
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Requirements Engineering
and Domain Modeling

Ákos Horváth, Dániel Varró

Model Driven Software Development

Lecture 2

Requirements Engineering
by Use Case Analysis

Requirements analysis

 Requirements engineering (RE) is the process of
identifying, organizing, and documenting the
continuously changing requirements of a project

 Requirement: a condition or capability to which the
system must conform

 An early identification of requirements is critical for the
quality of the system under design

o consistent?, complete? unambiguous?

 Gathering of requirements is a very complex engineering
task

o „Requirements do not come from the air”

o an iterative refinement process with regular control

Definition of requirements analysis

Identification of

 Goals: the objectives of the system

o Why do we need the SW?

 Services („operationalization”)

o What functionality do we need to design?

 Constraints

o Restrictions of the design process
(e.g. cost, deadlines)

 Responsibilities to each requirement
(SW vs. human)

Categorization of RE

 High-level (System-level) requirements
o Feature (FEAT): high-level product requirement from the

customer’s point of view

o Stakeholder needs (NEED):

o The agreement between the customer and the system analyst
documented in the vision document

 Low-level (Software-level) requirements
o Software requirements

o Actor: someone or something outside the system that interacts
with the system

o Use case (UC): a functional requirement

o Supplementary requirement (SUPL):
a non-functional requirement

Main documents of RE

 Use Case model
o Actors, Use Cases, Subsystems

o Scenarios as workflow

 Architectural description:
Detailed textual description of
o Use cases

o Scenarios

 Glossary (Szójegyzék)
o Precise definition of common terms

 GUI prototype
o Communication with end users

Sample Requirements

Requirements of a Table Game Championship Manager
System

Verbal Requirements

 Design a system for organizing championships of table
games (chess, go, backgammon, etc.)

 Requirements:
o A player should register and log in to the system before using it.

o Each registered player may announce a championship.

o Each player is allowed to organize a single championship at a
time.

o Players may join (enter) a championship on a web page

o When the sufficient number of participants are present, the
championship can be started by the organizer.

o After starting a championship, the system must automatically
create the pairings in a round-robin system.

Passive sentences should be avoided!

Verbal Requirements

 Design a system for organizing championships of table
games (chess, go, backgammon, etc.)

 Requirements:
o A player should register and log in to the system before using it.

o Each registered player may announce a championship.

o Each player is allowed to organize a single championship at a
time.

o Players may join (enter) a championship on a web page

o When the sufficient number of participants are present, the
organizer starts the championship.

o After starting a championship, the system must automatically
create the pairings in a round-robin system.

Verbal Requirements (cont.)
 Requirements (cont.):

o If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

o The actual game is played between existing clients, which is
outside the scope of the modelled system.

o Both players should report the result and the moves after each
game using a web form. A win scores 1 point, a draw ½, and a
loss 0.

o If players report contradicting results, the organizer should
judge who the winner is. The organizers penalizes the cheating
player by a 1 point penalty.

o When all games are finished, the organizer should close the
championship by announcing the winner. Then he or she may
start organizing a new championship.

Missing Requirements
 A game should be finished within a given deadline

(time limit).
 If none of the two players have reported the result within

this deadline,
then both players are considered to be losers.

 If only one player has reported the result, then his (or
her) version is considered to be the official result.

 NOTE: New requirements will emerge during
UC analysis (especially when detailing UCs).
An iterative requirements engineering process is highly
recommended.

Best Practice: Requirements

 A requirement should contain
o a short description

o a stand-alone sentence / paragraph

 English:
o Avoid passive sentences

o Use the following auxiliaries:
• Positive: shall/must, should, may,

• Negative: must not, may not

 Detail them with parameters:
o Priority, Status, Difficulty, Responsibility, Risk

Elements of Use Case Diagrams
by Example

Definition of Use Cases

 Use cases (használati eset) capture the functional
requirements of a system

 UCs describe

o the typical interactions

o between the users of a system and

o the system itself,

o by providing a narrative of how a system is used

 A set of scenarios tied together by a common user goal

 Verb + Noun (Unique)!

M. Fowler: UML Distilled.
3rd Edition. Addison-Wesley

From Verbal Requirements to Use Cases

 Requirements:

o Each registered player may announce a championship.

o A player should register and log in to the system before using it.

o Each player is allowed to organize a single championship at a
time.

o Players may join (enter) a championship on a web page

o When the sufficient number of participants are present, the
organizer starts the championship.

o After starting a championship, the system must automatically
create the pairings in a round-robin system.

Verbal Requirements (cont.)
 Requirements (cont.):

o If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

o The actual game is played between existing clients, which is
outside the scope of the system system.

o Both players should report the result and the moves after each
game using a web form. A win scores 1 point, a draw ½, and a
loss 0.

o If players report contradicting results, the organizer should
judge who is the winner. The organizers penalizes the cheating
player by a 1 point penalty.

o When all games are finished, the organizer should close the
championship by announcing the winner. Then he or she may
start organizing a new championship.

(Initial) Collection of Use Cases

Definition of Actors
 Actor (aktor) is a role that a user plays with respect to

the system.
o Primary actor: calls the system to deliver a service
o Secondary actor: the system communicates with them while

carrying out the service

 Relationship of UCs and Actors
o A single actor may perform many use cases;
o A use case may have several actors performing it.

 One person may act as more than one actor,
o Example: A person may organize a championship and may

participate in another

 An actor is outside the boundary of the system

From Verbal Requirements to Use Cases

 Requirements:

o Each registered player may announce a championship.

o A player should register and log in to the system before using it.

o Each player is allowed to organize a single championship at a
time.

o Players may join (enter) a championship on a web page

o When the sufficient number of participants are present, the
organizer starts the championship.

o After starting a championship, the system must automatically
create the pairings in a round-robin system.

Verbal Requirements (cont.)
 Requirements (cont.):

o If the championship is not started yet (e.g. the number of
participants does not reach a minimum level), the organizer
may cancel the championship

o The actual game is played between existing clients, which is
outside the scope of the system system.

o Both players should report the result and the moves after each
game using a web form. A win scores 1 point, a draw ½, and a
loss 0.

o If players report contradicting results, the organizer should
judge who is the winner. The organizers penalizes the cheating
player by a 1 point penalty.

o When all games are finished, the organizer should close the
championship by announcing the winner. Then he or she may
start organizing a new championship.

(Initial) Collection of Actors

Relations between UCs and Actors

System-level overview

System

boundary

Association:
actor initiates or
participates in

interaction

Contextual
Use Case

(outside the
system)

Actor

Anti-pattern: UC diagrams

A generalization of
actors is missing

Overview of Actors

Actor
Generalization
(Inheritance)

User Management

What happens if
• the user’s password is incorrect?
• a user is not registered, but attempts to login?

Extend relationship

The extension UC extends
core functionality by
handling unusual
(exceptional) situation

Base UC

Extension
UC

Too General
Description

Refinement of Use Cases

Use Case
Generalization
(Inheritance)

How to handle complex functionality?

Judge result =

 Check if the organizer is the
judge

 Analyze the game

 Decide on result

 Report the result

Include relationship

The included UC
breaks down the complex
core functionality into
more elementary steps

Base UC

Included
UC

Summary: UC Relations

 Association (Asszociáció)

o actor – use case

o the actor initiates (or participates) the use of the
system

 Extend (Bővítés)

o use case – use case

o a UC may be extended by another UC (typically
solutions for exceptional situations)

Summary: UC Relations

 Generalization (Általánosítás)

o actor - actor

o use case – use case

o a UC or actor is more general / specific than another
UC or actor

 Include (Beszúrás)

o use case – use case

o a complex step is divided into elementary steps

o a functionality is used in multiple UCs

Best practices of UC analysis

Best practices: Grouping

 Grouping UCs
o Identify functional building blocks

o Group them into packages

o NOTE: related by functionality,
NOT by role

 Grouping actors:
o Keep actors in a package within

the subsystem they exclusively belong to

o Global actors: in top-most package

Best practices: Naming and arrangement

 Actors
o Name actors according to their roles and

avoid using job titles
o Divide complex roles into multiple actors
o Start the diagram by placing the most important actor

in the top left corner

 Use Cases
o Use domain specific verbs for UCs
o Avoid technical descriptions –

UCs are frequently for non-technical reader

 Relationships
o Avoid crossing or curved lines when drawing relations
o Use <<extend>> and <<include>> relations „lightly”
o Place them into the appropriate functional block

Main guideline:
UC diagrams

should be SIMPLE

Domain Modeling

(Metamodeling)

Metamodel: Specify Concepts an Appl. Domain

 Metamodel:
o Precise specification of

domain concepts

o A language for defining the
abstract syntax of a DSM

 Goal: to define...
o Basic concepts

o Relations between concepts

o Attributes of concepts

o Abstraction / refinement
(Taxonomy, Ontology)
between model elements

o Aggregation

o Multiplicity restrictions

o Derived features

Metamodel

Model

Metamodels and instance models

t1 s2 t2

s1 a1 s3

t3

st st

st tr tr
fr

fr to

to

to fr
ini

s2

s3

s1

t1

t2

t3

a1

Abstract syntax Concrete syntax

Model level

Metamodel level

State CompState Transition

Automaton

from

to

transitions
states initial

kind:StateEnum

Metamodel

Aggregation

Class

Attribute
Generalization

Object

Role

Reference /
Association

refine

1..*

* 1 Multiplicity

Classes and Objects

Type hierarchy

 Generalization

o Inheritance

o Transitive

o Reflexive? / Irreflexive?

 How to read?

o SimpleState is a subclass of
State

o State is a superclass of
SimpleState

 Substitutability

 Subclass instead of Superclass

× Superclass instead of
Subclass

State

Simple
State

Compound
State

AND
State

OR
State

Typical Use of Generalization

Aim: Lift up common attributes
and methods to the superclass

Parent class is more general
than its children classes

Type conformance /Instantiation /Classification

 Each model element is
an instance of (conforms to)
a metamodel element

 Direct type:

o No other type exists
lower in the type hierarchy

o s1  CompState

 Indirect type:

o Superclass of the direct type

o s1  State

t1 s2 t2

s1 a1 s3

t3

st st

st tr tr
fr

fr to

to

to fr
ini

State CompState Transition

Automaton

from

to

transitions
states initial

kind:StateEnum

«instanceOf» … …

refine

Classification vs. Generalization

1. Fido is a Poodle

2. A Poodle is a Dog

3. Dogs are Animals

4. A Poodle is a Breed

5. A Dog is a Species

 1+2 = Fido is a Dog

 1+2+3 = Fido is an Animal

! 1+4 = Fido is a Breed

! 2+5 = A Poodle is a Species

 Generalization (SupertypeOf)
is transitive

 Classification (InstanceOf) is
NOT transitive

Multiple inheritance

 Multiple inheritance:

o A class in the metamodel
has more than 1 supertype

o Typical use: merge features
from different classes
• One is generic, thus reused

in different domains
(cf. NamedElement)

• Other is a general but
domain-specific superclass
(cf. Animal)

 Restriction:
For each model element:
a single type

Pets

Dog Cat

Animal
Named
Element

How many types
does Fifi have?

Fifi:Dog

«instanceOf»

Multiple classification

 Multiple typing /
classification:

o One model element typed
against multiple
metamodels

o Rationale:
Multi-paradigm / view
modeling

o UML Stereotypes

 Restriction:
For each model element:
a single type in a domain

Module

Security
Element

Asset

ARINC653
Element

m1:Module, Asset

«instanceOf»

References and Links

Model

Metamodel

Type conformance of references

 A link in a model is
type conformant if

o type(src(link)) is subtype of
src(type(link))

o type(trg(link)) is subtype of
trg(type(link))

o Informally:
• The type of the source object

is a subtype of the source
class of the link’s type.

• The type of the target object
is a subtype of the target
class of the link’s type.

State

CompState

Transition
from

to

t1:Transition s1:CompState

«instance»

«instance»

«instance»

:from

 Can you define generalization
for references?

Metamodel

Containment hierarchy

a1

s1

a21

s211

a22

s221

 Each model element has a
unique parent
o N children  1 parent

o Single root element

 Aggregation as relationship:
o Defined in the metamodel

along reference edges

o Provides restriction for
instance models

 Circularity
o No circular containment

(in the model)

o Aggregation relations in the
metamodel may be circular
(hierarchy)

a1

s1

a21 a22

s211 s221

State CompState

Automaton

states

refine

Multiplicity restrictions

 Definition: Lower bound .. Upper bound

o Lower bound: 0, 1, (non-negative integer)

o Upper bound: 1, 2, … * (positive integer + any)

 Scope:

o References: allowed number of links
between objects of specific types

o Attributes: e.g. arrays of strings (built-in values)

Player

Team

members

captain

0..*

1

0..1

Which are the most
common multiplicity

definitions in practice?

Notation Guide

Composition:
at most one container

Reference

Assoc. name Role name

Navigability: one can access
white player from a game
but not vice versa Multiplicity

at most one

Multiplicity
should be 1 for

aggregation

Multiplicity
many

Advanced Concepts and
Best Practices

In Domain Modeling

Derived Features

 A derived feature can be
calculated from others
o Usage: helpers for

designers / tools

o It need not be persisted

o Automatic updates

 Derived attributes:
age = currYear – birth

 Derived references:
dogs = -- pets --> Dog

 Derived objects:
o „Gang”:

everyone knows everyone
Sam

Mike

Peter

knows

knows

knows

/g:Gang
/member /member

/member

Person Animal

Dog Cat

pets

/dogs

Enumerations

 Enumeration:

o a fixed set of symbolic values

o represented as a class with
values as attributes

 Usage:

o Frequently define possible states

o Use enumerations instead of hard-wired String literals
whenever possible

Built-in classes vs. User defined classes

Built-in classes +
Enumeration Type:

Attributes

User classes:
Associations

When to avoid generalization?

 What happens if a
started championship
is finished?

 Problem: Retyping of an
object is required

 NOTE:
Use status attribute with
enumeration values to
store the state of an
object that can change

What is Bad Design/Smell here?
 Properties of a user

defined type (class)
should rather be
denoted explicitly
o OK, if multiplicity is 1

 Naming of associations:
o prefer verbs to nouns
o OK: participatesIn,

participantsOf

 Naming of roles:
o 1: singular
o *: plural
o OK: players,

championships

What is Bad Design/Smell here?

 Arrays in attributes

o Solution:
an organizes association

 Explicit lists

o Solution:
a single playsIn association

 NOTE:
Lists and arrays are
programming constructs
and not domain elements!

organizers[]

Domain Modeling Examples

Practical exercises

The School Domain

 A school (identified by its name and address) has
teachers as employees who teach courses
(identified by their subject) in different years.

 Each class in a specific school year has a
headmaster (homeroom) teacher

 Students of a specific year attend their own
classes, and they may be friends with each other

 Teachers and students are identified by their
names.

 Specialization courses can be taken by 11th and
12th grade students

The School Domain

Paper Review System: The Story
 The paper review system is used by authors who log in electronically for the conference

and then fill in a form including their name, the most important attributes of the paper to
be submitted (such as title, abstract), and mark the conference topics related to the
paper. The paper itself is usually submitted by a later deadline using the paper ID
received when registering the paper. Later the authors may observe the reviews received
for their paper. If their paper gets accepted by the program committee, the final version
of the paper needs to be uploaded to the system

 The paper review system is also used by the reviewers, who receive their login
parameters in email. They need to fill in their contact details for the conference chair
when logging in to the system for the first time.

 After skimming through the titles and abstracts of submitted papers, each reviewer
indicates their conflicts (i.e. those paper where the authors are close colleagues or
former co-author). He or she also indicates those topics where he or she is an expert.

 The conference chair assigns the papers to at least three reviewers using semi-automated
assistance from the system. The basis of assignment is the relevant topics indicated by
the reviewers.

 The reviewers fill a review form to evaluate the paper from different aspects including a
three-line summary, originality, strong and weak points, reviewer’s confidence, author
comments, confidential comments. The most important part is the overall
recommendation, which can be a score and a textual assessment ranging from strong
reject to strong accept.

 Finally, the conference chairs decide on the acceptance or rejection of each paper and
send a notification mail to the authors together with the reviews of the paper.

The Paper Review System

