
1
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Software Verification and Validation (VIMMD052)

Software Model Checking with
Abstraction-Based Methods

Ákos Hajdu
hajdua@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

2

INTRODUCTION

3

Introduction

 Motivation

o Checking the source code directly

o Should work by “pushing a button”

• No deep background knowledge should be required

 Software verification techniques

o Static analysis

• Error patterns

• Abstract interpretation

o Model checking

A
cc

u
ra

cy

C
o

st

4

Introduction – Model Checking

 Model checking in general

Formal
model

Formalized
property

Model checking
algorithm

Ok Counterexample

Real-life
system

An algorithm, a
software, a protocol,

a circuit, …

Automata,
formulas, state

machines, …

Assertions, temporal
logic, reference

automata, …

Explicit, symbolic,
abstraction, …

5

Introduction – Model Checking

 This lecture: focus on software and abstraction

Formal
model

Formalized
property

Model checking
algorithm

Ok Counterexample

Real-life
system

Source code

Control Flow
Automata

Assertions

Abstraction
+ CEGAR

Violating
execution

6

Introduction – Model and Property

 Control-Flow Automaton
o Set of control locations (PC)

o Set of edges with operations
over a set of variables
• E.g., guard, assignment …

 Typical property: “error” location should not be reachable

 x : int
0: x = 0
1: while (x < 5) {
2: x = x + 1
 }
3: assert (x <= 5)

7

Introduction – States and Transitions

 State: location + valuation of variables (L, x1, x2, …, xn)

 Transition: operations

 Problem: state space explosion caused by data variables
o E.g., 10 locations and 2 integers: 10·232·232 possible states

 Goal: reduce the state space representation by abstraction

8

Introduction – Mathematical Logic

 Propositional logic (PL)

o Boolean variables and operators

o SAT problem: is the formula satisfiable
• Example: bounded model checking

o Expressive power sometimes not enough

 First order logic (FOL)

o Functions, predicates, quantifiers

o Satisfiability is not decidable in general

 Satisfiability Modulo Theories (SMT)

o “Restricted” FOL formulas

o Only interpreted symbols (e.g.,, integer arithmetic)

o Satisfiability can de decided

¬𝑝 ∧ (𝑝 ∨ 𝑞)

∀𝑥, 𝑦 ∃𝑧: 𝑝(𝑓 𝑥, 𝑦 , 𝑔 𝑧)

(𝑥 ≤ 𝑦 + 1) ∧ (𝑦 ≥ 3)

9

COUNTEREXAMPLE-GUIDED
ABSTRACTION REFINEMENT (CEGAR)

10

CEGAR – Introduction: abstract states

Concrete state space Abstraction Abstract state space

Abstract counterexample Spurious counterexample Refined state space

Init

Check

OK

Concretize

Counterexample

Refine

Model,
property

Abstraction

Property holds

Abstract counterex
Concrete

State
Transition

Error state

Abstract state

Over-approximation

11

Abstraction – Introduction

 Abstraction

o General mathematical concept

o Hide details

o Get an easier problem to solve

 Example

o Location abstraction
𝑙, 𝑥1, 𝑥2, … , 𝑥𝑛 → 𝑙

o Usually not enough
• Trivial counterexamples

are found (no conditions)

• Extension with predicates:
predicate abstraction

CFA Abstract state space

12

Predicate Abstraction

 Predicate abstraction

o Keep track of predicates instead of concrete values for variables

o Abstract state: concrete states corresponding to the same
location + satisfying the same predicates

 Performing abstraction (initial attempt)

o Enumerate and join concrete states

o 3x3 concrete states in the example  5 abstract states

o State space explosion 

Variables:

𝑥, 𝑦; 𝐷𝑥 = 𝐷𝑦 = 0,1,2

Predicates:
(𝑥 = 𝑦), (𝑥 < 𝑦), (𝑦 = 2)

𝑦\x 0 1 2

0

1

2

𝑦\x 0 1 2

0 (𝑥 = 𝑦)

1 (𝑥 < 𝑦) (𝑥 = 𝑦)

2
(𝑥 < 𝑦)
(𝑦 = 2)

(𝑥 < 𝑦)
(𝑦 = 2)

(𝑥 = 𝑦)
(𝑦 = 2)

𝑦\x 0 1 2

0 (𝑥 = 𝑦)

1 (𝑥 < 𝑦) (𝑥 = 𝑦)

2
(𝑥 < 𝑦)
(𝑦 = 2)

(𝑥 < 𝑦)
(𝑦 = 2)

(𝑥 = 𝑦)
(𝑦 = 2)

13

Predicate Abstraction

 Performing abstraction (differently)

o Enumerate abstract states only

o Predicate set 𝑃  𝐿 ∙ 2 𝑃 possible abstract states

o Feasibility of abstract states and
state transitions shall be checked

 Example

o 3 predicates  8 possible abstract
states (for each location)

o Some are not feasible
• E.g. (𝑥 = 𝑦) ∧ (𝑥 < 𝑦) ∧ ¬(𝑦 = 2)

is not feasible (not satisfiable)

• Use SMT solver to check whether a
combination of predicates is satisfiable

𝑥 = 𝑦 𝑥 < 𝑦 𝑦 = 2

1 X X X

2 X X 

3 X  X

4 X  

5  X X

6  X 

7   X

8   

14

Predicate Abstraction

 Abstract states with predicate abstraction

o (𝑙, 𝑥1, … , 𝑥𝑛) → (𝑙, 𝑏1, … , 𝑏𝑚)

o 𝑏𝑖: Boolean variable: its value gives if predicate pi holds or not

o Notation: 𝑝(𝑏𝑖) =
 𝑝𝑖 if 𝑏𝑖 is true
¬𝑝𝑖 otherwise

 Example

Concrete Abstract

Variables:
𝑥, 𝑦; 𝐷𝑥 = 𝐷𝑦 = 0,1,2

Predicates:
(𝑥 = 𝑦), (𝑥 < 𝑦), (𝑦 = 2)

0,0,0 → 0, 𝑇, 𝐹, 𝐹
6,1,2 → 6, 𝐹, 𝑇, 𝑇

𝑙 𝑥 𝑦

𝑙 𝑥 = 𝑦 𝑥 < 𝑦 𝑦 = 2

15

Predicate Abstraction

 Abstract initial states, error states, transitions

o Abstract initial state: (𝑙, 𝑏1, … , 𝑏𝑚), where 𝑙 = 𝑙0

o Abstract error state: (𝑙, 𝑏1, … , 𝑏𝑚), where 𝑙 = 𝑙𝐸

o Abstract transition: at least one concrete transition exists
between contained concrete states
• Calculate with SMT solver (without enumerating concrete states)

• For (𝑙, 𝑏1, … , 𝑏𝑚) and 𝑙′, 𝑏′
1, … , 𝑏′

𝑚 :

– ∃𝑜𝑝: 𝑙, 𝑜𝑝, 𝑙′ ∈ 𝐺 (there is an edge between locations in the CFA)

– 𝑝 𝑏1 ∧ ⋯∧ 𝑝 𝑏𝑚 ∧ 𝑜𝑝 ∧ 𝑝 𝑏′1 ∧ ⋯∧ 𝑝 𝑏′𝑚 is satisfiable

Existential
abstraction

16

 Example:

 Here 6 locations, 1 predicate  12 abstract states

Predicate Abstraction

𝑃 = 𝑥 ≤ 5

17

 Example:

 Transitions: checking general feasibility with SMT solver

o E.g., (2, true)  1, true is feasible
• (2, 𝑥 ∶= 𝑥 + 1, 1) ∈ 𝐺 and 𝑥 ≤ 5 ∧ (𝑥′ = 𝑥 + 1) ∧ 𝑥′ ≤ 5 is satisfiable: 𝑥 = 0, 𝑥′ = 1

o E.g., (2, true)  (1, false) is feasible
• (2, 𝑥 ∶= 𝑥 + 1, 1) ∈ 𝐺 and 𝑥 ≤ 5 ∧ (𝑥′ = 𝑥 + 1) ∧ ¬ 𝑥′ ≤ 5 is satisfiable: 𝑥 = 5, 𝑥′ = 6

Predicate Abstraction

𝑃 = 𝑥 ≤ 5

18

Model Checking

 Traverse abstract state space

o Search for error state

o With some search strategy, e.g., DFS, BFS

 Optimizations

o On-the-fly

• Calculate abstract states
during the search

o Incremental

• Do not explore
unchanged parts
after refinement

19

Model Checking

 Properties of existential abstraction

o Over-approximates the original model
• There is a corresponding abstract path for each concrete path

• Universally quantified property holds  holds in the original model
– Error state is not reachable (AG ¬Error)  not reachable in original

o What about abstract counterexamples?
• Not all abstract paths have corresponding concrete paths!

20

Abstract Counterexample

 Form of abstract counterexample

o Sequence of locations and predicates

o 𝑙1, 𝑏1,1, … , 𝑏1,𝑚 , 𝑙2, 𝑏2,1, … , 𝑏2,𝑚 , … , 𝑙𝑛, 𝑏𝑛,1, … , 𝑏𝑛,𝑚

 Finding a concrete path: trying to traverse a part of the
concrete state space

o Guided by the abstract counterexample

o Using SMT solver
• Starting from the initial state

• Traversing: Similarly to bounded model checking (BMC)

• Generalize the method presented at existential abstraction for 𝑛 steps

 Concrete path exists  concrete model is faulty

 Concrete path does not exist  spurious counterexample

21

Abstract Counterexample

 Example

𝑃 = 𝑥 ≤ 5

𝑥1 ≤ 5

𝑥2 ≤ 5

𝑥3 ≤ 5

¬(𝑥4 ≤ 5)

¬(𝑥5 ≤ 5)

¬(𝑥6 ≤ 5)

𝑥2 = 0

𝑥2 < 5 ∧ 𝑥3 = 𝑥2

𝑥4 = 𝑥3 + 1

¬(𝑥4< 5) ∧ 𝑥5 = 𝑥4

¬(𝑥5≤ 5) ∧ 𝑥6 = 𝑥5

Abstract counterexample
(6 states)

Predicates
of states

Operations on
transitions

(xi+1=xi if there
is no change)

Not
satisfiable

𝑥1 = 3
𝑥2 = 0
𝑥3 = 0
𝑥4 = ?

22

Spurious Counterexample

 A concrete path exists until a state and after, but it is
“broken” in a so-called “failure” state

 Grouping concrete states mapped to
the “failure” state

o D = “Dead-end”: reachable

o B = “Bad”: transition to next state

o IR = “Irrelevant”: others

 Reason for spurious counterexample

o Set of predicates does not distinguish D and B

failure

23

Abstraction Refinement

 Eliminating the spurious counterexample

o More predicates (finer abstraction)

o Separate D and B
• Without enumerating concrete states

• Describe D and B with formulas

• SMT solver can generate a formula 𝜑
that separates D and B (interpolation)

o The set 𝑃 ∪ 𝜑 will eliminate this
spurious counterexample
• Moreover it is enough to split only the

failure state (lazy abstraction)

 Additional spurious counterexamples

o More predicates may be needed

𝜑

¬𝜑

24

Abstraction Refinement

 Example

𝑃 = 𝑥 ≤ 5
𝑥 < 5 additional

 predicate

𝑥1 = 3
𝑥2 = 0
𝑥3 = 0
𝑥4 = ?

25

Abstraction Refinement

 Example

𝑃 = 𝑥 ≤ 5 𝑃 = 𝑥 ≤ 5 , (𝑥 < 5)

Error state is
not reachable

26

CEGAR – Summary

Concrete state space Abstraction Abstract state space

Abstract counterexample Spurious counterexample Refined state space

Init

Check

OK

Concretize

Counterexample

Refine

Model,
property

Abstraction

Property holds

Abstract counterex
Concrete

27

The algorithm

 Counterexample-Guided Abstraction Refinement (CEGAR)

o Automatic method
• Each step is automatic

• Deep knowledge of formal methods is not required

• Hidden steps: checking feasibility of formulas (SMT solver)

o How about the initial set of predicates?
• It can be an empty set

• It can come from conditional statements in the software

• Other heuristics may also be used

Init

Check

OK

Concretize

Counterexample

Refine

Model,
property

Abstraction

Property holds

Abstract counterex
Concrete

28

TOOLS

29

Tools

 SLAM2

o Part of Static Driver Verifier Research Platform (SDVRP)

o Structure

• Driver C code: analyzed component

• Platform model: describe environment

• Analysis: adherence to API usage rules

o Algorithms

• Create Boolean program with predicate abstraction

• Symbolic model checking: BEBOP tool

• CEGAR loop

o research.microsoft.com/en-us/projects/slam/

http://research.microsoft.com/en-us/projects/slam/
http://research.microsoft.com/en-us/projects/slam/
http://research.microsoft.com/en-us/projects/slam/
http://research.microsoft.com/en-us/projects/slam/

30

Tools

 BLAST

o Berkeley Lazy Abstraction Software Verification Tool

o Input: C program + requirement (BLAST Query
Language)

o Predicate abstraction

• Building abstract reachability tree (ART)

o Refinement: new predicate with interpolation

• Lazy abstraction: apply new predicate locally

o Limitations: multiplication, bit operations, overflow

o mtc.epfl.ch/software-tools/blast/index-epfl.php

http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://mtc.epfl.ch/software-tools/blast/index-epfl.php

31

Tools

 CPAchecker

o (Continuation of BLAST)

o The Configurable Software-Verification Platform

o Input: C program + specification

• Assertion, error label, deadlock, null dereference, …

o Highly configurable

• Different kinds of abstractions (not only predicate)

• Can consider multiple prefixes of a counterexample
– Chooses from different refinements (refinement strategy)

o cpachecker.sosy-lab.org/

http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/

32

Tools

 Theta

o Generic, modular, configurable model checking
framework

o Developed at BME MIT

o Generic: various kinds of formal models

• Transition systems, control flow automata, timed automata

o Modular: reusable and combinable modules

o Configurable: different algorithms and strategies

o github.com/FTSRG/theta

https://github.com/FTSRG/theta

33

Tools

 Competition on Software Verification 2017 (SV-COMP)

o sv-comp.sosy-lab.org/2017/

o 32 tools, 8908 input tasks (program + requirement)

o Categories: Help to find the best tool in a given category
• Arrays (ArraysReach, ArraysMemSafety)

• Bit Vectors (BitVectorsReach, Overflows)

• Heap Data Structures (HeapReach, HeapMemSafety)

• Floats

• Integers and Control Flow (ControlFlow, Simple, ECA, Loops, Recursive,
ProductLines, Sequentialized)

• Termination

• Concurrency

• Software Systems (DeviceDriversLinux64, BusyBox)

https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/
https://sv-comp.sosy-lab.org/2017/

34

SUMMARY

35

Summary

 Software model checking

o Common problem: state space explosion

o Solution: abstraction

• Location + predicates

• Properties of existential abstraction

o CEGAR: automatically obtain proper abstraction

1. Initial abstraction

2. Model checking

3. Examining the counterexample

4. Refining the abstraction

o Tools

