
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Component Design

Systems Engineering BSc Course

4

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
 a

n
d

 V
al

id
at

io
n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generation code generation

HW library

Requirements

Fault tolerance
& safety

5

Learning Objectives

Structural modeling

•Understand the basic notions of structural modeling in systems engineering
•Understand the role and major challenges of designing functional architecture
•Understand top-down and bottom-up approaches and when to use them

Blocks as reusable components

• Identify the functional components

• Identify the hierarchical relations between components

• Capture components using the SysML language

• Traceability of functional components

• Modeling component variants and specific instances

Internal structure of blocks

• Identify the communication aspects between components

• Understand the concepts of standard ports and flow ports

6

Structural Modeling Basics
(As you may recall from the System Modeling course…)

 A Structural Model is concerned with:
o which elements form the system,

o how they are connected/related to each other,
• especially part-whole relationships (not necessarily physical)

o and the properties these elements have.

 Examples from information technology
o Data structures

o SW components, microservices

o Network structure

o SW components running on HW platform

8

Structural Modeling Basics

(As you may recall from the System Modeling course…)

 A composite (sub)system contains elements…

o ...arranged in a specific way…

o…to attain a goal…

o …that the individual parts cannot satisfy on their own

 Engineering processes that build structural models

o Composition: building a complex solution from an
appropriate arrangement of simpler elements

o Decomposition or factoring: breaking up a complex
problem or system into simpler parts

9

Top-down and bottom-up design
 Top-down: using decomposition
 When designing a subsystem, its goal is already
known

 There are no working parts during development

 Problems, needs of subsystems revealed late

 Bottom-up: using composition
 Subsystems can be tested one-by-one

 There are always some working parts during
development

 Exact roles of the subsystems are revealed late

 (Not only in structural modeling…)

 Meet-in-the-middle approach

 Iterative approaches

System

Subsystems

Subsytems of subsystems

System

Subsystems

Subsytems of subsystems

10

SW versus HW Modeling

Functional
model

Platform
model

Requirements

Most common:

Top-down approach
1. High-level components

first
2. Refine them to

smaller units
3. Design connections & API

Most common:

Bottom-up approach
1. HW component library
2. Compose them into

larger components
3. Model how

they are connected

Why top-down? Why bottom-up?

11

Top-Down
Structural Modeling

Iteratively breaking down
complex problems into simpler ones

12

Graphical User Interface

Window

Menu Main

Degrad View Edit Help MC …

Degrees Radians Grads

Display

 Top-down design

13

Embedded System

Robot
vacuum cleaner

 Decomposition or factoring: breaking up a
complex problem or system into simpler parts

 Logical decomposition by function (vs. physical)

o „by function”: what service is provided?

Exploration and
navigation subsystem

Cleaner
subsystem

Monitoring
subsystem

Movement
subsystem

Sensor
subsystem … … …

14

Bottom-Up
Structural Modeling

Modeling complex systems
as composites of reusable parts

15

Composition

 Composition: building a complex solution from an
appropriate arrangement of more simple elements

 A composite (sub)system contains elements…

o ...arranged in a specific way…

o …to attain a goal…

o…that the individual parts cannot satisfy on their own

16

Software Development by Design Patterns

Abstract
Factory

Decorator

Observer

Design patterns
catalogue

Assembly
instructions

Software
Component 1

Software
Component 2

Software
Component 3

Software
System

Software components
catalogue

17

Structural Modeling Roots

 Rich history in a variety of engineering domains

o Mechanical / hydraulic / chemical / etc.

o Software and hardware systems

o Hybrid systems

18

Structural Modeling Roots

 Composition from building blocks…

o …by hand or with CAD tools (e.g. Matlab Simulink)

o Block: reusable component/subsystem
with properties and connections

19

Introduction to Block-based Design

 Composition from building blocks…

o …by hand or with CAD tools (e.g. Matlab Simulink)

o Block: reusable component/subsystem
with properties and connections

 How can we build this complex system?

oWe need a structural model to guide the process

20

Assembly Instructions

21

Parts Catalogue

22

Observations on Block Usage

Blocks/parts are defined in a catalogue and
used in assembly instructions

Assembly Instructions

Parts Catalogue

23

Observations on Block Usage

Building blocks used in assembly instructions
refer to their definitions in the parts catalogue

Assembly Instructions

Parts Catalogue

24

Observations on Block Usage

The same part definition can be used multiple times
in different roles

Assembly Instructions

Parts Catalogue

25

Observations on Block Usage

Block properties may be characteristic to the…
definition (e.g. patent no.), use (e.g. orientation),
 or run-time (e.g. stress)

Assembly Instructions

Parts Catalogue

26

Definition and Use

Assembly Instructions Parts Catalogue

Real System

Block
instance

Block use /
prototype / template

Block
definition / type

27

Definition and Use

Assembly Instructions Parts Catalogue

Block
instance

Block use /
prototype / template

Block
definition / type

Not AN INSTANCE of the block type
as it may be instantiated multiple times in
different ways for each bed frame

Not THE TYPE of the block instance
(may be a type - a refined specialization)
as the focus is on its ROLE within a composite

Real System

28

Definition and Use

Assembly Instructions Parts Catalogue

Block
instance

Block use /
prototype / template

Block
definition / type

Not AN INSTANCE of the block type
as it may be instantiated multiple times in
different ways for each bed frame

Not THE TYPE of the block instance
(may be a type - a refined specialization)
as the focus is on its ROLE within a composite

Real System

int

private
int x

42

29

Observations on Block Usage

Some parts may themselves be composites,
(de)composed with separate assembly instructions

Assembly Instructions 1 Assembly Instructions 2

30

Hierarchical Definition and Use

Bed frame

Room Apartement

Bed

31

Structural Modeling in SysML

32

Structural Modeling in UML vs SysML

 UML: Software Engineering terminology

o Blocks  Classes or Components

o Parts Catalogue  Class Diagram, Component Diagram

o Assembly Instructions  Composite Structure Diagram

 SysML: more general engineering terminology

o Blocks are called blocks 

• Merging UML Class and Component features

• Extensions: flow ports, physical dimensions, etc.

o Parts Catalogue  Block Definition Diagram (BDD)

o Assembly Instructions  Internal Block Diagram (IBD)

33

Block Definition Diagram vs Internal Block Diagram

BDD IBD

UML Class
Diagram

Parts
catalogue

Assembly
instructions

UML
Composite
Structure
Diagram

UML
Component

Diagram

UML Object
Diagram

Composition,
decomposition

Connection,
communication

refined in

provides
types

34

Top-down and bottom-up design in SysML

is only a language

Both approaches can be used
(even at the same time:

meet-in-the-middle)

System

Subsystems

Subsytems of subsystems

System

Subsystems

Subsytems of subsystems

35

Application to Functional Architecture

 Blocks are functional units (components)

o SW modules, microservices, devices, peripherals, etc.

o Part-whole relationship  physical containment

o Connecting blocks  physical linkage

• Dependencies

• Information flow

 Don’t confuse with…

o ANSI C functions

o Functional programming

o Modeling of functional requirements

Block Definition Diagram Overview

Block Definition Diagrams

Parts Catalogue
Block Definition Diagram (BDD)

Block Definition Diagram (BDD)

37

Block nodes

 Basic structural elements

 Anything can be a block

o System, Subsystems

o Hardware

o Software

o Data

o Person

o Flowing object

 UML class with a
<<block>> stereotype

optional on a
bdd

40

 Parts - contained blocks

 References – referenced blocks

 Values – like UML attributes

 Constraints

 Ports

 Etc…

 Can be hidden on a diagram

Block node compartments
Name

(can have special characters)

parts
Compartment

41

(Reference) Association

 A relationship type between two blocks

o Undirected: reference property in both blocks

o Directed: reference only in one block

 End properties: role name, multiplicity, constraints

 (Not mandatory: ibd connectors may be untyped)

42

Association Block

 Association represented by a block
possibly with structural properties

43

Composition vs Generalization (often misused)

 Composition

o Container component owns
the contained components

o Container component
aggregates all features of
contained components

 Generalization

o Components share
common features besides
other properties

o Component can be used
interchangeably with
descendant components

44

Part (or Composite) Association

 Specifies a strong whole-part hierarchy

Denotation Default multiplicity

Whole end black diamond 0..1

Part end role name 1..1

45

Generalization

 Similar to OOP, UML

o Key idea: substitutability

 Main usages

o Classification (shared role, feature)

• Move from specific to general

o Specific configurations (specific name, values)

• Move from general to specific

 Adds, defines, redefines properties

 Not just blocks (actors, signals, interfaces, etc.)

 Multiple inheritance is allowed

46

Generalization

Classification

Specification

47

Generalization set

 Generalization relationships, shared general end

o complete – incomplete

o overlapping – disjoint

48

Traceability of BDDs to other artifacts

 Realizes requirements

 Allocation
(to platform)

49

Internal Block Diagram (IBD)
Overview

Assembly Instructions Internal Block Diagrams

Internal Block Diagram (IBD)

51

Modeling Aspect

Breaks down a composite block
into part blocks that make up the whole

52

Objectives

 Describe a composite block as connected parts

o Use contained and referenced blocks defined in a bdd

o Use associations and interaction points (ports)

o Specify connectors (incl. data flow) between parts

• (Item flows can be mapped to object flows in activities)

o Specify property restrictions

 Define a template (instance specification)

o Semantics: if you instantiate the composite block…

• …you will also have the following parts…

• …arranged in a specific way

53

Blocks on IBD

 The entire ibd represents a block

 Instance specifications (templates / prototypes)

o Contained blocks
(aka. Parts)

o Referenced blocks

• (dashed border)

o Use role names

Default multiplicity: 1

54

Real System

Connectors

 Connectors between blocks (or compatible ports)

 Optionally typed by an association from a bdd

55

Definition / type:
association

Use / prototype / template:
connector

actual instance:
link

Nested blocks

 Nested blocks

o Block structure is expanded in an embedded ibd

o Commonly used on ibds

• (Sometimes on bdd, in the structure compartment)

 Encapsulation

o Connectors can cross block boundary

o Mark the block encapsulated to forbid this

56

Qualified role names:
wheel.t.bead

Ports and Interfaces

Internal Block Diagram (IBD)

Ports

 What is a port?

o Interaction points with external entities limiting and
differentiating the possible connection types

58

REST API:

Ports

 What is a port?

o Interaction points with external entities limiting and
differentiating the possible connection types

59

REST API:

Port of a city

Reasons to Use Ports 1

 Bottom-up method

o Problem: specify how a designed component
can be used in a context

• A solution would be to realize or require an interface

o Ports provide better abstraction

• Interface can be specific to the port, not the block

• Multiple ports

60

Reasons to Use Ports 2

 Top-down method

o Problem: connections are not detailed enough and
need to be refined

o Ports can be used to refine connections iteratively

61

Reasons to Use Ports 3

 Encapsulation

o Problem: connections that cross the block boundary
may reduce maintainability

o Use ports to hide the internal structure of a block

62

Reasons to Use Ports 4

 Interaction point has a special role

o Problem: the block has a physical connection point
(like AC power socket/plug) or
a distinguished behaviour

o Ports can be typed by a block with its own properties
and behaviour

63

Standard ports

 Uses interfaces for communication

o Provided interface (ball) – defines a service

o Required interface (socket) – uses a service

• A port can have multiple of required ports

64

Flow ports

 The connection is described by the flowing item(s)
e.g.: data, material, energy, etc.

 Can flow continuously, periodically or
aperiodically

Flow item can be typed by:
• Block,
• Value Type,
• Signal

65

Full and Proxy Ports

 <<Full>> ports

o can have internal structure and define behaviour

 <<Proxy>> ports

o do not own any features

o only expose internal features of the block

66

• Connect to contained block…
• …or port on contained block

Using Composition instead of Full Port

67

Nested ports

 (Full) Ports can also have other ports

 Examples

o a separate port for configuring the behaviour of the
port

68

