SysML Miscellaneous Grab Bag

Systems Engineering BSc Course

Budapest University of Technology and Economics Department of Measurement and Information Systems

Modeling of logical and physical data

Using block definition diagrams

Value type (Data type)

- Primitives: Boolean, String, Complex, etc.
- Can have Unit and/or QuantityKind (formerly dimension)
 - QuantityKind: Length, Energy, Time, etc.
 - Unit: meter, inch, Watt, secundum, etc.
 - Has a QuantityKind

Value type (Data type)

- Primitives: Boolean, String, Complex, etc.
- Can have Unit and/or QuantityKind (formerly dimension)
 - QuantityKind: Length, Energy, Time, etc.
 - Unit: meter, inch, Watt, secundum, etc.
 - Has a QuantityKind

Data of a block

- Blocks can have attributes and/or values
 - Part property (composition)
 - Reference property
 - Value property (value type)
 - Flow property
- Value given by / restricted by
 - Definition (bdd)
 - e.g. in a specialized block (motorized = "true")
 - o Use (ibd)
 - o Runtime
 - The value may change over time

Signal, Block

- A signal defines a message that can be sent and received by a block.
 - Has a set of attributes
 - Used by interfaces in *Signal Receptions*

UML Profiles

- Profiles can be used to extend the UML/SysML language.
- Examples
 - SysML is defined as a profile on a subset of UML.
 - SYSMOD (a methodology for SysML) also defines a profile for SysML
 - MARTE (which is an OMG standard) profile is used for modeling real-time and embedded applications.
 - SysPhS (also OMG) is an add-on to SysML for modeling physical interaction and signal flow
 - Tools usually support the creation of custom profiles.

Defining a Profile

9

Using a Profile

A profile should be applied to the project to use

What else may a Profile provide?

- Presentation elements: icons, diagrams, ...
- Documented meaning
 - "A «Mechanical» Connector it is expected to exert significant forces in resistance to displacement of..."
- Design rules that can be enforced by the editor
 - E.g. "if a «Device» Block has an «Electrical» Connector, it must also own a «Ground» Port"
 - We will return to "well-formedness constraints" soon
- External tools that understand the Profile
 - Simulators, code generators, analysis tools etc.

SysML as a Profile

SysML itself is a Profile on UML

UML in Abstract Syntax

The underlying infrastructure of UML and SysML

Under the hood, pt. 1

Under the hood, pt. 2

Abstract and Concrete Syntax

Concrete Syntax

User-friendly presentation Diagrams, tables, icons Displayed in editors, views

Well-formedness constraints

Types of constraints

- A property of the system
- Must hold at any point in time
- "If you realize this system, we assume ...

(you must guarantee it, or must be a law of nature)"

- System Constraints
 - CPU should receive 12V +- 1V electricity
 - Dissipated heat equals current times voltage
 - A property of the **model**
 - Can be **enforced** by the editor
 - "If a model uses this element, it must ..."
- Well-formedness Constraints / Design Rules

 "if a «Device» Block has an «Electrical» Connector, it must also own a «Ground» Port"

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

- A SystemSignal and its group must be in the same IPdu
- Challenge: find violations quickly in large models
- New difficulties
 - reverse P: SignallPdu navigation R3:signalToPduMapping R4:signalToPduMapping complex M CHILD **M PARENT** manual : ISignalToIPduMapping : ISignalToIPduMapping solution R1:signal R5:signal NEG S CHILD : ISignal S PARENT : ISignal R2:systemSignal R6:systemSignal **R7:systemSignal** SS PARENT: SystemSignalGroup SS CHILD : SystemSignal

Motivation: Early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

Mapping ISignals to IPDUs								
ISignals								
*								
🛆 ISignals	Sign							
	4							

∠	-/1/ sigPedalPosition
B_sigSpeedValue	-∕l, sigSpeedValue
🛂 ch_sigEngineTemperature	-∕lγ- sigEngineTempera
🗠 ch_sigIgnition	-/l/ sigIgnition
🛂 ch_sigRpm	-∕l,– sigRpm
🖃 🚧 ch_status	🚈 status
🚧 ch_status_ccActive	-∕l, status_ccActive

Position of ISignals in the selected IPDU								
ch_status_ccSpeedU	Ch_stat							
0								
🐨 Model tree 😝 System editor: demoSystem 🔀								

🌻 Element description 🔀 Problems 🔀 errors, 2 warnings, 0 others

AUTOSAR:

- standardized SW architecture of the automotive industry
- now supported by modern modeling tools **Design Rule/Well-formedness constraint:**
- each valid car architecture needs to respect
- designers are immediately notified if violated **Challenge:**
- >500 design rules in AUTOSAR tools
- >1 million elements in AUTOSAR models
- models constantly evolve by designers

Description –		Resource	raui	LOCATION	Type	
🖃 😣 Errors (4 items)						
ISignal of a grouped System Signal should be mapped to an IPdu along with the II $$	ar of the System Signal Group	demo_swc.arxml	/alma	/rootP	AUTOSAR P	
😣 ISignal of a grouped System Signal should be mapped to an IPdu along with the ISigr	hal of the System Signal Group	demo_swc.arxml	/alma	/rootP	AUTOSAR P	
😣 ISignal of a grouped System Signal should be mapped to an IPdu along with the ISigr	hal of the System Signal Group	demo_swc.arxml	/alma	/rootP	AUTOSAR P	
😣 Reference iPduTimingSpecification has invalid multiplicity! (Must be in: [1, 1])		demo_swc.arxml	/alma	/rootP	AUTOSAR P	

OCL: an OMG Standard

Object Constraint Language

- OMG standard
- Declarative language for defining constraints
- o ~ functional programming

Unique name constraint defined by OCL:

o context Component inv: Component.allInstances()-> forAll(c1, c2 | c1 <> c2 implies c1.name <> c2.name)

VIATRA

- VIATRA is an open source Eclipse project
 O Affiliated with the research group
- VIATRA Query Language
 - Graph pattern matching
 - Can evaluate queries incrementally upon changes
- Unique name constraint defined by VQL
 - opattern nameCollision(c1, c2) {
 Component.name(c1,name);
 Component.name(c2,name);
 c1 != c2;

System constraints and physical parameters in SysML

Constraint blocks

Types of constraints

- A property of the system
- Must hold at any point in time
- "If you realize this system, we assume ...

(you must guarantee it, or must be a law of nature)"

- System Constraints
 - CPU should receive 12V +- 1V electricity
 - Dissipated heat equals current times voltage
 - A property of the **model**
 - Can be **enforced** by the editor
 - "If a model uses this element, it must ..."
- Well-formedness Constraints / Design Rules

 "if a «Device» Block has an «Electrical» Connector, it must also own a «Ground» Port"

Constraint blocks

- Constraint: equations with parameters bound to the properties of the system
- Constraint block: supports the definition and the reuse of constraints. It holds

Assignments and equations

 Causal connection ≈ assignment in programming language

$$y := x + 3$$

Right-hand-side value determines left-hands-side variable
 Typical use: to implement controller

■ Acausal connection ≈ mathematical equation

$$y = x + 3 \iff y - 3 - x = 0$$

 Always holds; if any of the variables has a new value, it enforces that the other variables change accordingly

• Typical use: to model behaviour of plant / environment

Constraint definition

 Composition is used to define complex constraints from simple equations

Parametric diagram

Specification of bindings between system parameters

Parametric Diagram (PAR)

MÚEGYETEM 1782

Parameter bindings

 Goal: describe the application of constraints in a particular context

Applications of parametrics

- Parametric specification
 - Define parametric relationships in the system structure
- Parametric analysis
 - Evaluating constraints on the system parameters to calculate values and margins for a given context
 - Checking design alternatives
 - Tool support: ParaMagic plug-in for MagicDraw
- There are modeling standards with better support for this modeling aspect...
 - o ...such as Modelica

Summary

Top-down and bottom-up design

Top-down: using decomposition
 When designing a subsystem, its goal is already known

There are no working parts during development
 Problems, needs of subsystems revealed late

Bottom-up: using composition
 Subsystems can be tested one-by-one
 There are always some working parts during development

S Exact roles of the subsystems are revealed late

- (Not only in structural modeling...)
- Meet-in-the-middle approach
- Iterative approaches

System

• • • •

Ports

- What is a port?
 - Interaction points with external entities limiting and differentiating the possible connection types

