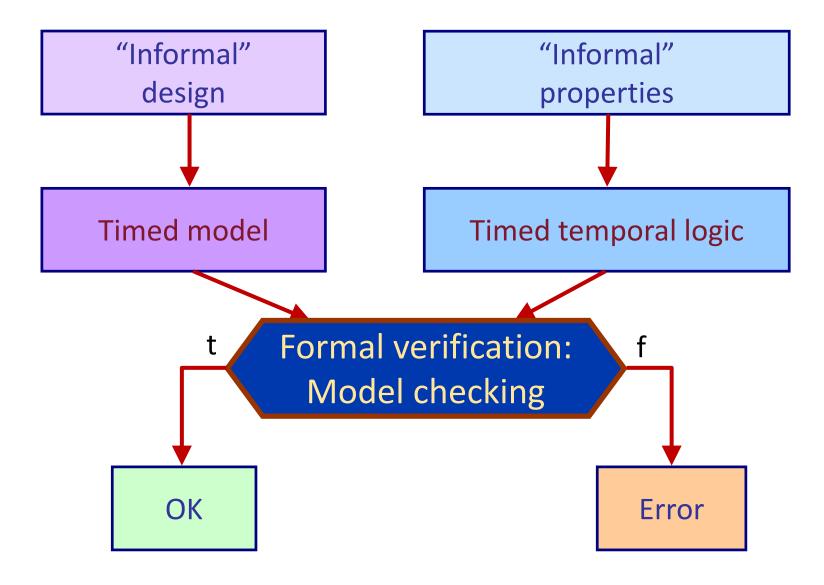
Timed temporal logics ("real-time" logics):

- Timing related requirements in real-time systems
 - The properties refer to clock variables
 - Handling of time intervals

Other extensions: Stochastic logics

- Probability and timing related requirements:
 - E.g.: if the current state is Error then the probability
 that this condition holds after 2 time units as well, is less than 0.3
- Extension of CTL:
 - Interpreted on Continuous-time Markov chains (not on Kripke structures)
 - Probability criteria for state reachability (steady state), path execution
 - Timing criteria (time intervals) for operators X and U

Goal: Formal verification of timed properties



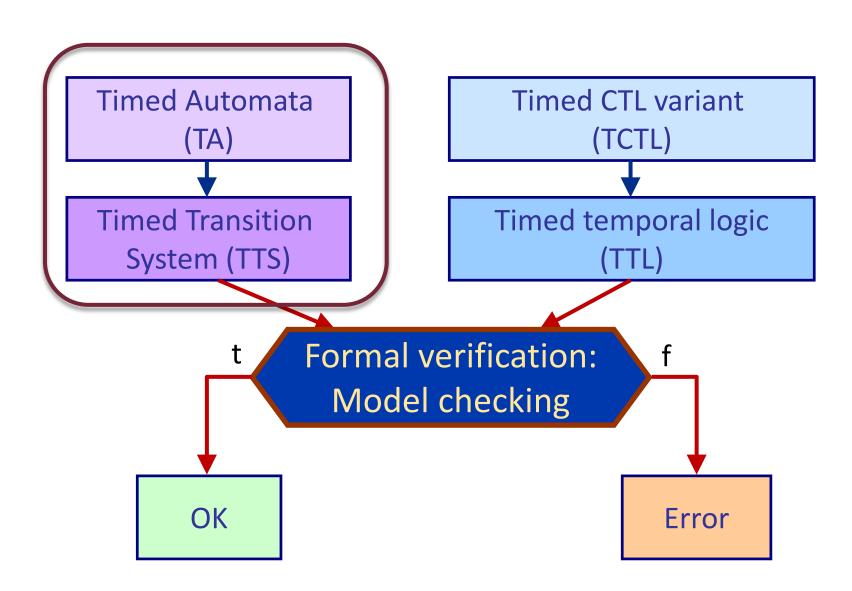
The modeling approach

- "Engineering" model → Low-level formal model
 - The mapping to low-level formal model gives formal semantics to the engineering model
 - Model checking is performed on the formal model
- Similar approach:
 - UML statecharts → Kripke structure (KS)
 - Checking CTL properties on KS
- Model checking timed properties on timed model:
 - Timed Automata (TA) → Timed Transition System (TTS)
 - Timed CTL (TCTL) variant → Timed Temporal Logic (TTL)

Models for time-dependent behavior

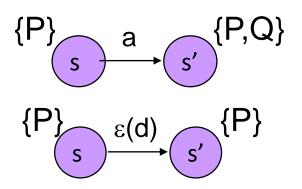
Timed Transition Systems
Timed Automata

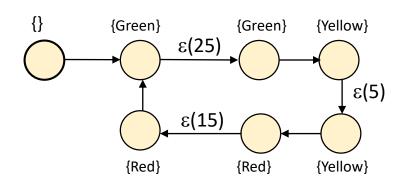
Overview of the approach



Low-level model: Timed Transition System (TTS)

- Notation for properties of states and transitions:
 - Atomic propositions: AP = {P, Q, ...}
 - Atomic actions: Act = {a, b, c, ...}
 - Delay actions: $\Delta = \{ \varepsilon(d) \mid d \in R_{\geq 0} \}$
- Definition of TTS: TTS = (S, s_0 , \rightarrow , V) where
 - S set of states
 - s₀ initial state
 - $\rightarrow \subseteq S \times L \times S$, where $L \in Act \cup \Delta$ (Δ delay action is included)
 - V: $S \rightarrow 2^{AP}$ labeling of states





Engineering model: Timed Automaton (TA)

- Automaton (states, transitions) + clock variables
 - Concurrent (system) clocks
 - These are increased with the same frequency (rate)
 - The clock value can be inspected in guards and invariants
 - The clocks can be reset in actions, independently from each other
- Notation for clocks:
 - $C = \{x, y, z, ...\}$ clocks
 - B(C) expressions on clocks, $g \in B(C)$ is a clock expression
 - Syntax: g ::= x~n | x-y~n | g ∧ g
 where ~ ∈ {≤, ≥, ==, <, >},
 and n non-negative integer (constant)

Formal definition of Timed Automaton

- $TA = (N, I_0, E, Inv, V)$ with Act, AP, C where
 - N control locations (will be part of the state)
 - $l_0 \in \mathbb{N}$ initial location here the value of clocks is 0
 - $E \subseteq N \times B(C) \times Act \times 2^{C} \times N$ set of edges, where an edge is

$$l \xrightarrow{g,a,r} l'$$

where

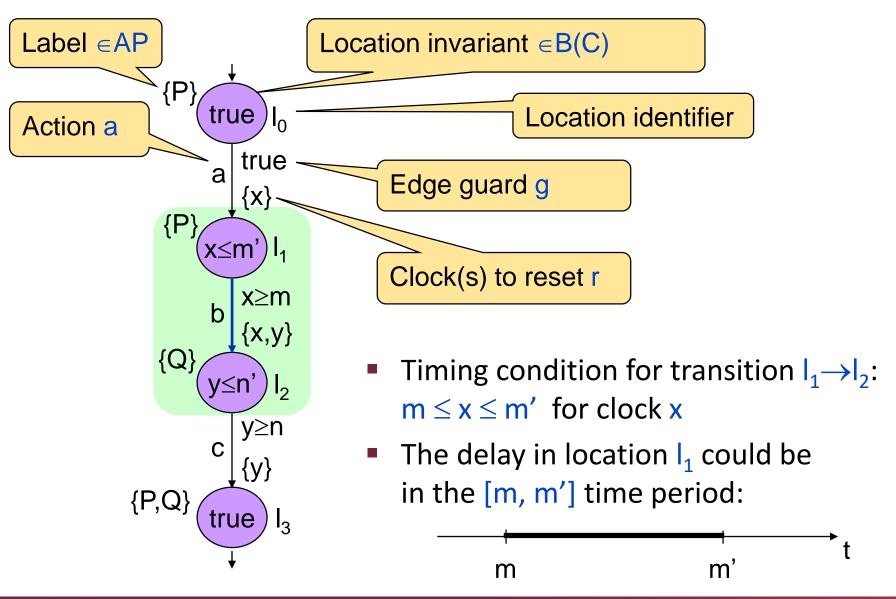
• $g \in B(C)$: clock expression – guard condition

• a ∈ Act: action — activity

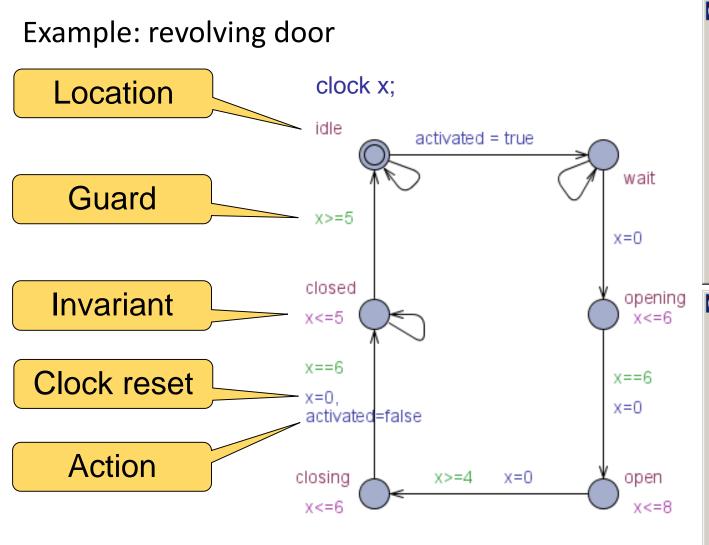
• $r \in 2^{C}$: clock set — clocks that are reset

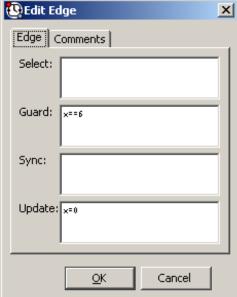
- Inv: $N \rightarrow B(C)$ clock invariants
 - Limiting the time spent in a control location
- V: $N \rightarrow 2^{AP}$ labeling (local conditions in control locations)

Example: Notations in a TA model



Recap: Timed automaton in UPPAAL





Informal semantics of a Timed Automaton

- Initial state:
 - Initial location is active, all clocks are set to 0
- Delay:
 - The values of clocks are increased (with the same rate)
 - The maximum time that can be spent in a control location is determined by the location invariant
- Firing of a transition:

- Transition (on an edge) is enabled if
 - Source location is active
 - Guard condition is satisfied
 - Clock resets satisfy the invariant of the target location
 - Synchronization (if any see later) is possible
- Transition that is enabled may fire (random selection)
 - Action (variable assignment) is executed
 - Clocks that were reset become 0
 - The target location of the edge becomes active

Formal semantics of TA: Notations

- Notations for formalizing the semantics:
 - u: $C \rightarrow N$ clock valuation
 - u(x) is the value of clock x
 - u+d increasing the clock valuation for all clocks by d
 - The new value of clock x is u(x)+d
 - uv: merging clock valuations for sets of clocks, where
 u and v are clock valuations for independent K and C clock sets: C∩K=0
 - uv(x)=u(x) if $x \in C$
 - uv(x)=v(x) if $v \in K$
 - $[C'\rightarrow 0]u$ resetting: for all clocks $x\in C'$ the valuation becomes 0, otherwise remains the same
 - g(u) is the evaluation of a guard g in case of valuation u
- State of TA: (I, u) control location and clock valuation
 - Valuation of integer variables is similar (not given here separately)

Formal semantics of TA: Mapping to TTS

- The semantics of a TA is a TTS=(S, s_0 , \rightarrow , V) where
 - S set of states, where each state is in form (I,u)
 - \circ s₀ = (I_0 , u_0) initial state
 - $\circ \rightarrow \subseteq S \times L \times S$ transitions are defined in the following way:
 - action $(l,u) \rightarrow a(l',u')$ is possible, if there exist r and g such that

```
| \frac{| - g(a, r)|}{| - g(u)|} |  edge exists between the locations, | g(u)| guard evaluates to true, | u' = [r \rightarrow 0]u| clock resets occur
```

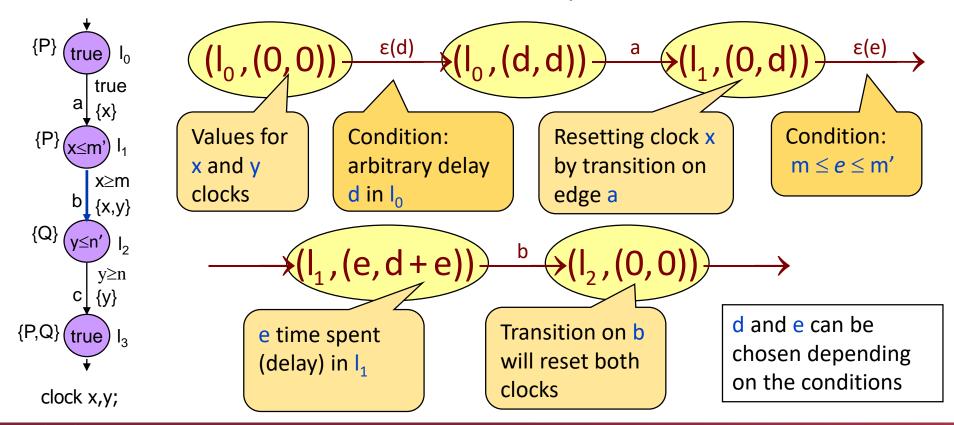
• delay $(l,u) \rightarrow^{\epsilon(d)} (l',u')$ is possible, if

```
I = I' control location does not change,
u' = u + d time spent is d,
Inv(I,u') clock invariant holds
```

 \circ V(I,u) = V(I) is the labeling of states

Example of the formal semantics of TA

- The semantics of a TA determines a set of TTS
 - Guards and invariants make various delays possible: possible delays are in (multidimensional) ranges
- The TTS is defined in case of the example TA as follows:

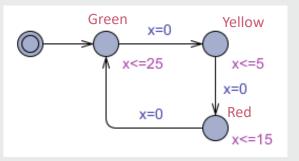


Summary: Formal semantics of TA

Timed Automaton (TA)

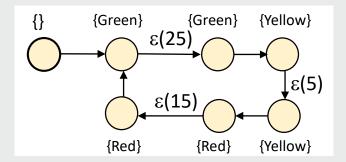
Mapping

Timed Transition System (TTS)



 $TA=(N, I_0, E, Inv, V)$, where

- Set of control locations: N
- Initial control location: I₀
- Edges with guards, actions and clocks resets:
 - $E \subseteq N \times B(C) \times Act \times 2^C \times N$
- Location invariants: Inv: L→B(C)
- Location labeling: V: $N \rightarrow 2^{AP}$



TTS = (S, s_0, \rightarrow, V) where

- Set of states: S as (I,u)
- Initial state: s₀
- Transitions: $\rightarrow \subseteq S \times A \times S$, $A = Act \cup \{\epsilon(d) \mid d \in \Re_{\geq 0}\}$
 - Action transitions: Act labels
 - Delay transitions: $\varepsilon(d)$ labels
- Labeling: V: S→2^{AP}

Composition of Timed Automata

- Composition of TA: Network of automata
 - Synchronization among automata
 - Transitions executed simultaneously (rendezvous)
 - Synchronous communication: Sending and receiving on a channel
 - Definition of the composition (synchronization)
 - Which are the transitions that are executed simultaneously?
 - Description: selected by an f synchronization function, that is defined on actions (this way implicitly on transitions)
 - Example: c! are c? are synchronized, f(c!, c?)=0 corresponding transitions are executed simultaneously, resulting in "no action"
 - TA₁ | TA₂ composition:
 - Its semantics is given as a TTS ← derived from composition of TTSs
 - Before that: Let us define the composition of TTSs

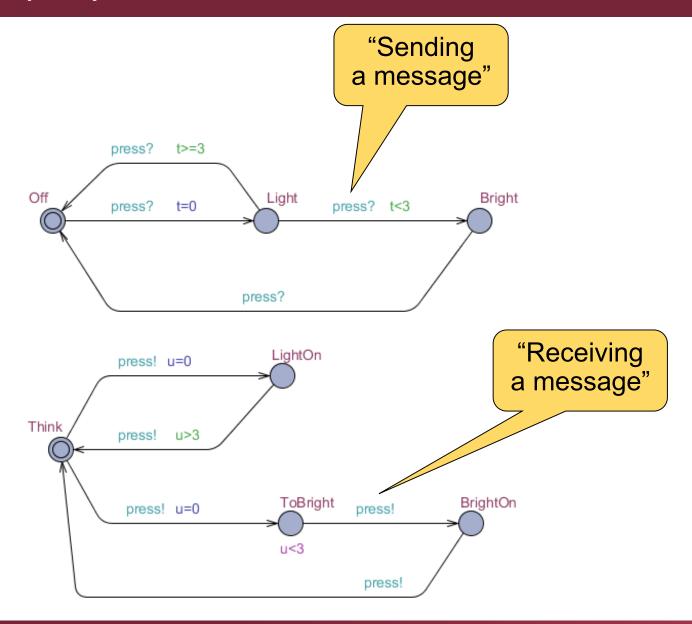
Recap: Synchronization in UPPAAL

Declarations:

clock t, u; chan press;

Switch:

User:



Background: Parallel composition of TTSs

- Parameter: synchronization function f
 - f: $(Act \cup \{0\}) \times (Act \cup \{0\}) \rightarrow Act \cup \{0\}$ where 0 denotes a missing action (also when no transition is taken)
- Definition: Composition TTS₁ |_f TTS₂ = TTS₀,

```
where TTS_1=(S_1, s_{1,0}, \rightarrow_1, V_1) and TTS_2=(S_2, s_{2,0}, \rightarrow_2, V_2) resulting in TTS_0=(S, s_0, \rightarrow, V)
```

- $(s_1 |_f s_2) \in S$ (pairs of states are composed)
- $s_0 = (s_{1.0} |_f s_{2.0}) \in S$ (initial state)
- \rightarrow is defined inductively (transitions in TTS₀):
 - action $(s_1 \mid_f s_2) \rightarrow^e (s'_1 \mid_f s'_2)$ if $s_1 \rightarrow^a_1 s'_1$ and $s_2 \rightarrow^b_2 s'_2$ and f(a,b)=e
 - delay $(s_1 \mid_f s_2) \rightarrow^{\epsilon(d)} (s'_1 \mid_f s'_2)$ if $s_1 \rightarrow^{\epsilon(d)} s'_1$ and $s_2 \rightarrow^{\epsilon(d)} s'_2$
- $V(s_1 \mid_f s_2) = V_1(s_1) \cup V_2(s_2)$ (union of labeling)

Semantics of the parallel composition of TA

- Notation: TA₁ | TA₂ network of automata
- Semantics of $TA_1 \mid_f TA_2$ is a $TTS_0 = TTS_1 \mid_f TTS_2$ where
 - Semantics of TA₁ is TTS₁, semantics of TA₂ is TTS₂
 - TA₁ |_f TA₂ is not an automaton, but TTS₁ |_f TTS₂ is a TTS
 - Note: It is possible to construct such an $TA_1 \otimes TA_2$ product automation, that for the semantics of $TA_1 \otimes TA_2$:

 TTS $TA_1 \otimes TA_2 \simeq TTS_1 \mid_f TTS_2$, i.e., these are bisimulation equivalent (the definition of bisimulation: see later)
- The f synchronization function in case of UPPAAL TA:
 - f(a!,a?)=0 synchronized actions
 (a! "sending" and a? "receiving")
 - f(a,0)=a action of the first automaton only
 - f(0,b)=b action of the second automaton only

Summary: Semantics of the parallel composition of TA

Network of timed automata $TA_1 \mid_f TA_2$

Defining synchronized actions:

f:
$$(Act \cup \{\}) \times (Act \cup \{\}) \rightarrow Act$$

• TA₁ semantics:

$$TTS_1 = (S_1, S_{1,0}, \rightarrow_1, V_1)$$

• TA₂ semantics:

$$TTS_2 = (S_2, S_{2,0}, \rightarrow_2, V_2)$$

Mapping

Timed transition system TTS₀ =TTS₁ |_f TTS₂

$$TTS_0 = TTS_1 \mid_f TTS_2 = (S, s_0, \rightarrow, V)$$
, where

- States: (s_1, s_2) pairs, $s_1 \in S_1$, $s_2 \in S_2$
- Initial state: $s_0 = (s_{1,0}, s_{2,0})$
- Transitions: → defined as:
 - Action transition: $(s_1, s_2) \rightarrow e (s_1', s_2')$ if $s_1 \rightarrow a_1 s_1'$ and $s_2 \rightarrow b_2 s_2'$ and f(a,b)=e
 - Delay transition: $(s_1, s_2) \rightarrow^{\epsilon(d)} (s_1', s_2')$ if $s_1 \rightarrow^{\epsilon(d)} s_1'$ and $s_2 \rightarrow^{\epsilon(d)} s_2'$
- Labeling of states:

$$V(s_1, s_2) = V_1(s_1) \cup V_2(s_2)$$

Strange behavior of timed automata

Time convergence

Timelock

Zenoness

Overview

- Strange behavior: "Unrealistic" execution paths, that may complicate the model checking
 - Time convergence: Infinite sequence of delays converges towards a constant delay
 - Timelock: Time cannot progress to infinity
 - Zenoness: Performing infinitely many actions in finite time
- Handling these paths:
 - Time convergent paths must not be generated as counterexamples by model checking (these are not "fair" paths)
 - Timelock and zenoness can be avoided by proper construction of the model (imposing delays)

Background: Zeno paradox and convergent series

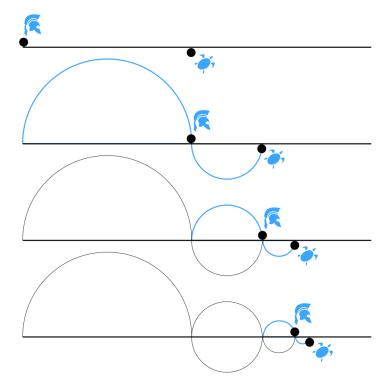
Zeno paradox: Race of Achilles

- The quicker runner (Achilles) gives the slower runner (tortoise) a head start
- In the race, the quicker runner can never overtake the slower
 - The quicker must first reach the point where the slower started
 - In the meantime the slower moved along
 - And so on, so that the slower always holds a lead

Convergent series (in mathematics):

• Sequence of infinite partial sums has a finite limit: $L = \sum_{n=0}^{\infty} a_n$

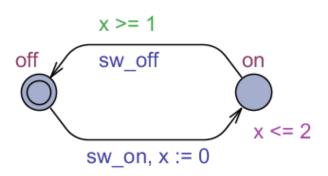
Example: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots$



From wikipedia: https://en.wikipedia.org/wiki/Zeno%27s_paradoxes

Time convergence

Example automaton:



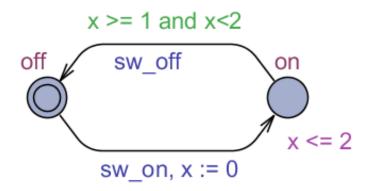
Example path in its TTS: valid but not "realistic"

$$\langle off, 0 \rangle \xrightarrow{\epsilon(1/2)} \langle off, 1-2^{-1} \rangle \xrightarrow{\epsilon(1/4)} \langle off, 1-2^{-2} \rangle \xrightarrow{\epsilon(1/8)} \langle off, 1-2^{-3} \rangle \dots$$

- Time convergent path (in general):
 - Infinite sequence d₁, d₂, ... of delays,
 where d₁+d₂+... converges to d (constant)
- Time divergent path:
 - The sum of delays converges to infinity

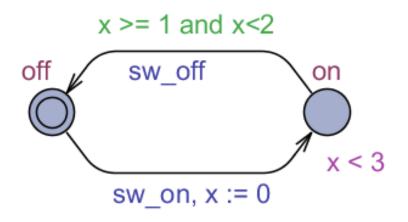
Timelock

- A location contains a timelock if there is no time divergent path from that location
 - There is no path on which the time can progress to infinity
 - Terminal location is not necessarily a timelock
 - If location invariant is true then the time can progress in that location to infinity
- Example automaton with timelock:
 - (on, x=2) is reachable, and there is no divergent path



Example: Timelock with time convergent path

Example automaton:

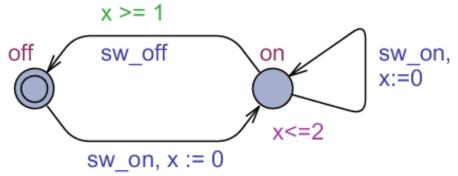


- \circ In its TTS (on, d) is timelock if $2 \le d < 3$
- Time convergent path to timelock (series of delays):

$$\langle on, 2 \rangle \langle on, 2.9 \rangle \langle on, 2.99 \rangle \langle on, 2.999 \rangle \langle on, 2.9999 \rangle \dots$$

Zenoness

- Zeno path:
 - Time convergent, but at the same time infinitely many a∈Act actions can be executed
- Example automaton:



Zeno paths:

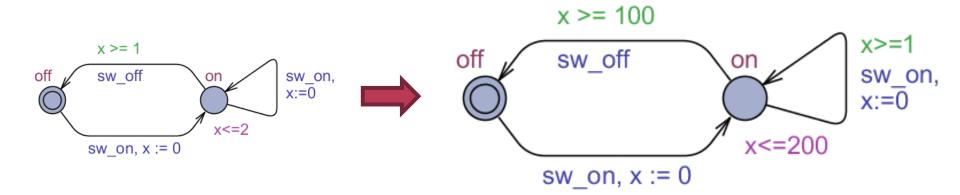
sw_on loop without delays

$$\begin{split} &\langle \mathit{off}\,,0\rangle \xrightarrow{\mathit{sw_on}} \langle \mathit{on}\,,0\rangle \xrightarrow{\mathit{sw_on}} \langle \mathit{on}\,,0\rangle \xrightarrow{\mathit{sw_on}} \langle \mathit{on}\,,0\rangle \xrightarrow{\mathit{sw_on}} \ldots \\ &\langle \mathit{off}\,,0\rangle \xrightarrow{\mathit{sw_on}} \langle \mathit{on}\,,0\rangle \xrightarrow{0.5} \langle \mathit{on}\,,0.5\rangle \xrightarrow{\mathit{sw_on}} \langle \mathit{on}\,,0\rangle \xrightarrow{0.25} \langle \mathit{on}\,,0.25\rangle \xrightarrow{\mathit{sw_on}} \ldots \end{split}$$

sw_on loop with delays but their sum converges to 1: 0.5 + 0.25 + 0.125 + ...

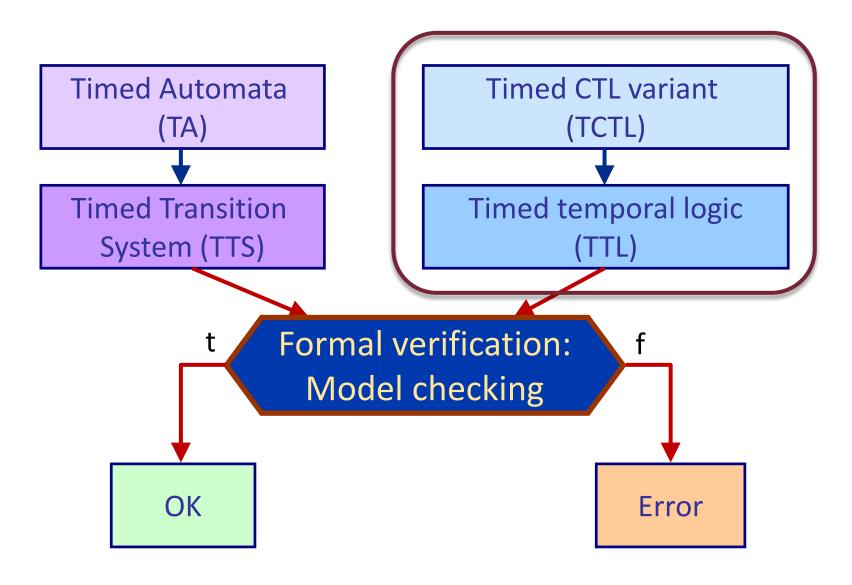
Avoiding Zeno paths

- In case of the previous example automaton:
 - Imposing (minimal) delays between successive sw_on actions (this way time will progress)
- Example: The modified automaton model
 - The minimal delay is 1 unit (in case of integer clocks)
 - The previously given application-specific delays are increased (here 100 times)



Formalizing properties: Timed temporal logics

Overview of the approach



Introduction of a Timed Temporal Logic

Expectations:

- Formalize the typical safety and liveness properties on TA
- Use clock variables in the logic (intuitive)
- Recursion is allowed in the definition of its semantics
- Decidable (properties can be checked)

Notation:

- K set of formula clocks
 - Used in the property formula only (if model clocks are not known)
 - Their rate is the same as the rate of the model clocks
- Id identifiers (to include recursion in TL formula)
 - Z∈Id variable
 - Z can be assigned a formula: Z:=φ
 - D(Z) denotes the assignment of Z: D(Z)= φ , if Z was assigned φ

The syntax of Timed TL

• $\phi ::= P \mid c \mid \phi \land \phi \mid \phi \lor \phi \mid \exists \phi \mid \forall \phi \mid \langle a \rangle \phi \mid [a] \phi \mid x \text{ in } \phi \mid x + n \sim y + m \mid Z$

where $P \in AP$, $c \in B(K)$, $a \in Act$, $x \in K$, and $Z \in Id$, $m, n \in N$

- Temporal operators (informally):
 - $\exists \varphi$ exists a delay such that φ holds
 - $\forall \phi$ for all delays ϕ holds
 - $x \text{ in } \phi$ by resetting $x \text{ clock } \phi \text{ holds}$
 - x+n ~ y+m comparison of clock expressions
- This Timed TL can be evaluated on TTS (this way also on TA and network of TA)
 - s: (l,u) state of TTS (derived from TA)
 - (s,v) notation for TTS state and formula clock valuation v

The semantics of Timed TL (1)

- (s,v) = P for atomic proposition P iff $P \in V(s)$
 - I.e., P is included among the labels of state s
- (s,v) = c for clock expression iff c(v) holds
 - I.e., in the case of clock valuation v the clock expression c is true
- (s,v) $|= \phi_1 \land \phi_2$ iff (s,v) $|= \phi_1$ and (s,v) $|= \phi_2$
- $(s,v) = \phi_1 \lor \phi_2 \text{ iff } (s,v) = \phi_1 \text{ or } (s,v) = \phi_2$
- $(s,v) = \exists \phi \text{ iff } \exists d,s' : s \rightarrow^{\epsilon(d)} s' \text{ és } (s',v+d) = \phi$
 - \circ I.e., there exists a state reachable from (s,v) by a delay, in which ϕ holds
- (s,v) $|= \forall \varphi$ iff $\forall d,s'$: $s \rightarrow^{\epsilon(d)} s' \Rightarrow (s',v+d) |= \varphi$
 - \circ I.e., for all states reachable from (s,v) by delay, φ holds

The semantics of Timed TL (2)

- (s,v) $|=\langle a\rangle \phi$ iff $\exists s': s \rightarrow^a s'$ and $(s',v) |= \phi$
 - I.e., there exists a state reachable from (s,v) by action a, in which φ holds
- $(s,v) \mid = [a]\phi \text{ iff } \forall s': s \rightarrow^a s' \Rightarrow (s',v) \mid = \phi$
 - \circ I.e., in all states reachable from (s,v) by action a, φ holds
- (s,v) $= x \text{ in } \phi \text{ iff } (s,v') = \phi \text{ where } v' = [\{x\} \rightarrow 0]v$
 - I.e., by resetting formula clock x, φ holds
- $(s,v) = x+n \sim y+m \text{ iff } v(x)+n \sim v(y)+m$
 - I.e., comparison holds for the values of the formula clocks
- (s,v) = Z iff (s,v) = D(Z)
 - I.e., the expression assigned to Z is true on (s,v)

Properties of the Timed TL

Recap: The syntax

$$\phi ::= c \mid P \mid \phi \land \phi \mid \phi \lor \phi \mid \exists \phi \mid \forall \phi \mid \langle a \rangle \phi \mid [a] \phi \mid x \text{ in } \phi \mid x + n \sim y + m \mid Z$$

- Low level, simple operators
 - Existential and universal operators for transitions with actions or delays
 - "Base logic" (its role is similar to the mu-calculus)
 - Expressivity is high (since recursion is allowed, but this construct in itself is not easy to use and not intuitive)
- Using the Timed TL
 - Definition of composite / derived operators from the simple ones
 - These are closer to intuition and practical use:
 e.g., invariants, UNTIL, UNTIL, BEFORE t
 - Restrictions are defined in model checkers (e.g., UPPAAL, KRONOS) in order to have more effective model checking algorithms

Useful expressions in the Timed TL

INV(φ) invariant: it is a recursive expression assigned to Z,

namely
$$Z := \phi \land \forall Z \land [Act]Z$$

here [Act]Z means $[a_1]Z \wedge [a_2]Z \wedge ... \wedge [a_n]Z$ for all $a_i \in Act$

Useful expressions in the Timed TL

INV(φ) invariant: it is a recursive expression assigned to Z,

namely
$$Z := \phi \land \forall Z \land [Act]Z$$

here [Act]Z mea $\{a_1\}Z \wedge [a_2\}Z \wedge ... \wedge [a_n]Z$ for all $a_i \in Act$

In all states that are reachable by delay transition, Z will hold

In all states that are reachable by action transition, Z will hold

These together form a general "next state" operator for both delay and action transitions

If Z holds on M, where $Z := \phi \land \forall Z \land [Act]Z$, then ϕ is invariant on M

Useful expressions in the Timed TL

■ INV(ϕ) invariant: it is a recursive expression assigned to Z, namely Z := $\phi \land \forall Z \land [Act]Z$

here [Act]Z means $[a_1]Z \wedge [a_2]Z \wedge ... \wedge [a_n]Z$ for all $a_i \in Act$

- ϕ_1 UNTIL ϕ_2 "weak until": it is Z, where $Z := \phi_2 \vee (\phi_1 \wedge \forall Z \wedge [Act]Z)$ under ϕ_2 will not necessarily hold
- ϕ_1 UNTIL_{<n} ϕ_2 = x in (($\phi_1 \land x < n$) UNTIL ϕ_2) here x is evaluated after reset, this way time n is relative
- φ BEFORE $n \equiv \text{true UNTIL}_{< n} \varphi$
- Example: at(I_i) BEFORE t is a deadline property
 - It means: reaching l_i location before t
 - \circ Here notation: $at(l_i)$ means that the automaton is at control location l_i

Simplification for effective evaluation

Recap: The original syntax

$$\phi ::= c \mid P \mid \phi \land \phi \mid \phi \lor \phi \mid \exists \phi \mid \forall \phi \mid \langle a \rangle \phi \mid [a] \phi \mid x \text{ in } \phi \mid x + n \sim y + m \mid Z$$

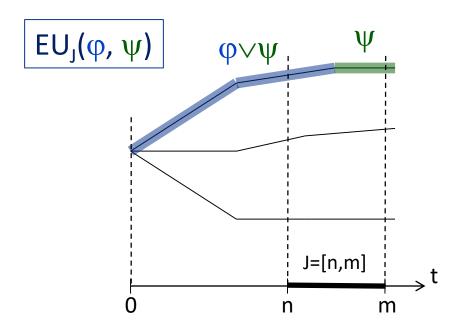
- To formalize safety and bounded liveness properties it is sufficient to restrict it as follows:
 - ∃φ omitted (existential quantifier on delays)
 - <a> omitted (existential quantifier on actions)
 - c∨φ formula allowed only
 - P∨φ formula allowed only

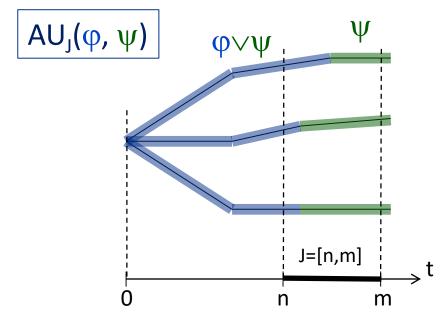
Invariants, UNTIL, UNTIL, BEFORE t can be expressed

Timed CTL

Timed CTL

- CTL variant with time: Timed Computational Tree Logic
- Characteristics:
 - Temporal operators are bound by time intervals
 - J = [n,m] bound, with open or closed intervals
 - Only the U "until" temporal operator is included in the syntax
 - With existential and universal quantifier on paths: EU and AU





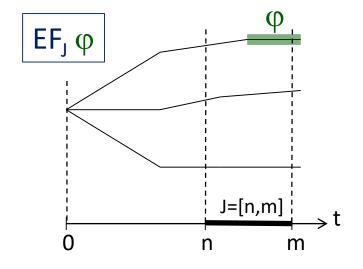
Formal syntax of TCTL

TCTL ::= P | g |
$$\phi \land \psi$$
 | $\neg \phi$ | $EU_J(\phi, \psi)$ | $AU_J(\phi, \psi)$

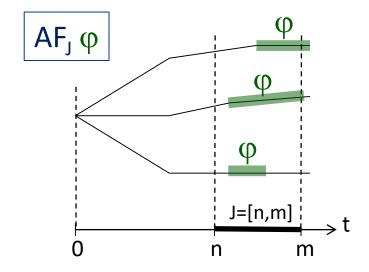
- Atomic propositions: P∈AP state labels
- Clock expressions: g∈B(C)
- Boolean operators in case of φ and ψ formula:
 - $\circ \phi \wedge \psi$
 - $\circ \neg \phi$
- Temporal operators in case of ϕ and ψ formula and J bounded time interval:
 - \circ EU_J(φ, ψ) there exists a path on which the following holds: ψ holds in time interval J and until that φ \lor ψ holds
 - $AU_J(\phi, \psi)$ on all paths the following holds: ψ holds in time interval J and until that $\phi \lor \psi$ holds here J is in form [n,m], (n,m), (n,m), also m= ∞ is possible

Defining derived temporal operators

$$EF_{J} \varphi = EU_{J}(true, \varphi)$$



$$AF_{J} \phi = AU_{J}(true, \phi)$$



$$EG_J \varphi = \neg AF_J \neg \varphi$$

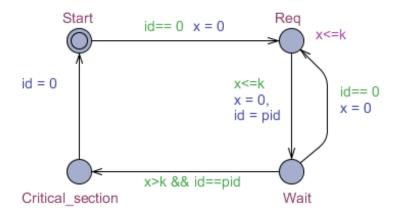
$$AG_J \varphi = \neg EF_J \neg \varphi$$

In case of untimed properties: $J = [0, \infty)$

The model checker KRONOS

- Using the TA formalism
- TCTL temporal logic variant
 - ∃<> (corresponds to EF)
 - ∀[] (corresponds to AG)
 - $\exists <>_{=n}$ (reachable in n time units)
 - $\forall []_{\leq n}$ (always reached in max. n time units)
- Interesting property that is often specified:
 - ∀[] ∃<>₌₁ true
 - In each state the time is able to progress 1 time unit
 - It is not possible that "time is stopped"

Recap: Temporal operators in UPPAAL

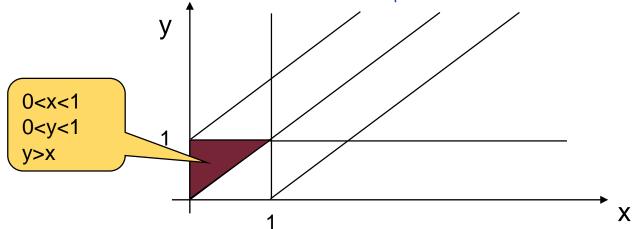


Model of a mutual exclusion protocol (Fischer) for automata:

- Liveness without timing for automation P0:
 - After Wait, the critical section will eventually be reached on all paths:
 P0.Wait --> P0.Critical_section
- Timed liveness:
 - After Wait, the critical section will be reached on all paths in less that T time units:
 - P0.Wait --> (P0.Critical_section and x<T)
 - Note that the x clock is reset when entering Wait

Outlook: The basic idea of model checking

- Identification of (time) regions,
 where conditions are evaluated to the same truth value
 - Conditions determined by invariants and guards in the TA
 - There are many potential delays that make a condition true
 - This way regions are formed on the clock variables
 - The truth of a Timed TL expressions is defined on the regions
- Semantics based model checking:
 - Can be solved as a constraint satisfaction problem
 - Is there a clock valuation with which φ holds?



Summary

- Motivation: Checking the models of real-time systems
- Models and mappings
 - Timed Transition System (TTS)
 - Timed Automata (TA) → TTS
 - Network of TA → TTS
- Interesting behavior in models of timed systems
 - Time convergence, timelock, zenoness (Zeno path)
- Formalizing properties
 - Timed TL
 - Timed CTL variants
- Model checking
 - Basic idea: regions are manipulated

