Formal verification of stochastic properties

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Motivation: Service quality properties

- Properties beyond state reachability
 - QoS: Quality of Service
 - SLA: Service Level Agreement
- Examples for complex QoS properties:
 - It happens with probability lower than 0.2 that the recovery after an error needs more than 15 time units
 - Its probability is greater than 0.7 that reaching the service level Minimum it is possible to deliver service level Premium in 5 time units
- Characteristics of QoS properties:
 - Probabilities of states / scenarios (e.g., service levels, recovery)
 - Time bounds to reach states / execute scenarios (e.g., repair)

Extensions of "classic" temporal logics

Stochastic logics:

- Probability and timing related requirements:
 - E.g.: if the current state is Error then the probability that this condition holds after 2 time units as well, is lower than 0.3

• Extension of CTL:

- Interpreted on Continuous-time Markov chains (not on Kripke structure)
- Probability criteria for state reachability (steady state), path execution
- Timing criteria (time intervals) for operators X and U

Related: Real-time logics:

- Requirements of real-time systems
 - The logic can reference clock variables
 - Handling of time intervals

Modeling stochastic processes

Formal verification of stochastic properties

Overview of stochastic models

Used to model performance and dependability

- Stochastic Petri-nets
- Stochastic process algebra
- Stochastic activity networks

Assigning timing (with exponential distributions) to the activities

- Underlying lower-level mathematical formalism: Continuous time Markov chains (CTMC)
 - Steady state properties
 - Transient properties
- Solution techniques
 - Analytical ("symbolic formulas")
 - Numerical ("iterations")
 - Simulation based ("collecting data")

Continuous time Discrete states Transition rates

Stochastic processes

- Stochastic process:
 - Mathematical model of a system or phenomena that changes in time in a random manner – characterized by a set of random variables
 - A stochastic process is characterized by its possible trajectories
 - IT systems: Typically, holding times of states are represented by random variables

Markov processes

- Markov process with state S(t) is a stochastic process such that P{ S(t)=s | S(t_n)=s_n, S(t_{n-1})=s_{n-1}, ..., S(t₀)=s₀ } = P{ S(t)=s | S(t_n)=s_n } for all t > t_n > t_{n-1} > ... > t₀
 - I.e., the conditional probability distribution of future states (conditional on both past and present states) depends only on the present state
 - "Memoryless property" of the stochastic process
- Markov processes with discrete states: Markov chains
 - Behaviour can be given by the holding times of discrete states
 - Holding times of states are characterized by random variables of negative exponential distributions
 - This is the only distribution that satisfies the Markov property
 - In each time point, the distribution of the remaining time in the given state is statistically independent from the time the process has spent in that state

$$P\{\text{holding s for t}\} = e^{-\lambda t}$$

Continuous Time Markov chains

- CTMC: Continuous Time Markov Chain
 - Continuous time, discrete state space
- Notations and properties
 - \circ Discrete states: $s_0, s_1, ..., s_n$, state of the CTMC is S(t)
 - Probability of a transition: $Q_{ij}(t_{n-1}, t_n) = P\{S(t_n) = s_j | S(t_{n-1}) = s_i\}$
 - In case of time homogenous process: $Q_{ij}(t,t+\Delta t) = Q_{ij}(\Delta t)$
 - The transition probability does not depend on time
 - Transition rates:

$$R_{ij}(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} Q_{ij}(\Delta t)$$

Notation for the rate of leaving a state:

$$E(s) = \sum_{s' \in S} R_{s,s'}$$

Model: Continuous Time Markov Chain

- Notation:

- $\bigcirc \mathbf{Q} = \mathbf{R} \operatorname{diag}(\mathbf{E})$ infinitesimal generator matrix
- $\circ \sigma = s_0, t_0, s_1, t_1, \dots$ path (s_i is left at t_i)
- $\circ \sigma @t$ the state at time t
- O Path(s) set of paths from s
- \circ P(s, $\sigma)$ the probability of traversing a path σ from s

Application of CTMC: Dependability model

- Dependability model of an electronic component:
 - **States:** OK (good, fault-free) or Fail (bad, faulty)
 - $\circ~$ Transition: Component level fault occurrence Rate of the transition from OK to Fail is the component failure rate λ
 - Transition: Component level repair
 Rate of the transition from Fail to OK is the component repair rate μ, which is the reciprocal of the repair time

- Dependability model of an electronic system:
 - System level states: Combination of component states
 - System level transitions: Determined by component failure / repair
 - System level repair: Rate of the transition is the system repair rate (which is the reciprocal of the system repair time)

Example: CTMC dependability model

- System consisting of two servers, A and B:
 - The servers may independently fail
 - The servers can be repaired independently, or all together
- System states: Combination of the server states (good/faulty)
- Transition rates:
 - Failure of server A:
 - Failure of server B:
 - Repair of a server:
 - Repair of both servers:

- λ_{B} failure rate
- μ_1 repair rate
- μ_2 repair rate

Solution of a CTMC

- Transient state probabilities:
 - $π(s_0, s, t) = P{σ∈Path(s_0), σ@t=s}$ probability that starting from s₀ the system is in state s at time t
 - $\circ \pi(s_0, t)$ starting from s_0 , the probabilities of the states at t
 - Transient state probabilities obtained by solving:

$$\frac{d\underline{\pi}(s_0,t)}{dt} = \underline{\pi}(s_0,t) \underbrace{Q}_{=}$$

- Steady state probabilities (if exist):
 - $\pi(s_0, s) = \lim_{t\to\infty} \pi(s_0, s, t)$ state probabilities (starting from s_0)
 - $\circ \underline{\pi}(s_0)$ steady state probabilities (vector)
 - Steady state probabilities obtained by solving:

$$\underline{\pi}(s_0) \underbrace{\underline{Q}}_{\underline{\underline{M}}} = 0 \text{ where } \sum_{s} \pi(s_0, s) = 1$$

Elements of the solution of a Markov chain

Probability of the holding time of a state:

 $P\{\text{holding s for t}\} = e^{-E(s)t}$

Probability of leaving a state:

 $P\{\text{leaving s in t}\}=1-e^{-E(s)t}$

Probability of a state transition:

 $P\{\text{transition from s to s' in t}\} = 1 - e^{-R(s,s')t}$

Expected value of the time spent in a state:

$$E\left\{\text{time spent in } s\right\} = \frac{1}{E(s)}$$

Formalizing properties

Formal verification of stochastic properties

How to formalize QoS properties?

Modeling: CTMC, simple state-based formalism
 O Extension: Labeling states with atomic propositions

- For states: Computing steady state or transient probabilities
 For paths: Computing path traversing probabilities
- Properties: Formalized on the analogy of CTL
 - Specifying probabilities and time intervals for states or paths
 - Result: Continuous Stochastic Logic (CSL)

Continuous Stochastic Logic

- Extensions with regard to CTL
 - Probability related operators:
 - For steady state: Probability of being in a state partition (set of states) characterized by a state formula
 - For (transient) paths: Probability of executing paths characterized by a path formula
 - Time interval related operators:
 - Extending the operators X and U with time intervals: Occurrence of states characterized by a state formula in the given time interval

• Notation:

- I time interval, e.g., [0, 12), $[15,\infty)$, p probability
- \circ ~ operator for comparison, e.g., \geq , \leq , <, >
- $\circ \Phi$ state formula (to be evaluated in a state of the CTMC)
- $\circ \phi$ path formula (to be evaluated on a path of the CTMC)

CSL state formula

- The well-formed CSL expressions: the state formula
- Syntax: $\Phi ::= P \mid \neg \Phi \mid \Phi \lor \Phi \mid S_{\sim_p}(\Phi) \mid P_{\sim_p}(\phi)$
- Informal semantics of the new operators
 - S_{~p}(Φ) specifies that the steady-state probability of being in state partition characterized by Φ is ~p
 P{steady states where Φ holds} ~ p
 - Example: *S*_{>0.8}(Minimum ∨ Premium)

*P*_{~p}(φ) specifies that the probability of executing a path characterized by path formula φ is ~p

P{executing a path on which ϕ holds} ~p

Example: P_{>0.7}(true U Premium)

CSL path formula

- Syntax: $\varphi ::= X^{I} \Phi | \Phi U^{I} \Phi$
- Informal semantics of operators
 - X^{I} Φ specifies that in the next state reached at time t∈I the state formula Φ holds
 - Example: X^[0,10]Premium
 - $\circ \Phi_1 \cup \Phi_2$ specifies that in tell a state is reached in which Φ_2 holds and until that state in each preceding state Φ_1 holds
 - Example: Minimum U^[5,10] Premium
- Operators introduced as abbreviations:

• $E \phi = P_{>0}(\phi)$ • $A \phi = P_{\geq 1}(\phi)$ • $F^{\dagger} \Phi = \text{true } U^{\dagger} \Phi$ • $X \Phi = X^{\dagger} \Phi, \quad \Phi_{1} \cup \Phi_{2} = \Phi_{1} \cup^{\dagger} \Phi_{2} \text{ where } I=[0,\infty)$

CSL semantics (1)

- M=(S,R,L) is a CTMC with state labeling \circ L: S \rightarrow 2^{AP} labeling function
- Basic operators:

 \bigcirc

 \circ M,s |= P iff P \in L(s)

 \circ M,s |= $\neg \Phi$ iff M,s |= Φ does not hold

 \circ M,s $|= \Phi_1 \lor \Phi_2$ iff M,s $|= \Phi_1$ or M,s $|= \Phi_2$

Probability-related operators:

 \circ M,s |= $S_{\sim_{p}}(\Phi)$ iff $\pi(s, Sat(\Phi)) \sim p$,

i.e., M,s
$$|= S_{\sim p}(\Phi)$$
 iff $\sum_{s' \in Sat(\Phi)} \pi(s, s') \sim p$
M,s $|= P_{\sim p}(\phi)$ iff P(s, $\sigma | \sigma | = \phi) \sim p$, \checkmark

i.e., M,s $|= P_{\sim_{p}}(\phi)$ iff $\sum P(s,\sigma) \sim p$

Starting from s, steady state probability of state partition in which Φ holds is $\sim p$

Starting from s, probability of paths on which ϕ holds is $\sim p$

 $\sigma \in Path(s)$

 $\sigma = \varphi$

CSL semantics (2)

• Operators for time intervals: $\circ M, \sigma \mid = X^{I} \Phi \text{ iff}$ $\exists s_{1}: M, s_{1} \mid = \Phi \text{ and } t_{0} \in I$ $\circ M, \sigma \mid = \Phi_{1} \cup^{I} \Phi_{2} \text{ iff}$ $\exists t \in I: (\sigma@t \mid = \Phi_{2} \text{ and } \forall u \in [0,t]: \sigma@u \mid = \Phi_{1})$

Outlook: CSL model checking (overview)

- $S_{\sim_p}(\Phi)$ formula:
 - Utilizing the steady state solution of the CTMC
- $X^{I} \Phi$ formula:
 - Utilizing the transient solution of the CTMC (to next state)
- $P_{\sim_p}(\phi)$ or $\Phi_1 \cup \Phi_2$ formula:
 - Transient solution is needed + time intervals
 - General: Solution of a Volterra integral equation

$$\int_0^t \sum_{s' \in S} \mathbf{R}(s, s') \cdot e^{-\mathbf{E}(s) \cdot x} \cdot Prob(s', \Phi \mathcal{U}^{[0, t-x]} \Psi) \, dx$$

- Simplification: Transforming the CTMC and the property to be checked in order to have a problem for which the transient solution of the transformed CTMC is sufficient
 - Transformation: $M \rightarrow M', \quad \Phi \rightarrow \Phi'$
 - To be proved: M,s $|= \Phi$ iff M',s $|= \Phi'$

Example: Simplification in case of $\Phi_1 U^{[0,t)} \Phi_2$

- Goal: Checking $\Phi_1 \cup^{[0,t)} \Phi_2$ on model M
- Transforming the model from M to M'
 - After reaching states in which Φ_2 holds -- before t and through states in which Φ_1 holds -- the future behavior is irrelevant for the property; \rightarrow all such states in which Φ_2 holds are changed to sink states in M'
 - In states for which ¬ (Φ₁ ∨ Φ₂) holds, i.e., counter-example is found, the future behavior is irrelevant for the property;
 → all such states are changed to sink states in M'
- Transforming the property for M'
 - The following theorem can be proven:

M,s $|= \Phi_1 U^{[0,t)} \Phi_2$ holds iff

M',s |= true $U^{[t,t]} \Phi_2$ holds (in the transformed model)

i.e., the transient solution of the transformed model is sufficient

CSL model checkers

First implementation:

ETMCC: Erlangen-Twente Markov Chain Checker (E|-MC²)

Supported models: CTMC, Stochastic process algebra

- PRISM: Probabilistic Symbolic Model Checker
 - Supported models: Stochastic Petri nets (GreatSPN extension)
 - Symbolic handling of the state space
- MRMC: Markov Reward Model Checker
 - Discrete time Markov chains are also supported
 - CSRL: CSL extended with reward function
 - Reward: Cost/profit assignment
 - To states: Rate reward (can be integrated for time intervals)
 - To transitions: Impulse reward (summarized for fired transitions)

PRISM

PRISM 3.0.beta1	- <mark>-</mark> *
<u>File Edit M</u> odel <u>P</u> roperties <u>Options</u>	
Properties list: /data/private/luser/prism-examples/cluster/cluster.csl	
Properties	C Experiments
? S=? ["premium"]	
? S=? [!"minimum"]	
<pre>? P>=1 [true U "premium"]</pre>	Property Defined Const Progress Status Method
<pre>? P=? [true U<=T !"minimum"]</pre>	P=? [true U[T T=0.0:1.0E 660/660 (100%) Done Verification
<pre>? P=? [true U[T,T] !"minimum" {!"minimum"}{max}]</pre>	P = ? [true U[1 N=3, I = 0.0:1 1007101 (1005) Done Simulation
<pre>? P=? [true U<=T "premium" {"minimum"}{min}]</pre>	P=?[true U[1, N=3, I=0.0; 1, 447 (1014) Stopped Verification
Υ P=: ["minimum" U<=I "premium" {"minimum"}{min}]	P=2[true U < N=3; 1=0.0, 1 23721(1000) Done Verification
? F=: [! minimum U>=i minimum {! minimum }{max}] 2 P_2 [T_T (! minimum !)(min)]	r
<pre>% N=: [1=1 {: minimum }{mini}]</pre>	
2 R=? [(<=T]	
e that QOS drops below minimum quality within 1 time units (from the initial state)	
Constants	
Name Type Value	
T double	
	Graph1 Graph2 Graph3 Graph4 Graph5
	New Graph
	0.00002
Labels	ë – – – – – – – – – – – – – – – – – – –
Labers Definition	는 N=3
minimum (left n> -k&Toleft n)/right n> -k&Tori	0.00001 N=4
nemium (left $n \ge -left my&Toleft n)/(right n \ge -r$	N=5
premium (vercenzer overch) (vignenzer	
	10 20
	Т
Model Properties Simulator Log	shere and states and s
Running experiment done.	

м Ú е д у е т е м 1 7 8 2

Using CSL to formalize QoS properties (1)

Labels to be used: Premium, Minimum, Failure

• Availability of service is greater than 0.99:

S_{≥0.99}(Premium ∨ Minimum)

 In the long run, the probability that the service level is Premium is at least 0.9:

 $S_{\geq 0.9}$ (Premium)

Using CSL to formalize QoS properties (2)

 It occurs with probability lower than 0.1, that in 85 time units the service level falls below Minimum:

 $P_{<0.1}(F^{[0,85]} \text{ Failure}) = P_{<0.1}(\text{true } U^{[0,85]} \text{ Failure})$

It is possible to reach Premium service level:

 $P_{>0}$ (F Premium) = $P_{>0}$ (true U^(0, ∞) Premium)

 If there is Failure at start, then it happens with probability lower than 0.3 that the failure will present after 2 time units:

Failure $\Rightarrow P_{<0.3}(F^{[2,2]} \text{ Failure})$

It occurs with probability at most 0.2 that the recovery after an initial failure needs more than 15 time units:

Failure $\Rightarrow P_{\leq 0.2}$ (Failure U^{[15, ∞)} (Minimum \vee Premium))

Using CSL to formalize QoS properties (3)

 It happens with probability lower than 0.01 that after 9 time units of fault-free operation the system will fail in 1 time unit:

*P*_{<0.01}((Premium ∨ Minimum) U^[9,10] Failure)

 Starting with Minimum service level, it happens with probability greater than 0.7 that in 5 time units (keeping at least the Minimum service level) the Premium service level will be provided:

Minimum $\Rightarrow P_{>0.7}$ (Minimum U^{[0,5)} Premium)

Summary

- Motivation: Checking service quality and timeliness
 Typical in QoS, SLA
- Basic mathematical model: CTMC, with state labeling
 - It can be derived from higher-level models
 - Solution: Computing steady state or transient state probabilities
- Formalizing properties: CSL
 - Probability for steady states characterized by state formula
 - Probability for executed paths characterized by path formula
 Time intervals for standard temperal energies of V
 - Time intervals for standard temporal operators U and X
- Model checking
 - Simplification by transforming both the model and the property
- Formalization of properties (examples)