
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Towards Model-driven Engineering

Systems Engineering BSc Course



T
ra

c
e

a
b

ili
ty

V
e

ri
fic

a
ti
o

n
 a

n
d

 V
a

lid
a
tio

n

Platform-based systems design

Functional 
model

Platform 
model

Architecture 
model

Config. model
Component 

behav. model

Source code Config. file

Binary code

Compiler 
Linker

HW/SW 
allocation

code generationcode generation

HW library

Requirements

Fault tolerance 
& safety

2



Learning Objectives

Model and code generation

ωMotivations
ωOverview on code generation concepts

Domain-specificmodeling

ωMotivation and coreconcepts

Casestudy

ωComplex case study from the avionics domain

3



Model-driven Engineering



Motivations

ÁWe have valuable information in models Ą reuse!

o Use our models/ requirements/plansto deriveΧ

ÅDocumentation

ÅSource code

ÅConfiguration, communication descriptors

ÅΧ

ÅEven other models!

ÁModel-driven Engineering: 

o Models are the main artifacts, not code etc.

o The rest is mostly derived / generated

o May shorten development time and increase quality

5

Model-to-text
transformation 
(M2T)

Model-to-model
transformation 
(M2M)



Some Well-known MDSE Concepts

Model Code

Codegeneration

Code
Refactoring

Model
Refactoring

Re-engineering

Program comprehension

Code
Query

Model
Query

Generativeprogramming



Code generation
(text synthesis, M2T)



Similarity with compilers

ÁMapping between abstraction levels

o e.g., from C to assembly

ÁUsage of design patterns

o e.g., arrays, function calls, loops in C

ÁMany similarities, NOT a strict separation

o pl. C++ templates, automatically generated ctor+dtor

ÁPrediction:

oȅŜǎǘŜǊŘŀȅΩǎ ŘŜǎƛƎƴ ǇŀǘǘŜǊƴ ĄǘƻŘŀȅΩǎ ŎƻŘŜ ƎŜƴŜǊŀǘƛƻƴ 
feature ĄǘƻƳƻǊǊƻǿΩǎ ƭŀƴƎǳŀƎŜ ŜƭŜƳŜƴǘ

ÁDomain-specific instead of universal languages

9



Example: Source Code generation in MDE

10

DSM model

High -level language

Assembly

co
d

e
g
e

n
e

ra
tio

n
co

m
p

ile



Code Generation - Major Approaches

ÁDediacated

o Specific, ad-hoc

o Using a dedicated code generator

ÁTemplate based

11



Specific, ad-hoc

12

ÁDesigned for the specific problem domain:
o Best performance
o Quick and dirty
o Long development, hard maintainability
o Zero reusability 
o Dedicated problem domains
ÅMinimal changes during support cycle (safety critical embedded system, defense)
ÅCertifiability

o Example: 
ÅARINC653 Multistatic configuration generator (python script)



Template
Compiler/generator

Template based approach

16

Dear [Name],

I would like to inform you 
that your current balance is

[Balance]

Model

Textual 
Artifact

Template

Parameters

Executable
Template

Code

Dear John Doe,

I would like to inform you 
that your current balance is

1000$

bŀƳŜҐέWƻƘƴ 5ƻŜέ
.ŀƭŀƴŎŜҐέмлллϷέ



Template based approach

18

ÁExamples:
o JET (for EMF models)
o Velocity (/JSP)
o Xtend, Acceleo(MDE approach in Eclipse)
o AutoFilter (Kalmanfilters)
o Smarty (php)

Model

Textual 
Artifact

Template
Compiler/generator

Template

Parameters

Executable
Template

Code



Domain-specific 
Modeling Languages



Example metamodel / profile



Instance model, abstract syntax



Instance model, concrete syntax



Domain specific modeling languages

Software 
developer

Programminglanguage

Business 
analyst

Business process

Dependability
expert Dependabilitymodel

Security
expert

Riskmodel

System 
designer

Software 
architect

Software model



Structure of DSMs
Concrete syntax

(Graphical/Textual)

Code 
generation

View

Well-formedness 
constraints

Behaviouralsemantics,
Simulation, Refactoring

Abstract syntax
(Metamodel)

Mapping

Source Code
(Documentation, 
Configuration file)

Foundations of many modern tools
(design, analysis, V&V)
ÅDomains: avionics, automotive, 
ōǳǎƛƴŜǎǎ ƳƻŘŜƭƛƴƎΣ Χ


