Modellalapu szoftvertervezés

Tematika, kovetelmények

Varrd Daniel
varro@mit.ome.hu

A targyrol

= Modellalapu szoftvertervezés =
Model-driven Software Design (MDSD)

= ElSadasok

o MDSD: Kedd 10:15-12:00, IB413

o (Szolglnt: Hétf6 10:15-12:00, 1B413)
= Gyakorlatok

o Kozo6s: Csutortok 14:15-16:00, 1B413

o El6adasok+gyakorlatok pontos beosztasa a honlapon, Google Calendarban
= Honlap

o http://www.inf.mit.bme.hu/edu/courses/mdsd

http://www.inf.mit.bme.hu/edu/courses/mdsd

A targy oktatol

= El6adok
o Varro Daniel
o Horvath Akos
o Rath Istvan
o + meghivott el6addk

= Gyakorlatok:
o Hegedis Abel
o lzsé Benedek

o Ujhelyi Zoltan
o Semerath Oszkar
o Szarnyas Gabor

Kovetelmenyek

= Motto: ,a gyakorlat teszi a mestert”

o A félév soran 3 dsszefliggd hazi feladatot kell megoldani

* Hatarid6re
e 2 f6s csapatmunkaban
o Alapelv
* modellezés + validalas + kodgeneralas
* a megvaldsitas minGségének javitasa céljabol
o Kiiras: https://www.inf.mit.bme.hu/edu/courses/mdsd/homework
(hamarosan)

= Szobbeli vizsga, a hazi feladatok eredmeénye beszamit
o Extra feladatok a félév soran a megajanlott jegyért

= Segédanyagok: Foliak +

o Angol konyv: Model driven software engineering in practice
by Brambilla, Cabot and Wimmer (féliak is részben)

https://www.inf.mit.bme.hu/edu/courses/mdsd/homework

* Modellezés (6. hét: marcius 18.):

o Kovetelmények
o Domain modellezés (metamodellezés)
o Allapotgépek

"= Domain-specifikus nyelvek (12. hét, aprilis 29.)
o Koédgeneralas
o Modellvalidacio

" Implementacio (14. hét, majus 17.)

o Integralt rendszer bemutatasa

Gyakori kerdesek

Hogyan alakitsunk csapatot?
o Ratok bizzuk. Két f6s csapatok legyenek.

o A csapat nevét és a tagok névsorat feb. 13-ig kildjétek el emailben a
ahorvath@mit.bome.hu cimre. (jobb lenne mar ma)

Mi lesz, ha valaki nem talal maganak csapatot?

o Majd mi talalunk neki. (De csak végsé esetben.)
Mikor lesz az elsé gyakorlat?

o Februar 14: Bevezet6, SVN+Trac hasznalata.
Hogyan kell beadni a hazi feladatot?

o A hataridd el6tti nap éjfélig SVN-be feltolteni,

o A beadas kilon id6pontban lesz.

o Mindketten legyetek jelen.

o Ugyeljetek a preciz munkanaplé vezetésére!
(Részletek az els6 gyakorlaton)

mailto:ahorvath@mit.bme.hu

Tanacsok

= Alegfontosabb: a hazi feladatot id6ben el kell kezdeni!
= Hasznaljatok ki a lehet8ségeket:

o A gyakorlatokon bemutatjuk a technologiakat.
o A demonstratoroktdl nyugodtan lehet emailben segitséget, tanacsokat kérni.

= Vegyétek komolyan a csapatmunkat!

o Ellenérizni fogjuk, és figyelembe vessziik a végso értékelésnél.

= Qlvassatok el figyelmesen a feladatkiirasokat a honlapon!
o A hazi feladat nem pusztan szakmai kihivas,

o projekttervezési és munkaszervezési is!

= Az el6adasokra hatarozottan megéri bejarni.
A vendégel6adokéra kulonosen!

= Mindig kérdezzetek batran: modeling@sauron.inf.mit.bme.hu

mailto:rath@mit.bme.hu

MDSD tematika

= Bevezetd, a modellvezérelt fejlesztés alapjai

= Szoftvermodellezés

o Kovetelmény analizis

o Domain modellezés (metamodellezés)

o Jolformaltsagi kényszerek: OCL

o Dinamikus modellezés (allapottérképek)

o Architektura modellezés (kritikus rendszerekben)
= Domain-specifikus nyelvek

o Az Eclipse Modeling Framework

o Automatikus kddgeneralasi technikak

o Modell-lekérdezések (EMF-IncQuery keretrendszer)

o Modelltranszformaciok graftranszformaciok altal

= Szoftverfejlesztési mddszertanok és a modell-alapu megkozelités
(SPEM, DO-331)

= Modell-menedzsement

= Meghivott el6adas

Song writing methods of
Simon and Garfunkel

Paul Simon’s technique #1

Bridge Over Troubled Water

Words & Music by Paul Sirman

Moderately, like a spiritual

i

- g | B i B -
3 ; 1 B
é ?EE.’ 5 a'.; - { ' :f
=
; e o= o S S B L
) e — 1 - |
2 L ;-3 S St - e * b e
> ¥
2.: . \ £ =
[AT 3 | =1 —_%
@ s 13 =T S dbe T
: =T . r TOR=F iy S 3
| — - E | | —
P 3 =
— - o -
rubsata
/s 1
@ = toe oo
| al
— I Wham voalfie
=SSl EEee N e
R T “3 ¥ ;._-y:ff';;gf;;z o
5 — ¥ LT 7
&y | i 1
¥ 5 } Non | H
- £ - ._& & ES . &
B A B
l.'l. Il.I ll
. p—
('}J . — I
o i ¥ ! -
,:? i II L S | G - ‘_I “ ! |
| B foed - ing smal
| e
My]
farr g v = H "
™ = =5 5 5=% 8 5 = kT
5 ¢ — | e
,?b"', i hoh 1 o | ——
. - _a p_* = - _a &
10 Pyl %
- TR o S

e

5/6/@9& Over Troublod Water

When 404 re weary
ﬁ&-e//}gx small

When tears are i your eyes
[wit? //y them alV

/m on your Side

When tines gel rough

Ard friends just can t be found
Like a bridpe over troubled water
/W////d% me /0({//(

Like a bridpe over troubled water
[witl tay e down

2. Write lyrics accordingly

Paul Simon’s technique #2

[he Bover

[an JUST a poor /ay

ﬂaayé ny s’tofyé seliom told

[have &7«4/(/&/%4/ my resIstance

For a pocket fulll of mumbles such are promises
A les and jeste

St a man hears what he wants to hear

Ard a//&/‘a//am/& the rest

When [/eft my toome and my fd/f(/é

[was no more thar a boy

In the company of Strangers

n the guiet of the /‘a//a/ay station rumning Seared
Laying low, seeking out the poorer quarters

//é@ﬁa the M///ec/ /zea/z/e 2
/oaf/)gz faﬁ the //aae@ W(Zy t%% would Know

1. Write lyrics first

The Boxer

Words & Music by Paul Simon

be | | S
[it

% ot - R | i

SSSEEES 5 ,.:-'rs's's'- P

:):(' - F f d' m ii i f l.

LT i
1 I | Iy |
(}-3 e e [* s [« o | |
o - s =l - dom squan - & [
=== SRR =
o F £ E = & =7 s = £ "
oo oe b oa iy =t
c
[I k b
== T '
| posk-s —
= EEE S SR s
én.-% ';'-5 - 5 '::' ..'.—I.,-"- - * -
5 —
| i » ! f e r
£ r - |
s el 14 . -
o lados A Mgl S

A Combined Technique...

foa/‘/o/wyé Far / Folk fwy/

et her to f/}(/ me an acre of land,
Farstey, sage, rosemary and thyne;
Between the salt water and the sea strand

[hen she ? be a true love af mine,

[he Side o!fa H //D Sinon)

On the side of a Wil a little oloud weeps
Ad waters the grave with s sitent tears
hh/é//é a sollller oteans and pollishes a g

w.an

====

=

¥

Scarborough Fair/Canticle

Traditional
Armangement & Original Countermedody by Paul Simon & An Garfunkel

\ 4

===

Coanticle ﬂoaam‘a/ye/ /vy A faﬁfaa&//
On the side of « Witl @ sprickling of teaves
Waskes the grave with J’//ue/y tears

A soltier cloans and polishes a gun

w.an

Naming These Techniques...

Bridge Over Troubled Water
Words & Music by Paul Simon

Vit 5 e
{é,iﬁ T Rril I =5 e
P —

- rubals
é”"" I | =
e
e = S 3 P =1
{ [LIRS P
v = NN 1
= =] 3 =
e »
Al =

. - ~
é"" 4 4~ i 2 ~
il ’:Ti ;
v, Ee=—ix

1. Create music first

5/'1&/4/4 Over [roubled Water

A/ h/(}”“ /I‘e W@ﬁ/y

Feellyy small

Whex tears are ix your eyes
[witl //? them ol

/e on your Sile

When tines get ma/é

A frionds just can't be found
Like a //«r&gw owver troubled water
/ﬂ/////ﬂy me /ﬂﬂ//{

Like a brilpe over troubled water
[l by e doun

Music Driven Song Development

(MDSD)

2. Write lyrics accordingly

Lyrics Driven Song Development

The Boxer

[am Just a poor /{7

Though my story s selllom toldl
/ tave spuandered my resistance
Fora pocket full of mnbles suck are promises
AW lios and fests

St @ man hears what ke wants to hear

A //.'s’/‘aﬂaza/‘dr the rest

When [/eﬂ ny tome and my fa/r(/%

[was 1w more thar a /of

In the company of strangers

I the guit of the raitivay station raming scared
/af/}y bpw, faaf/)y out the poorer guarters
Where the ragged peapte go

Zawg/}y fw‘ the //aa%’ W(Zy fky woulll Know

—

Moderate tempo

The Boxer
Words & Masic by Paul Simon

t I e — —_
;lJ 3 Sl gE|
e i e
e Bt —
Ei: ?;[-;Ii PR
i rr=teet
: o i |
Mes, sch e peom - B
by L ' SEE=EE
fae st -
r | - P
=

Applying the Principle to Software Systems

MDSD = Model Driven Software Development / Engineering
Model

I TVIN AT

Bridge Over Troubled Water

¢ / ler
Warnds & Mugic bv Paul Sirmon -
- -
’

oy . y Naue ’
" - "Ue .
Ml‘c e v N, ""11 i1} J'.”"'l"l:
pl‘ot.ot Angy Al b, ue ; 1"’! ¢4
Protes, Carqg, tPlay *Brow
Proteceey YHut Sl m :yx Dy
me,.. oy I 1
1 req
?lic boy alrmar:“?;
i el;
O, lo
Te ty] 8
39tt170da (s (Jita’"e o
Y
A a 'eed); e {
i (Eryy
e 2 T °);
P-l‘otoct
.fl(.’:‘. VOI /
“Q(44 a1
Co e, UI ()
e N n ;
e
i "Ne v Joy

Like ‘a 2/‘/%@@ over b‘/‘ﬂa//a.{ ra;ate/‘
[wit /ay me. down

Lyrics

MDSD principles

A& MORGAN CLAYPOOL PUBLISHERS

MODEL-DRIVEN SOFTWARE
ENGINEERING IN PRACTICE

—

.

Marco Brambilla, B oo
Jordi Cabot, Model-Driven Software
Engineering in Practice

Manuel Wimmer.
Morgan & Claypool, USA, 2012.

Marco Brambilla
Jordi Cabot
Manuel Wimmer

www.mdse-book.com
Www.morganclaypool.com
or buy it on vwww.amazon.com

www.mdse-book.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com

Models

What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection
of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an
original with respect to some purpose

Purposes:
» descriptive purposes
* prescriptive purposes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Equation

Models + Transformations = Software

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Languages

Domain-Specific Languages (DSLs): languages that are
designed specifically for a certain domain or context

DSLs have been largely used in computer science.
Examples: HTML, Logo, VHDL, Mathematica, SQL

General Purpose Modeling Languages (GPMLs, GMLs,
or GPLs): languages that can be applied to any sector or
domain for (software) modeling purposes

The typical examples are: UML, Petri-nets, or state
machines

Types of models

= Static models: Focus on the static aspects of the system in
terms of managed data and of structural shape and
architecture of the system.

= Dynamic models: Emphasize the dynamic behavior of the
system by showing the execution

= Just think about UML!

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B]

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Domain Specific Modeling Languages

Concrete syntax Abstract syntax Well-formedness
(Graphical/Textual) (Metamodel) constraints

Horvath /% ' E9 Errars (4 items)
orvath A 245 BME 245 WEC (=] % F'|'|E|F :> @3 File platform: fresourcefr.irisa.triskell. kerme
il

@ File platform: fresource)fr.irisa.triskell kerme

| =
&° FTSRC (o= |l:| €3 Unable to set the bype of Fsm::State: :step:
B rest @ ® Unresalved bywpe 'Stkring'. {missing using #)
% number

ki g Eﬁ custs Behavioural semantics,
Simulation

Code

test.socialnetwork £3

Mapping

SocialNetwork { .
Person Ujhelyi { generathn
male
memberships BME, VVEC
} </ member ship>
Person Horvath { <profile defaultProvider="Sitefinicy™>
Lproviders:
male <o lear >
memberships FTSRG o |
} <add name="Sicefinity™ connections
</ providers>

Community BME {
Community FTSRG {
Community test

}

<propertiss>
<add neeme="Firatiemme®/ >
<add name="LastName"/>
<!== SNP specific properties -->
<add name="NickName" />
<add name="Gepder™ />

Foundations of many modern tool
(design, analysis, V&V)

* Domains: avionics, automotive,
business modeling

Metamodeling

= To represent the models
themselves as “instances’” of
some more abstract models.

- Metamodel = yet another
abstraction, highlighting
properties of the model itself

= Metamodels can be used for:

= defining new languages

= defining new properties or
features of existing information
(metadata)

Meta-metamodel

winstanceOf»

«instanceOf» ‘,7‘ h:,\ «instanceOf»
7
Metamlodel / \
Attribute Class
1y A
winstanceOf» ‘\‘_ r,:"" winstanceOf»
%\
Model \ s

\
1".

Video

\
+ title: String

Real world
objects

winstance Of»

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformation Overview: Metamodels

4 .
- Metamodel: Precise spec of a

modeling language

/ Modeling tool
Source Target
metamodel metamodel
A
(PetriNet .
Target
. model
< transitions , o places
{3 Transition () Place
o token : Elnt
1 [
- fram Transition ‘ 1 - toPlac 1 ’, - fromPlace
- toTransit 1
- outgoingArcs " - o) % [OUtgoingArcs
R - incominga

(3 PTAIC

{53 TPArC

Model Transformation Overview: Models

Eclipse Modeling Framework (EMF):
* De facto modeling standard for
Eclipse based modeling tools

L Resource Set

=1l plakForm: /resourcefPHExample/myModel petringt

* Design metamodel =»auto-generate n e ot
interface, implementation, tree editor... e
* Examples: - o
UML, AADL, SysML, BPMN, AUTOSAR
>30ina single IBM tool Selection | Parent | List | Tree | Table | Tree with Columns
Tasks | = Properties &3
Source gl VINIT Description = value
model of a concrete system Name =pt
oken 11

a2:TPArc

p2:Place

a3:PTArc

Model Transformation Overview: Rules

Model Transformation:
How to generate a target equivalent of

an arbitrary source model

Source Target
metamodel metamodel
A A
: :
Source Target
model model
LHS RHS
al:inarc a2:outarc al:inarc a2:outarc
Place » Tran. » Place Place » Tran. » Plan

1 ttnl:tokens

tkn2:tokens

Token

Model Transformation Overview: Rule Execution

Eclipse Framework

Model Transformation Tool

Modeling tool

Source Target
metamodel metamodel
A A
" "
Source : Target
MT engine
model 2 model

Transformation engine:
Support for querying and
/ manipulating large models

EMF-IncQuery:
http://www.eclipse.org/incquery

S/
VIATRA
/T

—

VIATRAZ:
http://www.eclipse.org/gmt/VIATRA2/

e it i

EGCGYETEM 1 T7TE2Z2

Model Transformation by Graph Transfromation

Eclipse Framework

Model Transformation Tool

Modeling tool

Source Target
metamodel metamodel
A A

MT engine
query/match
al:inarc a2:outarc al:inarc a2:outarc
Place » Tran. » Place Place » Tran. » Plan
1 ttnl:tokens tkn2:tokens 3
Token Token

Some Well-known MDSE Concepts

Code generation Generative programming

Re-engineering

Program comprehension

Refactoring

A Classification of Transformations

Concepts

Model Engineering basic architecture

Application Application domain Meta-Level
A A N
r I r I ' I
@) a
%5 Meta-
S modeling
S language
- bstraction (bottom-up) t
< I
;,g l‘/\‘ }
é" 2 e Transformation (| Transformation
£ /|| definition language
._~Construction (top-down)
OC s I
:'f? = =p» defined using
N < Artifacts F————* platform |
E ------ » defined by
O (e.g. code) ||
Qc _ —> Uses

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts

Consequences or Preconditions

- Modified development process

= Two levels of development — application and infrastructure

= Infrastructure development involves modeling language, platform (e.g.
framework) and transformation definition

= Application development only involves modeling — efficient reuse of the
infrastructure(s)

= Strongly simplified application development
= Automatic code generation replaces programmer

= Working on the code level (implementation, testing, maintenance) becomes
unnecessary

= Under which conditions is this realistic ... or just futuristic?
- New development tools
= Tools for language definition, in particular meta modeling
= Editor and engine for model transformations

= Customizable tools like model editors, repositories, simulation,
verification, and testing tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

= Drawing vs. modeling

Drawing
Tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivations for MDSD

Traditional motivations for MDSE

Principles and objectives

Abstraction from specific realization technologies

Requires modeling languages, which do not hold specific concepts of
realization technologies (e.g., Java EJB)

Improved portability of software to new/changing technologies — model
once, build everywhere

Interoperability between different technologies can be automated (so
called Technology Bridges)

Automated code generation from abstract models
e.g., generation of Java-APIs, XML Schemas, etc. from UML
Requires expressive und precise models
Increased productivity and efficiency (models stay up-to-date)

Separate development of application and infrastructure
Separation of application-code and infrastructure-code (e.g. Application
Framework) increases reusability

Flexible development cycles as well as different development roles
possible

Model-Driven Engineering of Critical Systems

Traditional V-Model Model-Driven Engineering

Main ideas of MDE

* DO-178B/C: Software Considerations in Airborne Systems and ° 23 r|y validation of System models
Equipment Certification (RTCA, EUROCAE)

* Steven P. Miller: Certification Issues in Model Based Development e automatic source code generation

(Rockwell Collins) =>» quality++ tools ++ development cost--
» : @ W

Models and Transformations in Critical Systems

Horizontal Model Transformations
Mode| generation
>

System Design N/ System V&V

Model € D Model
) Y

. N Refine Back-Annotation Usef
Design Mode| generation Formal

rules Architecture N/ 2 Architecture methods

Design Model |g G V&V Model

Refine Back-Annotation
[Model generation Use
Design ode ec Formal

rules Component D > Component methods

Design Model ﬂ_ V&V Model
I Back-Annotation 1

?j?f | Model Transformations
Code Test * systematic foundation of

Generation Generation

SUOIJeWIO}SUBI] [9POIA [BI1MI9A

\II \|/ knowledge transfer:
Related projects)
« CESAR. SAVI Design + V&V Artifacts théoretlc'al results=»tools
« HIDE, DECOS, DIANA (Source code, Glue code, * bridge / integrate

) ; Y Conflg Tables, Test Cases, eX|St|ng IanguageS&t00|S

MOGENTES, CERTIMOT,
GENESYS, SENSORIA

Monitors, Fault Trees, etc.)

© O E

MDA =
Model-Driven Architecture

The MD* Jungle of Acronyms

= Model-Driven Development (MDD) is a development paradigm that
uses models as the primary artifact of the development process.

= Model-Driven Architecture (MDA) is the particular vision of MDD
proposed by the Object Management Group (OMG)

= Model-Driven Engineering (MDE) is a superset of MDD because it
goes beyond of the pure development

- Model-Based Engineering (or “model-based development”) (MBE) is a
softer version of ME, where models do not “drive” the process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MDA Approach

Goals

Interoperability through Platform Independent Models

Standardization initiative of the Object Management Group (OMG), based
on OMG Standards, particularly UML

Counterpart to CORBA on the modeling level: interoperability between
different platforms

Applications which can be installed on different platforms - portability, no
problems with changing technologies, integration of different platforms,
etc.

Modifications to the basic architecture

Segmentation of the model level
Platform Independent Models (PIM): valid for a set of (similar) platforms

Platform Specific Models (PSM): special adjustments for one specific
platform

Requires model-to-model transformation (PIM-PSM; compare QVT) and
model-to-code transformation (PSM-Code)

Platform development is not taken into consideration — in general industry
standards like J2EE, .NET, CORBA are considered as platforms

[www.omg.org/mda/]

Modeling Levels

CIM, PIM, PSM

Computation independent (CIM): describe requirements
and needs at a very abstract level, without any reference to
Implementation aspects (e.g., description of user
requirements or business objectives);

Platform independent (PIM): define the behavior of the
systems in terms of stored data and performed algorithms,
without any technical or technological detalls;

Platform-specific (PSM): define all the technological
aspects in detall.

Modeling levels

MDA Computation Independent Model (CIM)

= E.g., business process

Ask customer
Check Retrieve Execute
customer about .
customer account . operation on
arrives to . operation to
identity number account
counter perform

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels

MDA Platform Independent Model (PIM)

. SpeCiﬁcation Of . «business entity»
structure and behaviour Account

of a system, abstracted |- number: integer {unique}

-
~—
il
~-,
-
-
-
~—

. - balance : Float
from technologicical
. + getNumber() : Integer]
deta| IS + setNumber(number : Integer)

= Using the UML (optional)

-- English
Account number must be
between 1000 and 9999

--0OCL

context Account inv:
number >= 1000 and
number <= 9999

4

= Abstraction of structure and behaviour of a system with the PIM

simplifies the following:
= Validation for correctness of the model
= Create implementations on different platforms
= Tool support during implementation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels

MDA Platform Specific Model (PSM)

«EJB::Base» :
c AccountlmplBean — English
EJBObject Account number must be
- number : Short {unique} between 1000 and 9999
- balance : Float T
«interface» + gjbCreate(number : Short, balance : — OCL
<t--------] : ’ - context Account inv:
Account Float) : Integer throws CreateException _
. number >= 1000 and
+ ejbPostCreate(number : Short, balance : number <= 9999
«EJB::Base» !:Ioat?
EJBHome + ejbActivate()
+ ejbLoad()
[IX + ejbPassivate()
+ ejpRemove()
«interfface» |4 _______| + ejbStore()
AccountHome <t + findByNumber(Short number) : Account
throws RemoteException, FinderException;
+ getNumber() : Integer
«EJB::Base» I — + setNumber(number : Integer)
EntityBean h-

= Specifies how the functionality described
In the PIM is realized on a certain platform
= Using a UML-Profile for the
selected platform, e.g., EJB

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MDA Approach

MDA development cycle

Base Level: UML Modeling in a technology-
Platform-Independent independent UML profile allows
Model of Business a precise representation
Functionality & Behavior of business process/rules
]
8 ‘ Executed by MDA tool which
o follows OMG standard mappings.
(7)) Automated Resulting PSM may need some
o Transformation hand adjustments based
- l n on infrastructure decisions
))
'8 Inte;?;?fglfrfésggilfigML Modeled in a technology-
E specific UML profile.
Model]s| on Represents every aspect of a
selected platforms coded application, but still as a model
generated from PIM
‘ Executed by MDA tool.
77777777777777777777 Automate(_j Many tools on the market
() Transformation execute this step very well today
O
S I
o
0p) Implementation Generated code and auxiliary files
()} generated from PSMs ready for compilation, linking
'8 with legacy or other code, and deployment
O

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches

MDA Reverse Engineering / Roundtrip Engineering

= Re-integration onto
new platforms via
Reverse Engineering
of an existing
application into a
PIM und subsequent
code generation

= MDA tools for
Reverse Engineering
automate the model
construction from
existing code

Reverse-engineer
existing application

PIM (UML) into a model and
redeploy

Legacy COTS Other

App App Model

Other

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches

Excursus: OMG Standards

= CORBA - Common Object Request Broker Architecture

= Language- and platform-neutral interoperability standard (similar to
WSDL, SOAP and UDDI)

= UML - Unified Modeling Language

= Standardized modeling language, industry standard
= CWM - Common Warehouse Metamodel

= Integrated modeling language for Data Warehouses
- MOF — Meta Object Facility

= A standard for metamodels and model repositories

= XMI - XML Metadata Interchange
= XML-based exchange of models

= QVT — Queries/Views/Transformations
= Standard language for Model-to-Model transformations

Marco Brambilla, Jordi Cabot, Manuel Wimmer. :

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

= MDSE = Models + Languages + Transformations

= Motivation
o Early validation of design
o Automated generation of design artifacts
o + Interoperability, Productivity, Abstraction, Reuse

= MDA = Model Driven Architecture
o 3 modeling levels: CIM + PIM + PSM
o Automated transformations: PIM =» PSM =» Code (?)

History of MD*

Approaches

Executable UML

“CASE with UML”

UML-Subset: Class Diagram, State Machine, Package/Component
Diagram, as well as

UML Action Semantic Language (ASL) as programming language

Niche product

Several specialized vendors like Kennedy/Carter

Mainly used for the development of Embedded Systems
One part of the basic architecture implemented

Modeling language is predetermined (xUML)
Transformation definitions can be adapted or can be established by the
user (via ASL)

Advantages compared to trad. CASE tools
Standardized modeling language based on the UML

Disadvantages compared to trad. CASE tools
Limited extent of the modeling language

[S.J. Mellor, M.J. Balcer: Executable UML: a foundation for model-driven architecture. Addison-Wesley, 2002]

Approaches

MDA with UML

= Problems when using UML as PIM/PSM
= Method bodies?
= Incomplete diagrams, e.g. missing attributes
= Inconsistent diagrams

= For the usage of the UML in Model Engineering special guidelines have
to be defined and adhered to

= Different requirements to code generation

= get/set methods

= Serialization or persistence of an object

= Security features, e.g. Java Security Policy

= Using adaptable code generators or PIM-to-PSM transformations
- Expressiveness of the UML

= UML is mainly suitable for “generic” software platforms like Java, EJB,
NET

= Lack of support for user interfaces, code, etc.
= MDA tools often use proprietary extensions

Marco Brambilla, Jordi Cabot, Manuel Wimmer. :

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches

MDA

Many UML tools are expanded to MDA tools
UML profiles and code generators
Stage of development partly still similar to CASE: proprietary UML
profiles and transformations, limited adaptability

Advantages of MDA

Standardization of the Meta-Level
Separation of platform independent and platform specific models
(reuse)

Disadvantages of MDA

No special support for the development of the execution platform and
the modeling language

Modeling language practically limited to UML with profiles

Therefore limited code generation (typically no method bodies, user
Interface)

Approaches

AC-MDSD

= Efficient reuse of architectures

Special attention to the efficient reuse of infrastructures/frameworks (= architectures) for a
series of applications

Specific procedure model

= Development of a reference application

= Analysis in individual code, schematically recurring code and generic code (equal for all applications)

= Extraction of the required modeling concepts and definition of the modeling language, transformations and
platform

Software support (www.openarchitectureware.org)

Basic architecture almost completely covered

When using UML profiles there is the problem of the method bodies

The recommended procedure is to rework these method bodies not in the model but in the
generated code

= Advantages compared to MDA

Support for platform- and modeling language development

- Disadvantages compared to MDA

Platform independence and/or portability not considered

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches

MetaCASE/MetaEdit+

= Free configurable CASE

= Meta modeling for the development of domain-specific modeling
languages (DSLS)

= The focus is on the ideal support of the application area, e.g. mobile-

phone application, traffic light pre-emption, digital clock — Intentional
Programming

= Procedural method driven by the DSL development
= Support in particular for the modeling level
= Strong Support for meta modeling, e.g. graphical editors

= Platform development not assisted specifically, the usage of components
and frameworks is recommended

- Advantages
= Domain-specific languages
= Disadvantages
= Tool support only focuses on graphical modeling

[www.metacase.com]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches

Software Factories

Series production of software products

Combines the ideas of different approaches (MDA, AC-MDSD,
MetaCASE/DSLs) as well as popular SWD-technologies (patterns,
components, frameworks)

Objective is the automatically processed development of software
product series, i.e., a series of applications with the same application
area and the same infrastructure

The SW-Factory as a marketable product
Support of the complete basic architecture

Refinements in particular on the realization level, e.g. deployment
Advantages

Comprehensive approach
Disadvantages

Approach not clearly delimited (similar MDA)

Only little tool support

[J. Greenfield, K. Short: Software Factories. Wiley, 2004]

Eclipse and EMF

= Eclipse Modeling Framework

= Full support for metamodeling and language design
= Fully MD (vs. programming-based tools)

= Used In this course!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion

Modeling in the last century

= Critical Statements of Software Developers

= »When it comes down to it, the real point of software
development is cutting code«

- »Diagrams are, after all, just pretty pictures«

= »No user is going to thank you for pretty pictures;
what a user wants is software that executes«

M. Fowler, "UML Distilled”, 1st edition, Addison Wesley, 1997

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B]

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion

Modeling in the new millennium — Much has changed!

= »When it comes down to it, the real point of software development is cutting
code«
= To model or to program, that is not the question!
= Instead: Talk about the right abstraction level

= »Diagrams are, after all, just pretty pictures«
= Models are not just notation!
= Instead: Models have a well-defined syntax in terms of metamodels

= »No user is going to thank you for pretty pictures;
what a user wants is software that executes«

= Models and code are not competitors!
= Instead: Bridge the gap between design and implementation by model transformations
= What about the managers?

M. Fowler, "UML Distilled”, 1st edition, Addison Wesley, 1997
(revisited in 2009)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

f\& MORGAN CLAYPOOL PUBLISHERS

Chapter #2

MDSE PRINCIPLES

Teaching material for the book B oo ‘
Model-Driven Software Engineering in Practice Model-Driven Software
by Marco Brambilla, Jordi Cabot, Manuel Wimmer. Engincecagin Pustice

Morgan & Claypool, USA, 2012.

Marco Brambilla
Jordi Cabot
Manuel Wimmer

www.mdse-book.com

