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Motivation: Service quality properties

 Properties beyond state reachability

o QoS: Quality of Service

o SLA: Service Level Agreement

 Examples for complex QoS properties:

o It happens with probability lower than 0.2 that the recovery 
after an error needs more than 15 time units

o Its probability is greater than 0.7 that reaching the service level 
Minimum it is possible to deliver service level Premium in 5 
time units

 Characteristics of QoS properties:

o Probabilities of states / scenarios (e.g., service levels, recovery)

o Time bounds to reach states / execute scenarios (e.g., repair)
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Extensions of “classic” temporal logics

Stochastic logics: 

 Probability and timing related requirements:
o E.g.: if the current state is Error then the probability 

that this condition holds after 2 time units as well, is lower than 0.3

 Extension of CTL:
o Interpreted on Continuous-time Markov chains (not on Kripke structure)

o Probability criteria for state reachability (steady state), path execution

o Timing criteria (time intervals) for operators X and U

Related: Real-time logics:

 Requirements of real-time systems
o The logic can reference clock variables

o Handling of time intervals
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Modeling stochastic processes
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Formal verification of stochastic properties

Stochastic model:
CTMC

Stochastic logic:
CSL

Formal verification:
Model checking

OK Error

t f

“Informal”
design

“Informal”
properties
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Overview of stochastic models

 Used to model performance and dependability
o Stochastic Petri-nets

o Stochastic process algebra

o Stochastic activity networks

 Underlying lower-level mathematical formalism: 
Continuous time Markov chains (CTMC)
o Steady state properties

o Transient properties

 Solution techniques
o Analytical („symbolic formulas”)

o Numerical („iterations”)

o Simulation based („collecting data”)

Assigning timing (with 
exponential distributions) 
to the activities

Continuous time
Discrete states
Transition rates
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Stochastic processes

 Stochastic process:
o Mathematical model of a system or phenomena that changes in time 

in a random manner – characterized by a set of random variables

o A stochastic process is characterized by its possible trajectories

o IT systems: Typically, holding times of states are represented by 
random variables
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Markov processes

 Markov process with state S(t) is a stochastic process such that
P{ S(t)=s | S(tn)=sn, S(tn-1)=sn-1, …, S(t0)=s0 }   =   P{ S(t)=s | S(tn)=sn }

for all t > tn > tn-1 > … > t0

o I.e., the conditional probability distribution of future states (conditional on 
both past and present states) depends only on the present state

o “Memoryless property” of the stochastic process

 Markov processes with discrete states: Markov chains
o Behaviour can be given by the holding times of discrete states

o Holding times of states are characterized by random variables 
of negative exponential distributions

• This is the only distribution that satisfies the Markov property

• In each time point, the distribution of the remaining time in the given 
state is statistically independent from the time the process has spent in 
that state
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Continuous Time Markov chains

 CTMC: Continuous Time Markov Chain

o Continuous time, discrete state space

 Notations and properties

o Discrete states: s0, s1, ..., sn,  state of the CTMC is S(t)

o Probability of a transition: Qij(tn-1,tn) = P{S(tn)=sj | S(tn-1)=si}

o In case of time homogenous process:   Qij(t,t+t)= Qij(t)

• The transition probability does not depend on time

o Transition rates:

o Notation for the rate of leaving a state:  
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Model: Continuous Time Markov Chain

 Definition: CTMC = (S, R)

o S set of discrete states: 
s0, s1, ..., sn

o R: SSR0 state transition rates

 Notation:

o Q = R–diag(E) infinitesimal generator matrix

o  = s0, t0, s1, t1, …  path (si is left at ti)

o @t the state at time t

o Path(s) set of paths from s

o P(s, ) the probability of traversing a path  from s

s0

s1

s2





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Application of CTMC: Dependability model

 Dependability model of an electronic component:

o States: OK (good, fault-free) or Fail (bad, faulty)

o Transition: Component level fault occurrence
Rate of the transition from OK to Fail is the component failure rate 

o Transition: Component level repair
Rate of the transition from Fail to OK is the component repair rate , 
which is the reciprocal of the repair time

 Dependability model of an electronic system:

o System level states: Combination of component states

o System level transitions: Determined by component failure / repair

• System level repair: Rate of the transition is the system repair rate
(which is the reciprocal of the system repair time)

OK Fail




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Example: CTMC dependability model

 System consisting of two servers, A and B:
o The servers may independently fail

o The servers can be repaired independently, or all together

 System states: Combination of the server states (good/faulty)

 Transition rates:
o Failure of server A: A failure rate

o Failure of server B: B failure rate

o Repair of a server: 1 repair rate

o Repair of both servers: 2 repair rate

A,B
good

B good

No good

A

1 2

A goodB

B

1

A
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Solution of a CTMC

 Transient state probabilities:
o (s0, s, t) = P{Path(s0), @t=s} probability that 

starting from s0 the system is in state s at time t

o (s0, t) starting from s0, the probabilities of the states at t

o Transient state probabilities obtained by solving:

 Steady state probabilities (if exist):
o (s0, s) = limt(s0, s, t) state probabilities (starting from s0)

o (s0) steady state probabilities (vector)

o Steady state probabilities obtained by solving:
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Elements of the solution of a Markov chain

 Probability of the holding time of a state: 

 Probability of leaving a state:

 Probability of a state transition:

 Expected value of the time spent in a state:

  ( )holding s for t E s tP e

  ( )leaving s in t 1 E s tP e 

  ( , ')transition from s to s' in t 1 R s s tP e 
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Formalizing properties
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Formal verification of stochastic properties

CTMC model M CSL property 

Model checking:
M,s |= 

OK Error

t f

“Informal”
design

“Informal”
properties
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How to formalize QoS properties?

 Modeling: CTMC, simple state-based formalism
o Extension: Labeling states with atomic propositions

o For states: Computing steady state or transient probabilities

o For paths: Computing path traversing probabilities

 Properties: Formalized on the analogy of CTL
o Specifying probabilities and time intervals for states or paths

o Result: Continuous Stochastic Logic (CSL)

A,B good

B good

No good

A

1 2

A goodB

B

1

A
{Premium} {Failure}

{Minimum}

{Minimum}
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Continuous Stochastic Logic

 Extensions with regard to CTL

o Probability related operators:

• For steady state: Probability of being in a state partition (set of 
states) characterized by a state formula

• For (transient) paths: Probability of executing paths characterized 
by a path formula

o Time interval related operators:

• Extending the operators X and U with time intervals: Occurrence of 
states characterized by a state formula in the given time interval

 Notation:
o I time interval, e.g., [0, 12),  [15,),     p probability
o ~ operator for comparison, e.g., , , <, >
o  state formula (to be evaluated in a state of the CTMC)
o  path formula (to be evaluated on a path of the CTMC)
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CSL state formula

 The well-formed CSL expressions: the state formula

 Syntax:  ::= P |  |  | S~p() | P~p()

 Informal semantics of the new operators

o S~p() specifies that the steady-state probability of 

being in state partition characterized by  is ~p

P{steady states where  holds} ~ p

• Example: S>0.8(Minimum  Premium)

o P~p() specifies that the probability of executing a path 

characterized by path formula  is ~p

P{executing a path on which  holds} ~p

• Example: P>0.7(true U Premium)
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CSL path formula

 Syntax:  ::= XI  |  UI 

 Informal semantics of operators

o XI  specifies that in the next state reached at time tI the 
state formula  holds
• Example: X[0,10]Premium

o 1 UI 2 specifies that in tI a state is reached in which 2

holds and until that state in each preceding state 1 holds
• Example: Minimum U[5,10] Premium

 Operators introduced as abbreviations:
o E  = P>0()
o A  = P1()
o FI  = true UI 

o X  = XI ,    1 U 2 = 1 UI 2 where I=[0,)
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CSL semantics (1)

 M=(S,R,L) is a CTMC with state labeling
o L: S → 2AP labeling function

 Basic operators:
o M,s |= P iff PL(s)
o M,s |=  iff M,s |=  does not hold
o M,s |= 1 2 iff M,s |= 1 or M,s |= 2

 Probability-related operators:

o M,s |= S~p() iff (s, Sat()) ~ p, 

i.e., M,s |= S~p() iff

o M,s |= P~p() iff P(s,  | |=) ~ p,

i.e., M,s |= P~p() iff  
( )

|

P , ~
Path s
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
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
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s Sat

s s p
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

Starting from s, 

steady state probability 

of state partition in 

which  holds is ~p

Starting from s, 

probability of paths on 

which  holds is ~p
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CSL semantics (2)

 Operators for time intervals:

o M, |= XI  iff

s1:   M,s1 |=  and t0I

o M, |= 1 UI 2 iff

tI:   (@t |= 2 and u[0,t): @u |= 1)
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Outlook: CSL model checking (overview)

 S~p() formula:
o Utilizing the steady state solution of the CTMC

 XI  formula:
o Utilizing the transient solution of the CTMC (to next state)

 P~p() or 1 UI 2 formula:
o Transient solution is needed + time intervals

o General: Solution of a Volterra integral equation

o Simplification: Transforming the CTMC and the property to be 
checked in order to have a problem for which 
the transient solution of the transformed CTMC is sufficient

• Transformation: M  M’, ’

• To be proved: M,s |=  iff M’,s |= ’
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Example: Simplification in case of 1 U[0,t) 2

 Goal: Checking 1 U[0,t) 2 on model M

 Transforming the model from M to M’

o After reaching states in which 2 holds -- before t and through states 
in which 1 holds -- the future behavior is irrelevant for the property;
 all such states in which 2 holds are changed to sink states in M’

o In states for which  (1  2) holds, i.e., counter-example is found, 
the future behavior is irrelevant for the property;
 all such states are changed to sink states in M’

 Transforming the property for M’
o The following theorem can be proven:

M,s |= 1 U[0,t) 2 holds iff

M’,s |= true U[t,t] 2 holds (in the transformed model)

i.e., the transient solution of the transformed model is sufficient
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CSL model checkers

 First implementation:
ETMCC: Erlangen-Twente Markov Chain Checker (E|-MC2)

o Supported models: CTMC, Stochastic process algebra

 PRISM: Probabilistic Symbolic Model Checker

o Supported models: Stochastic Petri nets (GreatSPN extension)

o Symbolic handling of the state space

 MRMC: Markov Reward Model Checker

o Discrete time Markov chains are also supported

o CSRL: CSL extended with reward function

o Reward: Cost/profit assignment

• To states: Rate reward  (can be integrated for time intervals)

• To transitions: Impulse reward  (summarized for fired transitions)
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PRISM
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Using CSL to formalize QoS properties (1)

Labels to be used: Premium, Minimum, Failure

 Availability of service is greater than 0.99:

S0.99(Premium  Minimum)

 In the long run, the probability that the service level is 
Premium is at least 0.9:

S0.9(Premium)

A,B good

B good

No good

A

1 2

A goodB

B

1

A
{Premium} {Failure}

{Minimum}

{Minimum}
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Using CSL to formalize QoS properties (2)

 It occurs with probability lower than 0.1, that in 85 time units 
the service level falls below Minimum:

P<0.1(F[0,85] Failure) = P<0.1(true U[0,85] Failure)

 It is possible to reach Premium service level:

P>0(F Premium) = P>0(true U(0,) Premium)

 If there is Failure at start, then it happens with probability 
lower than 0.3 that the failure will present after 2 time units:

Failure  P<0.3(F[2,2] Failure)

 It occurs with probability at most 0.2 that the recovery after 
an initial failure needs more than 15 time units:

Failure  P0.2(Failure U[15,) (Minimum  Premium))
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Using CSL to formalize QoS properties (3)

 It happens with probability lower than 0.01 that 
after 9 time units of fault-free operation the system will 
fail in 1 time unit:

P<0.01((Premium  Minimum) U[9,10] Failure)

 Starting with Minimum service level, it happens with 
probability greater than 0.7 that in 5 time units (keeping 
at least the Minimum service level) the Premium service 
level will be provided:

Minimum  P>0.7(Minimum U[0,5) Premium)
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Summary

 Motivation: Checking service quality and timeliness
o Typical in QoS, SLA

 Basic mathematical model: CTMC, with state labeling
o It can be derived from higher-level models

o Solution: Computing steady state or transient state probabilities

 Formalizing properties: CSL
o Probability for steady states characterized by state formula

o Probability for executed paths characterized by path formula

o Time intervals for standard temporal operators U and X

 Model checking
o Simplification by transforming both the model and the property

 Formalization of properties (examples)
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