
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Object Relational Mapping
Java Persistence Layer

Ákos Horváth
István Ráth
Dániel Varró

Model Driven Software Development
Lecture 4

Introduction: Obj2Rel mapping
 Goal:

o Persisted objects over RDBMS
o Transparent handling of RDBMS from an OO programming

language

 Input:
o Class diagram

 Output:
o Database schema
o Query and manipulation operations are embedded into class

methods

 Automated SQL code generation

Object Relational Mapping

Performance Optimization Tools

 Object caching

o Decrease the number of direct RDBMS calls

 Connection pooling

o Manage RDBMS connections for later usage

 Transaction handling

o Definition of business level transactions

o Hiding RDBMS level transaction (from programmers )

Metamodel

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

organizer

organized

1

*

participants

champs

*

*

Mapping Classes

 General guidelines

o class  table (relation)

o attribute  column (attribute)

o (unique identifier)  primary key

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

Championship

id name minP maxP

hu1 NB1 6 18

de1 BL 10 22

Object (instance) 
row

Attributes of generalization

 Completeness
o Is there a person who is not a player or an organizer?

o Partial vs. complete coverage

 Disjunction
o Can a person be a player and an organizer at the same

time? (multiple inheritance)

o disjoint vs. overlapping classes

 Multiple mappings

Generalization I.

 Vertical mapping

+ No restrictions

 Steps of the Mapping

o 1 class  1 table

o New column: supertype ID, which is a foreign key from
the Supertype’s ID

Generalization I. (cont.)

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

Person

id name passwd

Player

per_id class

Organizer

per_id phone address

01 Kiss abcde

02 Nagy edcba

03 Szabó abdce

04 Takács adbce

03 M

04 GM

02 1223 Ó u. 22.

04 3549 Új u. 3.

• Add/remove

– Foreign key constraints

• Query

– JOIN

Generalization II.

 Horizontal mapping

− Only for disjoint subclasses

− Only for complete coverage

 Steps of the Mapping

o 1 subclass  1 table

o All attributes from the superclass and the subclass
within the table

Generalization II. (cont.)

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

Player

id name passwd class

Organizer

id name passwd phone addr

03 Szabó abdce M

02 Nagy edcba 1223 Ó u. 22.

• Simple add/remove
operation

• Simple Querying using a
Select

Generalization III/a.

 Filtered Mapping

− Only for disjoint subclasses

− suboptimal storage usage, in case of large number of
attributes

 Steps of the Mapping

o Common table: 1-1 column for the attributes of the
super- and the subclasses

o One additional for column for the type information

Generalization III/a. (cont.)

id type name passwd class phone addr

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

01 Person Kiss abcde NULL NULL NULL

02 Player Nagy edcba NULL 1223 Ó u. 22.

03 Organ. Szabó abdce M NULL NULL

• Simple add/remove
operation

• Simple Querying using a
Select with type based
filtering

Generalization III/b.

• Filtered Mapping

+ For overlapping classes
− suboptimal storage usage, in case of large number
of attributes

• Steps of the Mapping

– Common table: 1-1 column for the attributes of
the super- and the subclasses

– Boolean type columns for indicating instance of
relation

Generalization III/b. (cont.)

id Player Organ name passwd class phone addr

Person

name:String
passwd:String

Organizer

phone:String
address:String

Player

class:String

01 False False Kiss abcde NULL NULL NULL

02 False True Nagy edcba NULL 1223 Ó u. 22.

03 True False Szabó abdce M NULL NULL

04 True True Takács adbce GM 3549 Új u. 3.

• Simple add/remove
operation

• Simple Querying using a
Select with type based
filtering

Association 1..n (1..1)

04 hu1 NB1 6 18

02 de1 BL 10 22

Organizer

phone:String
address:String

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

organizer

organized

1

*

Organizer

per_id phone address

02 1223 Ó u. 22.

04 3549 Új u. 3.

Championship

org_id id name minP maxP

Additional
Column and
constraints

Association m..n

Player

class:String

Championship

id:String
name:String
minParticipant:int
maxParticipant:int

participants

champs
*

*

Player_champ

ch_id play_id

Player

per_id class

03 M

04 GM

hu1 03

hu1 04

de1 04

Championship

id name minP maxP

hu1 NB1 6 18

de1 BL 10 22

New table
and

constraints

Java Persistence API

ORM frameworks

 Many players

o ActiveObjects

• Inheritance and annotations

o Torque

• Codegeneration from XML configurations

o JPA

• Annotations and/or XML

1

9

Java Persistence API

 Part of EJB 3 specification

 Hides RDBMS specific parts

 Provides a transparent runtime API for managing Objects
that are persisted in an RDBMS

2

0

JPA providers

 JPA is only an API specification

 Various implementations

o Hibernate

o OpenJPA

o Toplink

o EclipseLink (official specification implementation)

2

1

Usage of JPA

 Java classes (POJO) with annotations

o Alternate: directly from XML
• Overwrites annotations

• Only for Experts (do not use)

 Basic building block: Entity = persisted class

 All jar that contains a persistence.xml in its META-
INF folder is a persisted module

 javax.persistence package

2

2

Defining an Entity

 Java class with @Entity

(javax.persistence.Entity) annotated with default
constructor

 Usually serializable (implements Serializable)

 Mandatory primary key attribute: @Id

o Different ID generalization strategy can be defined in the
strategy parameter

2

3

Attributes of an Entity

 The persisted attributes can only be managed using getters/setters
(JavaBean convention)

 Non persisted (transient) attributes: @Transient

 Types of attributes

o Primitive types:
String, BigInteger, BigDecimal,

java.util.Date, java.util.Calendar,

java.sql.Date, java.sql.Time,

java.sql.Timestamp, byte[], Byte[], char[],

Character[]

o Enum

o Other entity, collection of other entities

o Inner class

2

4

Parameters of the Mapping

 Default
o the name of the columns and tables are identical of the name of the

attributes’ and classes’ names, respectivly.

 @Table(name=”MyTable”)

o @SecondaryTable(s) : can be separated into multiple
tables

 @Column(name=”MyColumn”)

 Other parameters for columns

o nullable

o unique

o length

2

5

Generalization

 Supported from EJB3.0

 Supported modes:

o One table for one classhierarchy 
filtered mapping

o Separate tables for subclasses with references 
vertical mapping

o One table for one concrete entity 
horizontal mapping

2

6

JPA - Generalization

 Filtered mapping

o Discriminator column defines the type

o Requires nullable columns for subclass attributes
o On the top of the hierarchy:

• @Inheritance(strategy=InheritanceType.SINGLE_TABLE)

• @DiscriminatorColumn(name=<columnname>)

o On all other classes:

• @DiscriminatorValue(<value representing the type>)

 Vertical mapping
o @Inheritance(strategy=InheritanceType.JOINED)

 Horizontal mapping
o Not part of the EJB3.0 specification

 2

7

Other Generalization Modes

 Supertype as a non-entity

o @MappedSuperClass:-attributes from the
annotated class can be used in the subtypes. Will not
have a dedicated table in the RDBMS, however, its
attributes will be persisted.

o Non marked will not be persisted

 Abstract Entity

o Cannot be instantiated, but can be mapped to a table

o Can be queried

2

8

Relations

 Based on multiplicity four different:
o @OneToOne

o @OneToMany

o @ManyToOne

o @ManyToMany

 Based on direction:

o unidirectional

o bidirectional (both entities will have getter/setter methods
to manipulate the relation): mappedBy parameter

 Bidirectional OneToMany = Bidirectional ManyToOne

 A relation always has only one container entity

2

9

Example relation
 Employee:

@ManyToOne

@JoinColumn(name=”company_id”)

private Company company;

 Company:
@OneToMany(mappedBy=”company_id”)

private Collection<Employee> employees;

 + getters, setters

 Instead of the @JoinColumn the @JoinTable is used when a separate
table is responsible for the relation (e.g., ManyToMany)

 The @ManyToOne relation is required to be defined on the container side!
(does not have a mappedBy parameter)

3

0

Cascade type of Relations

 What to do with related entities?
 If you insert, update or delete an object, related
 objects are inserted?, updated? or deleted?

 Can be defined for any relations
@OneToMany(cascade={

 CascadeType.PERSIST, CascadeType.MERGE})

 Possible values:
o PERSIST

o MERGE

o REMOVE

o REFRESH

o ALL

 Default: no cascade, everything have to be persisted
by hand

3

1

Fetch

 What to do with relating entities when we load an entity?
 Load all entities on its relations?

 Can be defined for all four relations
e.g.,@OneToMany(fetch=FetchType.LAZY)

 LAZY : will not be loaded only if they are explicitly referred
o Does not consume memory but requires +1 select

 EAGER (default): load all entities on its relations
o Faster but requires more memory

 Fine tuning options:
o Set LAZY in general and only use EAGER when we know that we

will use the entities from that particular relation.
Use fetch join in the EJB-QL query, e.g.,

 SELECT c from Customer c LEFT JOIN FETCH c.orders

3

2

Problems with Lazy fetch

 In case of detached state only those objects will be present
that were used before.

 If we merge an entity back after a detached state then all
relations (their target objects) that were not fetched will be
deleted from the RDBMS.

 The Lazy is just an advice. The persistence provider may
switch to Eager.

3

3

Persistence context

 The set of entities handled by the persistence

provider

 Identification with the name of the persistence

unit

 Getting the Entity manager e.g.:
EntityManagerFactory factory =

Persistence.createEntityManagerFactory(

 PERSISTENCE_UNIT_NAME); //parameter in the

persistence.xml

EntityManager entityManager =

factory.createEntityManager();

3

4

Entity Manager

 Responsible for handling the entities

 Responsible :

o Life-cycle of the entities

o Synchronization with the RDBMS

o Querying the entities

3

5

Transaction handling

 Properties:

oAtomic

oConsistent

o Isolated

oDurable

 API call:
o entityManager.getTransaction().

• begin()

• commit()

• rollback()

3

6

Entity Life-cycle

 new: will be in this state when created using the new
command, exists only in the memory. Will not be
synchronized to the RDBMS.

 managed: the entity is present in the database and is
part of a persistence context . Manipulations will be
executed on the database side either at the end of
the transaction or at an explicit flush() call.

 detached: the entity is present in the database but is
NOT part of a persistence context.
Similar like a DTO (Data Transfer Object)

 removed: part of the persistence context, however it
is marked for deletion from the database

3

7

Entity Life-cycle

3

8

Entity life-cycle callbacks

 Annotations for callback methods

o @PrePersist

o @PostPersist

o @PreRemove

o @PostRemove

o @PreUpdate

o @PostUpdate

o @PostLoad

 Persistence provider will execute the callbacks

 Can be defined in separate class
o Binding using the @EntityListener

o Its methods receive the entity as their input parameter

3

9

Database synchronization

 In general executed in all commit calls

 Can be explicitly executed using the Entity Manager:

o flush(entity):
writes the manipulations to the RDBMS

o refresh(entity):
Reads the changes from the RDBMS

4

0

Queries

 Simple query based on the primary key:
<T> T find(Class<T> entityClass, Object primaryKey)

 Complex queries:

o Java Persistence Query Language (JPQL, a.k.a. EJB-QL):
public Query createQuery(String ejbqlString)

• Example query:
SELECT DISTINCT OBJECT(p) FROM Player p WHERE

p.position = ?1 AND p.name = ?2

o SQL: public Query createNativeQuery(String sqlString)

4

1

Queries

 Safe parameter handling:

o Based on name or index
• setParameter(String, Object)

• setParameter(int, Object)

 Getting the result:
o getSingleResult()

o getResultList()

 Manipulation

o executeUpdate()

o Can be executed in batch mode

4

2

Concurrency

 Two opportunities

o Optimistic
• Annotate an int or TimeStamp attribute with the @Version tag

• Persistence provider increments this value at all commits on the entity

• Throws OptimisticLockException if the value is higher in the RDBMS then
the one in the memory.

o Explicit locks
• entityManager.lock(Object entity, LockMode)

• LockMode: READ or WRITE

• Can only be called within a transaction!

4

3

JPA 2.0

44

JPA 2.0 Features

• Richer mappings

• Richer JPQL

• Pessimistic Locking

• Criteria API

• Cache API

• Many more

JPA 2.0: Richer Mapping

• Supports collection of basic types and
embeddables

> In JPA 1.0, only collections of entities were supported

• Supports multiple levels of embeddables

• Embeddables containing collection of
embeddables and basic types

• PrimaryKey can be derived entities

• More support for Maps...

JPA 2.0: Collection of Basic Types

@Entity
Public class Item {

 @ElementCollection
 private Set<String> tags;
}

@Entity
Public class Item {

 @ElementCollection
 @CollectionTable(name="TAGS")
 private Set<String> tags;
}

Mapped by default in
ITEM_TAGS

Mapped in TAGS

JPA 2.0: Richer JPQL

• Added entity type to support non-polymorphic
queries

• Allow joins in subquery FROM clause

• Added new operators
> INDEX (for ordered lists)

> CASE (for case expressions)

> more

• Added new reserved words
> ABS, BOTH, CONCAT, ELSE, END, ESCAPE, LEADING,

LENGTH, LOCATE, SET, SIZE, SQRT, SUBSTRING,
TRAILING

Example: JPQL CASE Expression
@Entity public class Employee {

 @Id Integer empId;

 String name;

 Float salary;

 Integer rating;

 // ...

}

UPDATE Employee e

SET e.salary =

 CASE WHEN e.rating = 1 THEN e.salary * 1.05

 WHEN e.rating = 2 THEN e.salary * 1.02

 ELSE e.salary * 0.95

 END

JPA 2.0: Locking Enhancements

• JPA 1.0 supports only optimist locking

• JPA 2.0 adds pessimistic locking

• Multiple places to specify lock
> read and lock

> read then lock

> read then lock and refresh
 public enum LockModeType {
 OPTIMISTIC,
 OPTIMISTIC_FORCE_INCREMENT,
 PESSIMISTIC,
 PESSIMISTIC_FORCE_INCREMENT,
 NONE
}

JPA 2.0: Criteria API

• Strongly typed criteria API

• Object-based query definition objects

> rather than string-based

• Like JPQL

• Uses a metamodel – Compile time type checking
using Generics

> Each entity X has a metamodel class X_

> Criteria API operates on the metamodel

JPA 2.0: Caching

• Supports the use of a second-level cache

• Cache API

> contain(Class, PK)

> evict(Class, PK), evict(Class)

> evictAll()

• @Cacheable annotation on entities

References

 Mike Calvo: JPA and Hibernate

o http://www.slideshare.net/adorepump/jpa-and-
hibernate-presentation

 Gordon Yorke: EclipseLink JPA

o http://www.slideshare.net/pelegri/eclipselink-jpa-
presentation

 Markus Eisele: New features of JSR-317

o http://www.slideshare.net/myfear/new-features-of-
jsr-317-jpa-20

http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/adorepump/jpa-and-hibernate-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/pelegri/eclipselink-jpa-presentation
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20
http://www.slideshare.net/myfear/new-features-of-jsr-317-jpa-20

