
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Basics of Modeltransformation

Ákos Horváth

Dániel Varró

Model Driven Software Development
Lecture 8

Development Process for Avionics Systems

Unique Development Process
(Traditional V-Model)

Avionics Systems Design

 requires a certification process
o DO-178B

 to develop justified evidence
o Certification artifacts

 that the system is free of flaws
o Fulfils the requirements 

traceability from requirements to
synthesized source code

Copyright© CERTIMOT ERC-HU Project

DO-178B
IEC 61508

Certified tool  Fault-free output

Development Process for Avionics Systems

Traditional V-Model Model-Driven Engineering

Main ideas of MDE  DO-178C
• early validation of system models
• automatic source code generation
 reduce development costs

Copyright© CERTIMOT ERC-HU Project

• DO-178B/C: Software Considerations in Airborne Systems and
Equipment Certification (RTCA, EUROCAE)
• Steven P. Miller: Certification Issues in Model Based Development
(Rockwell Collins)

Models and Transformations in Avionics Systems Development

System Design
Model

Architecture
Design
 Model

Component
Design
Model

Refine

Refine

Design + V&V Artifacts
(Source code, Glue code,

Config. Tables, Test Cases, Monitors,
Fault Trees, etc.)

Code
Generation

Test
Generation

Component
V&V

Model

Architecture V&V
Model

System V&V
Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Copyright© CERTIMOT ERC-HU Project

Modeltransformation
• knowledge fusion
• from theoretical to
practical results

Horizontal modeltransformation

V
ertical m

o
d

eltran
sfo

rm
atio

n

Definition of Modeltransformation

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Overview

Motivációs
mintapélda

1. Motivating
example

2. Modellezési
nyelvek felépítése

2. Structure of
modeling languages

3. Graph-
transformation rules

4. Execution of GT
rules

5. Semantics

6. (Self)Affect of
multiple rules

1. Motivating Example

Object Relation Schema mapping

Example: Object-relational maping

 Important as:

o Modeltransformation
benchmark

o Most widely used industrial
modeltransformation
(pl. Hibernate, EJB, CDO)

 Objective:

o Input:
UML class diagram

o Output
Relational database schema

Informal definition of the MT rules of the mapping

Topmost (generalization) classes  Database table + 2 column:
•Unique identifier (primary key),
• type definition

Informal definition of the MT rules of the mapping

Class attributes  (contained by the topmost classes) Column of the table

Informal definition of the MT rules of the mapping

Type of the attributes  foreign key

Informal definition of the MT rules of the mapping

Association  A table with two columns
• source and target identifiers
• foreign keys (for consistency)

2. Structure of Modeling Languages

Overview

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Structure of Modeling languages (UML)

 Abstract syntax
o Graph based model

representation
o Machine readable

 Concrete syntax
o Visual/textual

representation
o Human readable

cref

Customer:Table Product:Table

CustId:Column

CustKind:Column

CustFavourite:Column

ProdId:Column

CustFFav:FKey

pkey

pkey

tcols tcols

fkeys fkeys

kcols

Structure of Modeling languages (RDBMS Schema)

Concrete syntax Abstract syntax

*
Class

Association

Attribute

src dst

attrs type

parent

*

UML

* Column

*
Table

FKey

fkeys

kcols

tcols

pkey
cref

*

*

DB

*

tref

Asc2Tab

Cls2Tab

Attr2Col c2a

t2c

t2a

Ref

a2t

c2t

a2c

Metamodel of the O-R mapping
 Source + Target

metamodel

 Traceability metamodel:
o For saving the relations

between the source and
the target languages

 Motivation: critical
embedded systems
o Traceability

o Requirement  Source
code

3. Graphtransformation rules

Structure of a GT rule

 Graphtransformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS match of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graphtransformation rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:

• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

*
C:Class

LHS RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

Structure of a GT rule
 Graphtransformation rules

o Left hand side - LHS
• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

C:Class

LHS

*
C:Class

parent

NAC

CP:Class

 Graphtransformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS match of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

Structure of a GT rule

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

 Graphtransformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS match of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graphtransformation rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

4. Application of
Graphtransformation rules

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
1. Graph pattern matching

o Match of the LHS pattern in the underlying
model

o match m: LHS  G mapping

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
NAC check
 Is there a match g for the NAC in G along the

m: LHS  G match?

 Successful match of NAC m is not a match

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
3. Nodeteministic selection

o Random selection of a match (if more
than one)

o No match rule fails

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:Class NormalCustomer:Class CD:Class

appendix:Attribute favourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dst src

parent parent

Application of GT rules
4. Deletion

o Deletion of LHS \ RHS from G

o In LHS yes, in RHS no

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Application of GT rules
5. Creation (and binding)

o Creation of RHS \ LHS in G with
their corresponding relations

o Output:
a „match” of LHS in G

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (DB)
tCust:Table

CustId:Column

CustKind:Column

pkey

tcols

Typical problems…

RHS

T:Table *
C:Class R:Cls2Tab

t2c c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

1) Saving the source model, traceability

2) Application of the same rule along the same match

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

The Image of
C is the same

in G!

5. Different Semantics

G (UML)

Product:Class

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

type

dst

Semantics : Handling of Dangling edges
 Dangling edges:

o Delete a node
• What to do with the

dangling edges?

 Greedy approach

o Delete all dangling edges

o Pro:
• Intuitive for engineers

• Easy to implement

o Con:
• Verification is hard

(side effect of rules)

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Customer:Class

parent

src

parent

G (UML)

Product:Class

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

type

dst

parent

src

parent

Customer:Class

Semantics : Handling of Dangling edges
 Dangling edges:

o Delete a node
• What to do with the dangling

edges?

 Conservative approach
o The rule cannot be applied if

it would produce a dangling
edge

o Pro:
• Side effect free rules

• Helps verification

o Con:
• Harder to implement

• What is its meaning for
engineers (not
mathematicans)

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Semantics: Injective matching
 Injective matching

(„kisajátító”)

o For all nodes in the LHS
separate nodes are
matched in G

 Pro:

o Intuitive for engineers

 Con:

o Verbose specification of
rules
(many alternate subrules)

Product:Class dst

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Semantics: Non-injective matching
 Non-Injective matching

(„közösködő”)
o For multiple nodes in the

LHS 
the same node can be
matched in G

 Con:
o Contradictionary

specification for a node
• For CF : keep it

• For CT : delete

 Solution:
o Nodes to be deleted in

LHS are matched with
injectiv semantics Product:Class

dst

type

6. Affect of multiple GT rules

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Conflict / Parallel independence

 Parallel independence
(between two rule applications)
o Neither affects the application of

the other

 Conflict (between two rules)
o If they are not parallel

independent

 Parallel independence
(between two rules)
o Any two of their rule application

are parallel independent Product:Class dst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G1 (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Serial independence

 Serial independence
(two following rule
applications)
o Their order can be swapped

without any effect on their
final result

Product:Class dst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G2 (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Serial independence

 Serial independence
(two following rule
applications)
o Their order can be swapped

without any effect on their
final result

 Example Product:Class dst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G1 (UML)

VIPCustomer:Class NormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Causally dependence I.

 Serial independence
(two following rule applications)

o Their order can be swapped
without any effect on their final
result

 Causally dependent
(two following rule applications)

o If they are not serial
independent

Product:Class dst

type

A:Attrib

attrs

RHS

CT:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G2 (UML)

NormalCustomer:Class

favourite:Attribute

orders:Association

VIPCustomer:Class

attrs

parent

src

parent

Customer:Class

Causally dependence II.

 Serial independence
(two following rule applications)
o Their order can be swapped

without any effect on their final
result

 Causally dependent
(two following rule applications)
o If they are not serial

independent

 Example
Product:Class dst

type

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Attrib

attrs

RHS

CT:Class

Summary
 Graphtransformation,

as a modeltransformation paradigm
o Rule and pattern based formal specification
o Querying and manipulating graph based models
o Intuitive graph based specification

 Structure

o LHS graph pattern: precondition
o RHS graph pattern: postcondition
o NAC: negative

 condition

 Rule application

o Graph pattern matching
o Deletition + Creation
o Dangling edges and injectivity
o Affect of multiple rule application (conflicts and causality)

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

Model transformation approaches

MT: categories

 Model-to-Code (M2C)

o Text generation

o AST generation  special case of M2M

o Ad-hoc, dedicated, template based, etc.

 Model-to-Model (M2M)

o Between models

• Intra-domain transformation

(e.g., simulation, refactoring, validation)

• Inter-domain transformation

(PIM-to-PSM mapping, model analysis)

o Bridging semantical gaps

Model Transformation approaches

 Direct Model Manipulation

 Relational

 Graph Transformation based

 Hybrid

 Other

Direct Model Manipulation

 Models stored in a Model Space

 Manipulation through API

 Queries hand coded

 Examples:

o Base EMF

o Jamda

o SiTra

Relational Approaches

 Based on mathematical relations

o Defined as constraints

o Constraint logic programming

 Queries captured as constraints

 Model manipulation handled by labeling

 Fully declarative definition

 Example:

o QVT

Graph Transformation based

 Model are graphs  use Graph Transformation

 Declarative definition

 Precise formal semantics

 Queries as graph patterns

 Model manipulation as graph transformation rules

 Examples:
o AGG

o GreAT

o ATOM

Hybrid approaches

 Combines declarative and imperative definition

 ”Developer friendly”

 Typically

o Queries  declarative

o Control Structure  imperative

 Complex language

 Largest transformations are using this approach

 Example:

o ATL

o Viatra2

Other - XSLT

 Models as XMI files

 Model Transformation as XSLT programs

 Hard to maintain

 XMI representations are

o verbose

o poor readability

Implementing a
Graph Transformation Engine

Implementing GT engines

 Key elements

o Model Store

• Storing typed graphs

• Support easy import and export

o Pattern Matching

• Find match for LHS

oModel manipulation

• Fast model manipulation

• Rollback

• Notification

51

Pattern matching techniques

 Categories

o Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL
• underlying PM engine

o Compiled: Fujaba, GReAT, PROGRES, Tiger
• directly executed as a C or Java code (no PM engine)

 Base algorithms

o Constraint satisfaction: AGG (Tiger)
• variables + constraints

o Local search: Fujaba, GReAT, PROGRES, VIATRA, MOLA, Groove,
Tiger (Compiled)
• step-by-step extension of the matching

o Incremental: VIATRA, Tefkat
• Updated cache mechanism

Constraint satisfaction based Pattern Matching

 Realization:

o Nodes are handled as CSP variables

o Constraints derived from edges

o Type information as domain reduction

o Traversal: backtracking algorithm

 Pros:

o Adaptive algorithm

 Contras:

o Handling large models

o Scalability

53

 Method

ousually defined in design/compile time

osimple search plan

ohard wired precedence for
constraint checking
 (NAC, injectivity, attribute, etc.)

 Good performance expected when:

oSmall patterns, bound input parameters

Local Search based Pattern Matching

Pattern Matching: Local Search

 PM can be the most time-consuming part

 Most implementations perform local search

 Example: simplified Petri-net firing
LHS RHS

Place

Token

Tran. Place
a1:inarc a2:outarc

Place

Token

Tran. Place
a1:inarc a2:outarc

ttn1:tokens tkn2:tokens

p2

p1

p3

t1

1 2 3

4 Search Plan

p1

p2

p3, t2

p2, t1, p1, k1

p3, t2, p2 p3
t2

p2, t1 p2, t1, p1

Search Space

(Typically depth-first)

1 2 3 4

o Fujaba, GReAT, PROGRES, Groove, Tiger, GrGEN.NET…

o VIATRA2 also has a LS-based pattern matcher

o Good performance expected:

o Small patterns, bound input parameters

55

 Goal
o Store matching sets
o Incremental update
o Fast response

 Good performance expected when:
o frequent pattern matching
o Small updates

 Possible application domain
o E.g. synchronization, constraints, model simulation,

etc.

 Example implementation (VIATRA): an adapted
RETE algorithm

Incremental Pattern Matching

Incremental Pattern Matching by RETE

p2

p1

p3

HOST

Place

t2

Transition Token

t1

k2 k1

k2 k1

p1 p2 t2 t1

p3, k2 p1, k1

p3, k2, t3

p1, k1, t1, p2

t3
t3

t3

p1 p2 p3 t2 t1

t3

t3

p1, k1, t1

p3, k2, t2, p1

p3

t3

p3, k2, t3

 RETE net

o node: (sub)pattern

o edge: change propagation

 Demostrating the principle

o input: Petri-net

o pattern: fireable transition

o change: new transition

Input nodes

Intermediate nodes

Production node

Model / host graph

57

Hybrid pattern matching

 Combine local search-based and incremental
pattern matching

 Motivation

o Incremental PM is better for most cases, but…

• Has memory overhead!

• Has update overhead

o LS might be better in certain cases

• Memory consumption (cache size)

• Cache construction time penalty (overhead, simple
navigation patterns)

• Expensive updates (e.g., move operation)

Modeltransformation engine

Modeling framework

Source
model

Source
language

Target-
model

Target-
language

MT rule

MT engine

Our research: Design and analysis of modeltransformation

• Mathematically precise +
intuitive MT language

• Reusable MT components

Specification of

Modeltransformation
• Effective and interactive

design methods

• Support for Domain
experts work

Design of

Modeltransformation

• Effective runtime performance

• >1 million model element

• IDE integration

Application of

Modeltransformation

• Mathematical Precision

• Verification and Validation
techniques

Verification of

Modeltransformation

