
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Reactive behavioral modeling

Vince Molnár

1

Informatikai Rendszertervezés
BMEVIMIAC01

2

Tr
ac

ea
b

ili
ty

V
er

if
ic

at
io

n
an

d
 V

al
id

at
io

n

Platform-based systems design

Functional
model

Platform
model

Architecture
model

Config. model
Component

behav. model

Source code Config. file

Binary code

Compiler
Linker

HW/SW
allocation

code generationcode generation

HW library

Requirements

Fault tolerance
& safety

3

Learning Objectives

Reactive behavioral modeling

•Understand the basic blocks of reactive component design
•Identify the events, states and actions to describe component
behavior
•Understand the syntactic building blocks of UML State Machines
•Understand the semantics of UML State Machines
•Use hierarchy to structure the models and express abstraction-
refinement of states
•Build clean and expressive models by using best practices

Code generation

• Understand the main ideas of different approaches

• Understand the advantages and disadvantages of different
approaches

PREVIOUSLY…
(SYSTEM MODELING)

State machines
Hierarchical state refinement
Parallel/Orthogonal regions

4

State Space

 State space

o A set of distinct system states

o DEF: The state space is a set such that in every
moment, the system can be described by exactly one
element.

 Current state

o DEF: At a given moment, the current state of the
system is the single element of the state space that
describes the system in that moment.

5

State machine

6

BANK ATM

Off

Self Test

Out of ServiceMaintenanceIdle

Customer
Authentication

Selecting
Transaction

Transaction

turnOff

turnOff

turnOn
failure

failure

service

service

cancel

cardInserted
failure

cancel cancel

Hierarchical state machine

7

BANK ATM

Serving Customer

Off

Self Test

Out of ServiceMaintenanceIdle

Customer
Authentication

Selecting
Transaction

Transaction

turnOff

turnOff

turnOn
failure

failure

service

service

cancelcardInserted
failure

Parallel/orthogonal regions

8

PLACE AND MODE OF ROBOT VACUUM CLEANER

fluffy
surface

wet
surface

smooth
surface

inactive

cleaning

w
deactivate

s

activate

REACTIVE COMPONENTS

Event, Event queue

State, State variable

Transition, Action

9

Event-oriented approach

 Classic programs:

o Input parameters, processing, output

o See: Activity diagram

 Reactive systems:

o Behavior is triggered by events

o The system reacts to its environment

o Continuous operation

• Idle state: waiting for events

 Examples:

o Most GUIs, Active Object pattern, Web services

10

Events

 Event:

o Asynchronous occurrence with optional parameters

o E.g. mouse click + coordinates

 Event queue:

o Events are placed in an event queue in the order of
occurrence

o The reactive systems processes and reacts to them
one-by-one

 Quiz: Can two asynchronous events occur precisely
at the same time?

11

States

 Can reactions depend on previous events?

o No  Stateless system (1 state!)

o Yes  Internal states

 State variables:

o Data that the systems stores/processes/uses

o Keep their values between event occurrences

o Special state variable: control location

 State:

o The current values of the state variables of the system
at a given moment ( state vector)

12

State transitions

 Transition:

o An event can trigger a change of system state

o E.g. the value of a variable is changed, or from this
point, the system will react differently to events

 Action:

o Behavior executed due to occurrence of events

o Can access: state variables, parameters of the event

 Actions may belong to transitions

o Transition = (source state, event, action, target state)

13

Precondition Postcondition
italic = optional

State transitions

 Transition:

o An event can trigger a change of system state

o E.g. the value of a variable is changed, or from this
point, the system will react differently to events

 Action:

o Behavior executed due to occurrence of events

o Can access: state variables, parameters of the event

 Actions may belong to transitions

o Transition = (source state, event, action, target state)

14

Precondition Postcondition
italic = optional

Transitions without an event:
Implicit / spontaneous transitions,
not triggered by external events

UML STATE MACHINE

States (hierarchical refinement, pseudostates)

Transitions (timers, complex transitions)

15

The UML State Machine

 UML State Machine Diagram (Statechart):

o For the modeling of hierarchical and concurrent
systems

o For the description of the behavior of a UML class or
SysML block

• Attributes of the object or component may be (state)
variables in the state machine

 Extensions compared to simple state machines:

o Hierarchical states (state refinement)

o Concurrent behavior (parallel threads)

o Memory (stored state configurations)

16

Terminology

 Concrete state:

o The current state vector (i.e. values of state variables)

o Like defined so far

o Can be infinitely many (e.g. when modeling time)

 Abstract state:

o ≈Set of concrete states

o ≈Predicates over concrete states

o UML State Machine  „control location”

• Along a distinguished state variable
(state configuration, see later)

• Other variables are not part of the state signature

17

State (UML State Machine)

Hierarchical state refinement:

 Simple state

 OR-refinement (hierarchical refinement):

o State is replaced by complete state machine

o Refined state active  Exactly 1 child state active

 AND-refinement (parallel refinement):

o State is replaced by parallel state machines
(parallel regions)

o Refined state active  Exactly 1 child state active
in each parallel region

18

C
o

m
p

le
x

st
at

e

State refinement (example)

19

On Off

off

out

on

State refinement (example)

20

On Off

Standby

Disconnected

out in

off

out

on

OR-refinement

State refinement (example)

21

On Off

Standby

Disconnected

SoundImage

out in

off

out

on

OR-refinementAND-refinement

State refinement (example)

22

OR-refinementAND+OR-refinement

On Off

Standby

Disconnected

SoundImage

SoundOn

SoundOff

snd mute out in

off

out

on

Show

Coordinates

coor coor

State refinement (example)

23

OR-refinementAND+OR-refinement

On Off

Standby

Disconnected

SoundImage

SoundOn

SoundOff

snd mute out in

off

out

on

Show

Coordinates

Clock

NoClock

clk clk

coor coor

O
R

-r
ef

in
e

m
e

n
t

State configuration

 In a UML State Machine, there can be multiple
active „states” (abstract states / control locations)

 Valid state configuration:

o The top-level state machine has exactly one active
state

o In every active OR-refinement there is exactly one
active state

o In every region of an active AND-refinement there is
exactly one active

 A state configuration is thus the set of active
states

24

State (UML State Machine)

Actions related to states:

 Entry/Exit action:

o Executed when entering/exiting a state

 Do action:

o Starts after the Entry action has finished

o Runs in parallel with Do actions of other active states

o May produce a completion event when finished

o Is terminated when the state is left

o Example: waiting for connections, blinking light, etc.

o Note: mixture of flow- and state-based modeling!

25

Transitions (UML State Machine)

 Transition:

o Modeling of state changes

o Can be triggered by events or completion

o Can depend on current values of variables

o An action may be executed when the transition fires

26

Transitions (UML State Machine)

 Transition:

o Modeling of state changes

o Can be triggered by events or completion

o Can depend on current values of variables

o An action may be executed when the transition fires
trigger [guard] / action

 Trigger: event that causes the reaction

 Guard: logical formula, must be true to fire

 Action: the action to execute

27

Source Target

Transitions (UML State Machine)

 Transition:

o Modeling of state changes

o Can be triggered by events or completion

o Can depend on current values of variables

o An action may be executed when the transition fires
trigger [guard] / action

 Trigger: event that causes the reaction

 Guard: logical formula, must be true to fire

 Action: the action to execute

28

Source Target

Can be on another
hierarchy level

Empty trigger means a
completion transition

Transitions (UML State Machine)

Complex transitions:

 Condition: Different reactions to an
event based on certain conditions

 Fork: To denote target states in
multiple parallel regions

 Join: To synchronize parallel regions
and denote a common target state

 Internal transitions: like a self-loop, but its firing
does not leave and enter the source state

o Notation: along with the attributes of the state

29

Transitions (UML State Machine)

Complex transitions:

 Condition: Different reactions to an
event based on certain conditions

 Fork: To denote target states in
multiple parallel regions

 Join: To synchronize parallel regions
and denote a common target state

 Internal transitions: like a self-loop, but its firing
does not leave and enter the source state

o Notation: along with the attributes of the state

30

Events and Actions (UML)

Events:

 Instances of the Event class (and its subclasses)

o Asynchronous reception of a message

o Invocation/completion of a method or behavior

o Timer events

• at(t): the value of the global clock is t

• after(t): the source state has been active for time t

Actions:

 Instances of the Behavior class (and its subclasses)

o Mostly Activities

31

Transitions (example)

32

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
at(50)

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

Failure

Transitions (example)

33

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
at(50)

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

FailureThis case does not
leave the Work state!

Without Forks and Conditions (example)

34

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
at(50)

Work

Group2

Group1

illegal_activity [fatal] / report_status()

error [fatal] / report_status()

error [not_fatal] / recovery()

Failure

Pseudostates

 Initial state:

o Shall be one in every OR-refinement and every region
of AND-refinements*

o Denotes the state to activate when entering a
complex state

 Final state:

o The execution of the State Machine is terminated

• May generate a completion event

o Rarely used („reactive systems do not terminate”)
* It is considered bad practice, but omittable if transitions directly
lead to child states of the complex state

35

Pseudostates

 History State:

o Extension of the Initial State

o Denotes initial state when entering for the first time

o Stores the current state before exiting

o Restores last state on consecutive entries

 Deep History State:

o Like the History State, but stores the last state
configuration in the whole subhierarchy

36

H

H*

Pseudostates (example)

37

Print_job

Close

Print

Process
Handle

Get

Reply

it

H

Supplementary: Initial and History State

Combination of Initial State and History:

 If the transition leads to the complex state, the
Initial State has priority

 The transition can lead directly to the History
State to explicitly denote that the last state
(configuration) is to be restored

 Morals: be careful 

38

Summary of syntax

39

 State

 Transition

 (Deep) History State

 Initial State

 Final State

 Condition

 Synchronization (Fork/Join)

State

H H*

s1 s2t[g]/a

SEMANTICS

Event queue

Scheduler

Priority

Conflict

40

Basics of semantics

1. Incoming events are put in an event queue

2. The scheduler takes a single event out of the
event queue in every step

3. The event is processed by the State Machine

o „Run to completion”: The event is completely
processed until there is no more transition to fire

o The State Machine can still be terminated externally

4. After the complete processing of the event, the
scheduler starts the processing of the next event

The event queue serializes and synchronizes

41

Process of firing

1. Start from a stable state configuration

o Nothing can be fired without an event occurrence

2. Collect enabled transitions:

o Source state is active

• Element of the current state configuration

o The current event is the trigger of the transition

• Completion transitions are triggered by a completion event

o The guard of the transition evaluates to true over the
current state and the current values of variables

42

Process of firing

3. Based on the number of enabled transitions:

o If only one: Fire!

o If none: Nothing happens*

o If multiple: Selection of transitions to fire

4. Detection of conflicts:

o Enabled transitions t1 and t2 are in conflict iff the
intersection of the sets of states left during firing is
not empty

* Deferrable triggers may keep the event for later use

43

Process of firing

3. Based on the number of enabled transitions:

o If only one: Fire!

o If none: Nothing happens*

o If multiple: Selection of transitions to fire

4. Detection of conflicts:

o Enabled transitions t1 and t2 are in coflict iff the
intersection of the sets of states left during firing is
not empty

* Deferrable triggers may keep the event for later use

44

 The trigger of both
transitions is the current event

~{States of source config.} \ {States of target config.}

Conflicts (example)

45

t4

t5
t3t2t1

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

Every transition is triggered by the same event e: which sould fire?

Cannot fire together (conflicting): {t1,t2}; {t1,t4}; {t2,t4}; {t3,t4}
Enabled transitions: t1, t2, t3, t4

Process of firing

5. Conflict resolution:

o Priority: defined for a pair of transitions

• Def: t1 > t2  source state of t1 is transitive child of t2

• t1 is lower in the hierarchy, it is more „specialized”

• ≈ inheritance and overriding in object oriented languages

o Fireable transitions:

• Highest priority among all enabled transitions

6. Selection of transitions to fire:

o Every conflict-free, maximal (not further extendable)
subset of fireable transitions

o Selection from these: non-deterministic

46

Conflict resolution (example)

47

t4

t5
t3t2t1

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

Every transition is triggered by the same event e: which sould fire?

Cannot fire together: {t1,t2}; {t1,t4}; {t2,t4}; {t3,t4}
Priorities: t1 > t4; t2 > t4; t3 > t4
Fireable: {t1,t3}; {t2,t3}

Process of firing

7. Firing of the selected transitions

o Order of individual firings is again non-deterministic

• As usual for parallel behaviors…

o Process of firing a single transition:

1. Execution of exit actions of left (deactivated) source states
(outwards)

2. Execution of the action(s) belonging to the transition

3. Execution of entry actions of entered (activated) target
states (inwards)

48

Process of firing

7. Firing of the selected transitions

o Order of individual firings is again non-deterministic

• As usual for parallel behaviors…

o Process of firing a single transition:

1. Execution of exit actions of left (deactivated) source states
(outwards)

2. Execution of the action(s) belonging to the transition

3. Execution of entry actions of entered (activated) target
states (inwards)

8. If a completion event is generated, firing of
completion transitions (steps 1-7. again with
completion transitions)

49

~{States in target conf.} \ {States in source conf.}

Completion transition

 Transition without a trigger: completion transition

o Triggered by a completion event

 A completion event is generated when

o The entry and do actions have been finished

o For complex states, additionally:

• Each region have reached a Final pseudostate

 Completion events are processed immediately

o Even if other events are in the queue

oMultiple completion events in different orthogonal
regions are processed in an undefined order

50

Completion transition

 Transition without a trigger: completion transition

o Triggered by a completion event

 A completion event is generated when

o The entry and do actions have been finished

o For complex states, additionally:

• Each region have reached a Final pseudostate

 Completion events are processed immediately

o Even if other events are in the queue

oMultiple completion events in different orthogonal
regions are processed in an undefined order

51

Facilitates the modeling of process-like behaviors
in a state-based modeling language fuzzy semantics

Do not use without a very good reason

Completion transitions (example)

52

Print_job

Close

Print

Process
Handle

Get

Reply

it

H

Identifying target state configuration

If the target of the transition is a…

1. …simple state: the new configuration is the state
and all of its parents (transitively)

2. …OR-refined state: like case 1 and

o In case of a History State: last state configuration

o Otherwise: the state denoted by the Initial State

o + States activated through the activation of any
complex state

3. …AND-refined state: like case 1 and

o For every parallel region, like case 2

53

Changing of state configurations (example)

54

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

Changing of state configurations (example)

55

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1211 - exit action

Changing of state configurations (example)

56

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S121 - exit action

Changing of state configurations (example)

57

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S12 - exit action

Changing of state configurations (example)

58

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

NO S1 exit/entry action!

Changing of state configurations (example)

59

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

Action of transition

Changing of state configurations (example)

60

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S11 – entry action

Changing of state configurations (example)

61

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S111 – entry action

Changing of state configurations (example)

62

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1111 - entry action

Summary of semantics

1. Start from a stable state configuration

2. Collection of enabled transitions

3. Decision based on number of enabled transitions

4. Detection of conflicts (cannot fire together)

5. Conflict resolution (priority, fireable transitions)

6. Selection of transitions to fire

7. Firing of selected transitions
o exit actions (outwards), transition, entry actions (inwards)

8. Firing of completion transitions  stable config.

63

Summary of semantics (example)

64

t4

t5
t3t2t1

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

Every transition is triggered by the same event e: which sould fire?

Cannot fire together: {t1,t2}; {t1,t4}; {t2,t4}; {t3,t4}
Priorities: t1 > t4; t2 > t4; t3 > t4
Fireable: {t1,t3}; {t2,t3}

Enabled transitions: t1, t2, t3, t4

MODELING WITH
UML STATE MACHINES

Completeness, Unambiguity

Best practices

Modeling hardware interrupts

Complex example

65

Completeness and Unambiguity

 Completeness:

o In every state configuration, for every guard
evaluation, for every event:  1 behavior

• Easier to check, but stricter:
For every event and guard evaluation, there should be a
transition in every state or one of its parents

 Unambiguity:

o In every state configuration, for every guard
evaluation, for every event:  1 behavior

• Easier to check, equivalent:
For every event and guard evaluation, there should be at
most one transition in every state

66

Best practices

 Start from a simple state machine and use state
refinement! Model level-by-level!

 Make sure there is an initial state in every region!

 Strive for completeness!

o Add an internal transition for events that should not
be handled

o Complex states should define a default behavior for
every relevant event

• In the other direction: Use only those events in child states
that are handled by the parent state as well

 Avoid transitions that cross hierarchy levels!
67

Best practices

 Ambiguous models should be built only for
specification purposes or if the behavior is really
random/not controllable (e.g. the model of the
environment)!

 Use entry/exit actions for behaviors related to
reaching or leaving states!

 Avoid using do actions!

 Use a Final State if the State Machine is meant to
no longer process events!

 Use History States lightly!

68

RELATIONS TO OTHER DIAGRAMS

Class/Block Diagram

Activity Diagram

Interactions

76

Class/Block Diagram

 Active Object pattern: object has an own thread

o Definition of behavior: UML State Machine

o Events:

• Method invocation/completion

• Signal reception

• (Timers)

o Actions:

• Activities

• Methods of the class/block

o Available variables

• Attributes of the class/block

77

Activity Diagram, Interactions

Activity Diagram

 Definition of actions:

o Directly in the State Machine

o As the description of class/block methods

 Send Message action

o Provides event for the State Machine

Interactions

 Sending and reception of messages

o Provides events for the State Machine

 Behavior behind a Lifeline (protocol state machine)
78

EXTRA: CODE GENERATION
FROM UML STATE MACHINES

With Switch-Case

Tömbökkel és pointerekkel

79

Motivation

 Modeling of embedded systems/components

o Usually with state machines

o Diagram is easily comprehensible

o Code can be very complex due to many branches

 Code generation

80

Tools

Depending on the goal and platform

 Low-level embedded environments

o State Machine: No hierarchy, parallelism

o Language: C, Assembly

o Constructs: goto, jmp, if-then-else, switch-case…

81

Tools

Depending on the goal and platform

 Low-level embedded environments

o State Machine: No hierarchy, parallelism

o Language: C, Assembly

o Constructs: goto, jmp, if-then-else, switch-case…

82

Every state machine
can be „flattened”

Tools

Depending on the goal and platform

 Low-level embedded environments

o State Machine: No hierarchy, parallelism

o Language: C, Assembly

o Constructs: goto, jmp, if-then-else, switch-case…

 High-level software environments
(e.g. web protocols)

o State Machine: May use every element

o Language: C, C++, Java, C#, etc.

o Constructs: switch-case, object orientation

83

Discussed methods

1. Simple state machines with Switch-Case

2. Simple state machines with arrays and pointers

84

Simple state machines with Switch-Case

Needed:

 Integer or Enumeration type for states

 Integer, Enumeration type or class for events

 State variable + additional optional variables

o State s = [initial state];

 Event handler method:

o void processEvent(Event e)

85

Simple state machines with Switch-Case

Event handler method:

guard(e):

 Evaluation of guard
(can depend on e)

action(e):

 Execution of action
(can depend on e)

86

void processEvent(Event e) {

switch (s) {

case s1:

switch (e) {

case e1:

if (guard1(e)) {

action1(e);

s = s2;

}

break;

}

break;

...

}

}

s1

s2

e1 [guard1] / action1

Simple state machines with Switch-Case

Event handler method:

guard(e):

 Evaluation of guard
(can depend on e)

action(e):

 Execution of action
(can depend on e)

87

void processEvent(Event e) {

switch (s) {

case s1:

switch (e) {

case e1:

if (guard1(e)) {

action1(e);

s = s2;

}

break;

}

break;

...

}

}

s1

s2

e1 [guard1] / action1

…

s1exit();

action1(e);

s = s2;

s2entry();

…

Simple state machines + arrays, pointers

Needed:

 Everything as before

 A 2-dimensional array for next states

o State nextState[#states][#events]

 A 2-dimensional array for guard functions

o bool (*guards)[#states][#events](Event e)

 A 2-dimensional array for actions

o void (*actions)[#states][#events](Event e)

88

Simple state machines + arrays, pointers

Initialization of arrays:

Event handler method:

89

void processEvent(Event e) {

if (guards[s]e) {

actions[s]e;

s = states[s][e];

}

}

State nextState[#states][#events] =

{{ s2, s1, ...}, { ... }, ...};

bool (*guards)[#states][#events](Event e) =

{{ guard1, guard2, ...}, { ... }, ...};

void (*actions)[#states][#events](Event e) =

{{ actions1, action2, ...}, { ... }, ...};

Simple state machines + arrays, pointers

Initialization of arrays:

Event handler method:

90

void processEvent(Event e) {

if (guards[s]e) {

actions[s]e;

s = states[s][e];

}

}

State nextState[#states][#events] =

{{ s2, s1, ...}, { ... }, ...};

bool (*guards)[#states][#events](Event e) =

{{ guard1, guard2, ...}, { ... }, ...};

void (*actions)[#states][#events](Event e) =

{{ actions1, action2, ...}, { ... }, ...};

…

exit[s]();

actions[s]e;

s = states[s][e];

entry[s]();

…

