
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Safety-critical systems:
Architecture

Systems Engineering course

András Vörös
(slides: István Majzik)

Overview of the goals

Previous topics

 What we specified?

o Safety function requirements: Function which is
intended to achieve or maintain a safe state

o Safety integrity requirements: Probability of a safety-
related system satisfactorily performing the required
safety functions (i.e., without failure)

 Safety Integrity Level and component fault rates

o SIL 4: 10-8 ...10-9 faults per hour

o Typical electronic components: 10-5…10-6 faults/hour

o Typical software: 1..10 faults per 1000 line of code

???

Goals

 Safety critical systems study block

1. Requirements in critical systems: Safety,
dependability

2. Architecture design (patterns) in critical systems

3. Evaluation of system architecture

 Focus: Design of system architecture to ...

omaintain safety

o handle the effects of faults in hardware and software
components

Learning objectives

Architecture design in safety critical systems

 Understand the role of architecture

 Know the typical architecture level solutions for
error detection in case of fail-stop behavior

 Propose solutions for fault tolerance in case of

o Permanent hardware faults

o Transient hardware faults

o Software faults

 Understand the time and resource overhead of
the different architecture patterns

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fail-stop operation

1. Single channel architecture with built-in self-test

 Single processing flow with error detection

 Scheduled hardware self-tests

o After switch-on: Detailed self-test

o In run-time: On-line tests

 Online software self-checking

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

 Disadvantages

o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

Implementation of on-line error detection

 Application dependent (ad-hoc) techniques
o Acceptance checking (e.g.: too low, too high value)

o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)

o Structure checking (e.g.: broken structure)

 Application independent (platform) mechanisms
o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MMU level: Protection of memory ranges

o OS level checking
• Invalid parameters of system calls

• OS level protection of resources

Example: Testing memory cells (hw)

States of a correct cell to be
checked:

States in case of stuck-at 0/1
faults:

States in case of transition
fault:

States of two correct (adjacent) cells
to be checked:

Testing: „March” algorithms (w/r)

Example: Checking execution flow (sw)

 Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

} else {

d: m=m-i;

}

e: printf(“%d\n”,n);

}

f: printf(“Ready.”)

Source code: Control flow graph:

b

c

d

e

a

f

Example: Checking execution flow (sw)

 Checking the correctness of statement sequence

o Reference for correct behavior: Program control flow graph

o Instrumentation: Signatures to be checked in runtime

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

} else {

d: S(d); m=m-i;

}

e: S(e); printf(“%d\n”,n);

}

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph:

b

c

d

e

a

f

2. Two-channels architecture with comparison

 Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

 High error detection
coverage
o The comparator is a critical

component (but simple)

 Disadvantages:
o Common mode faults

o Long detection latency
=

stopn

Example: TI Hercules Safety Microcontrollers

3. Two-channels architecture with safety checking

 Independent second
channel
o Safety bag: only safety

checking

o Diverse implementation

o Checking the output of
the primary channel

 Advantages
o Explicit safety rules

o Independence of the
checker channel

stopn

Example: Elektra interlocking system

Two channels:

 Logic channel:
CHILL (CCITT High
Level Language)
procedure-
oriented
programming
language

 Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
language

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Typical architectures
for fault-tolerant systems

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
is a safe state

• In case of a detected error
the system has to be
stopped

• Error detection is required

• Stopping (switch-off)
is not a safe state

• Service is needed even
in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

Fault tolerant systems

 Fault tolerance: Providing (safe) service in case of faults

o Intervening into the fault error failure chain

• Detecting the error and assessing the damage

• Involving extra resources to perform corrections / recovery

• Providing correct service without failure

• (Providing degraded service in case of insufficient resources)

 Extra resources: Redundancy

o Hardware

o Software

o Information

o Time

resources (sometimes together)

Categories of redundancy

 Forms of redundancy:
o Hardware redundancy

• Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
• Extra software modules

o Information redundancy
• Extra information (e.g., error correcting codes)

o Time redundancy
• Repeated execution (to handle transient faults)

 Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component has reduced load

o Hot: The redundant component is active in fault-free case

Overview: How to use the redundancy?

 Hardware design faults: (< 1%)

o Hardware redundancy with design diversity

 Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g.: redundant processor)

 Hardware transient operational faults: (~70-80%)

o Time redundancy (e.g.: instruction retry)

o Information redundancy (e.g.: error correcting codes)

o Software redundancy (e.g.: recovery from saved state)

 Software design faults: (~ 10%)

o Software redundancy with design diversity

1. Fault tolerance for hardware permanent faults

Replication:

 Duplication with diagnostics:

o Error detection by comparison

o With diagnostic unit:
Fault tolerance by switch-over

 TMR: Triple Modular Redundancy

o Masking the failure
by majority voting

o Voter is a critical component
(but simple)

 NMR: N-modular redundancy

o Masking the failure by majority voting

o Mission critical systems: Surviving the mission time

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

OutputMajority

With diversity in case of considering design faults

2. Fault tolerance for transient hardware faults

 Approach: Fault tolerance implemented by software

o Detecting the error

o Setting a fault-free state by handling the fault effects

o Continuing the execution from that state
(assuming that transient faults will not occur again)

 Four phases of operation:

1) Error detection

2) Damage assessment

3) Recovery

4) Fault treatment and continuing service

Phase 1: Error detection

 Application independent mechanisms:

o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

 Application dependent techniques:

o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o…

Phase 2: Damage assessment

 Motivation: Errors can propagate among the components
between the occurrence and detection of errors

 Limiting error propagation: Checking interactions

o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

 Estimation of components affected by a detected error

o Logging resource accesses and communication

o Analysis of interactions (before error detection)

!Fault Error detection
Interactions

Phase 3: Recovery

 Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

 Backward recovery:

o Restoring a prior error-free state (that was saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

 Compensation:

o The error can be handled by using redundant information

Types of recovery

 State space of the system: Error detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence

Types of recovery

 State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

e1

e2

e3

Types of recovery

 State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state

Types of recovery

 State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation

Types of recovery

 State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation

Backward recovery

 Backward recovery based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
• Save: copying the state periodically into stable storage

• Recovery: restoring the state from the stable storage

• Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

 Limited applicability: Based on operation logs
o Error to be handled: unintended operation

o Recovery is performed by the withdrawal of
operations

o Analogy: ”undo”

Scenarios of backward recovery

t

!
t

!
t

!
t

Saved state 1 Saved state 2

Fault Detection

Phase 4: Fault treatment and continuing service

 For transient faults:
o Handled by the forward or backward recovery

 For permanent faults:
o Recovery is unsuccessful (the error is detected again)

o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault

o Reconfiguration
• Replacing the faulty component using redundancy

• Degraded operation: Continuing only the critical services

o Repair and substitution

4. Fault tolerance for software faults

 Repeated execution is not effective for design faults!

 Redundancy with design diversity is required

Variants: Redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common faults

 Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

 Active redundancy:
Each variant is executed (in parallel)

o The same inputs are used

oMajority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a critical component (but simple)

Variant 1

Variant 2

Variant 3

Voter
Output

Error
signal

Input

Recovery blocks
 Passive redundancy: Activation only in case of faults

o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Execution of
a variant

Acceptance
checking

y n

Output

Input

Recovery blocks

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Comparison of the techniques

Property/Type N-version
programming

Recovery
blocks

Error detection Majority voting,
relative

Acceptance checking,
absolute

Execution of
variants

Parallel Serial

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always
(active)

Only in case of fault
(passive)

Number of
tolerated faults

[(N-1)/2] N-1

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults
o Fault tolerance implemented by software

1. Error detection

2. Damage assessment

3. Recovery: Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

