Basics of Modeltransformation

Akos Horvath
Daniel Varro

Model Driven Software Development

Lecture 8
© D66

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem

Méréstechnika és Informacios Rendszerek Tanszék

Development Process for Avionics Systems

Unique Development Process
(Traditional V-Model)

Avionics Systems Design

" requires a certification process
o DO-178B

= to develop justified evidence
o Certification artifacts

= that the system is free of flaws

o Fulfils the requirements 2>
traceability from requirements to
synthesized source code

Certified tool = Fault-free output

Development Process for Avionics Systems

Traditional V-Model Model-Driven Engineering

Main ideas of MDE = DO-178C
* DO-178B/C: Software Considerations in Airborne Systems and . I Id . f d |
Equipment Certification (RTCA, EUROCAE) ear Yy valigation o SyStem modeils
* Steven P. Miller: Certification Issues in Model Based Development ° automatic source COde generation
(Rockwell Collins)

=>» reduce development costs

MOEEE

M 1 T7TEEZ

Models and Transformations in Avionics Systems Development

Horizontal modeltransformation

Model generation

System Design) W > System V&V
Model € N\ Model
N Refine Back-Annotation Use
Design Model generation F
,_E_ ormal
< rules Architecture > i
S Desian e/ Architecture V&V| methods
. & € 7\ Model
3 Model e/
= Refine Back-Annotation
3 _ Use
o Model generation F
) ormal
® rules Component —D—) Component methods
g Design V&V
(7} Model Model
= | Back-Annotation 1
3 ,
Q Design
= |
S rules Code Test
Generation Generation
Vv W Modeltransformation
Design + V&V Artifacts * knowledge fusion
(Source code, Glue code, * from theoretical to

Config. Tables, Test Cases, Monitors,

practical results
Fault Trees, etc.)

CoNAZht© CERTIMOT ERC-HU Project

Ot
LA

Definition of Modeltransformation

Modeltransformation engine

Modeling framework

Source MT rule Target-
language language
i i
Source : Target-
model MT engine model

Overview

, 3. Graph-
5. Semantics .
I transformation rules

nsformatl
/ Modeling framework

. Tipe

Sourc€e MT rule Yarget-
language language
A A
Source : Target-
model MT engine model

/

/

6. (Self)Afect of 1. Motivating 4. Execution of GT

multiple rules example rules

1. Motivating Example

Object Relation Schema mapping

Example: Object-relational maping

= |mportant as:

o Modeltransformation
benchmark

= Objective:

o Most widely used industrial

modeltransformation
(pl. Hibernate, EJB, CDO)

o Input:

UML class diagram

o Output

Customer arders

Product

-

FF %1

VIPCustomer NormalCustomer

cD

favourite : Product

~appendix CD

Relational database schema

~

reviews :T

Customer Product
PK |id PK |[id
—»
kind " kind
FK1 |favourite FK1 |appendix
T A
reviews
orders .
PK,FK2 |pid
PK,FK2 |pid PK.FK1 | cid

PK,FK1 |cid

Informal definition of the MT rules of the mapping

Customer orders Product Customer Product
-~ PK |id PK |id
{l‘ kind kind
favourite FK1 |appendix
A
VIPCustomer MNormalCustomer Book cD
-favourite : Product appendix : CD reviews
rd .
MEvViEws /]\ oraers PK,FK2 |pid
PK,FK2 | pid PK,FK1 |cid
PK,FK1 |cid

Topmost (generalization) classes =» Database table + 2 column:
eUnique identifier (primary key),
e tvpe definition

Informal definition of the MT rules of the mapping

-~

Customer orders Product Customer Product
. PK |id PK |id
—>
FANERVAN FANERVAN kind ind
PTKT | favour® I FK1 |appendix
A
wYlPCustemer || NormalCustomer Book CcD T
favourite : Product appendix : CD reviews
MEvViEws /]\ orders PK,FK2 |pid
PK,FK2 | pid PK,FK1 |cid
PK.FK1 |cid

Class attributes = (contained by the topmost classes) Column of the table

Informal definition of the MT rules of the mapping

-~

Customer orders Product Customer Product

. PK |id PK |id
AN ; .
kind < kind
ﬂl\‘ ﬁ‘_\‘ T E FK1 > favourite FK1 |appendix
Book

A
VIPCu r NormalCustomer CD T
favouritel: Product appendix : CD reviews
orders

reviews /]\ PK FK2
PK,FK2 PK.FK1 |ci

PK,.FK1

IE'

|E. =
=0 =N
&

Type of the attributes =» foreign key

Informal definition of the MT rules of the mapping

-~

Customer orders Product Customer Product

- PK |id PK |[id

yAN | |
kind < kind
ﬂl\‘ Z‘_\‘ T FK1 | favourite FK1 |appendix
A A
Book

VIPCustomer || MormalCustomer CD
favourite : Product appendix : CD reviews
MEvViEws /]\ PK,FK2 |pid
PK,FK1 |cid

Association = A table with two columns
e source and target identifiers
e foreign keys (for consistency)

2. Structure of Modeling Languages

Overview

Structure of Modeling languages (UML)

type
—{favourite:Attribute —Pappendix:Attribute —type
_attrs_l _attrsl
NormalCustomer:Class| |VIPCustomer:Class [€—Src<reviews:Association}dst9Book:Class CD:Class
I
parent parent —parent;—parent
Customer:Class src orders:Association dst P»iProduct:Class j&———
Abstract syntax
ooers
Customer) Product o Graph based model
ey .
represe ntation

"T T ﬁ'\‘ T‘ o Machine readable
Book cD -

VIPCustomer ||NormalCustomer CO ncrEte Syntax

favourite : Product appendix : CD o Visual/textual
reviews) representation

o Human readable

Structure of Modeling languages (RDBMS Schema)

FK1

kind
favourite

i

=

Product

id

< kind

FK1 |appendix

A

orders

reviews

PK,FK2
PK,FK1 |cid

E_.

PK,FK2
PK,FK1 |ci

4

Concrete syntax

tcols

fleys fkeys
r Product:Table

tcols

=

pkey

i 4J
Custld:Column <J |—>Prodld:Cqumn

=

CustKind:Column

==

CustFavourite:Column

ikcols

A

CustFFav:FKey

Abstract syntax

Metamodel of the O-R mapping

- .. ! A = Source + Target
Association +—t2a— Asc2Tab —a2t—+»| Table
metamodel
* e
Sre dStl f\tZC c2t trefT lfkeys = Traceability metamodel:
—>» Class ™ Cls2Tab -~ FKey o For saving the relations
arent between the source and
" I P kcols pkey the target languages
attrs | *)) .
v |bpe cref g * = Motivation: critical
Attribute +—c2a— Attr2Col —a2c-| Column [« embedded systems
x4 tcols o Traceability
UML Ref DB o Requirement =» Source
code
Customer \ orders Product p Customer N Product
= PK |id PK |id
[\‘—\ ﬁf‘ kind kind
favourite FK1 | appendix
A
VIPCustomer HNormalCustomer Book cD
Hfavourite © Product appendix cD | reviews
reviews /I\ orders PK,FK2 |pid
PK,FK2 | pid PK,FK1 |cid
,,,,, PK,FK1 |cid

3. Graphtransformation rules

Structure of a GT rule

P:Column = Graphtransformation rules
tC0|ST pl«%;y-| o Left hand side - LHS
C:Class » T:Table * Graph pattern
tCOISl * Precondition for the rule application
K:Column o Right hand side - RHS:
LHS . RHS | e Graph pattern + LHS mapping
* Declarative definition of the rule
application

= Graphtransformation (GT):
o Declarative and formal paradigm
o Rule base transformation

o Match of the LHS=» match of the
RHS
o Generalization of Chomsky

grammars (hierarchy)
(text =» graph)

— What we get (and not how we get it)

Structure of a GT rule

C:Class » P:Column = Graphtransformation rules

LHS tcolsT pkey o Left hand side - LHS
e Graph pattern

CP:Class T:Table * Precondition for the rule application
Tparent :f:l:sjlumn o Right hand side - RHS:
C:Class i e Graph pattern + LHS mapping
RHS * Declarative definition of the rule
NAC application
" Gra phtransformation (GT) — What we get (and not how we get it)

o Negative Application Condition(NAC):
, * Graph pattern + LHS mapping
o Rule base transformation : n
* Negative precondition of the rule
o Match of the LHS=2» match of the application

RHS If it can be made true=>»
the rule cannot be applied

* Multiple NACs = only one is true =»
rule cannot be applied

o Declarative and formal paradigm

o Generalization of Chomsky
grammars (hierarchy)
(text =» graph)

Structure of a GT rule

CP: P:Column = Graphtransformation rules
parent tCOIST pkey o Left hand side - LHS
- e Graph pattern

e » LELE L * Precondition for the rule application
tCOISi o Right hand side - RHS:
S Ui e Graph pattern + LHS mapping

LHS RHS * Declarative definition of the rule
application
" Gra phtransformation (GT) — What we get (and not how we get it)

o Negative Application Condition(NAC):
, * Graph pattern + LHS mapping
o Rule base transformation : n
* Negative precondition of the rule
o Match of the LHS=2» match of the application

RHS If it can be made true=>»
the rule cannot be applied

* Multiple NACs = only one is true =»
rule cannot be applied

o Declarative and formal paradigm

o Generalization of Chomsky
grammars (hierarchy)
(text =» graph)

4. Application of

Graphtransformation rules

Application of GT rules

1. Graph pattern matching

P:Column
o Match of the LHS pattern in the underlying
tcoIsT pkey model
T:Table o match m: LHS =» G mapping

oo e I
K:Column _J |__

~ [
A ~ \\ NN VIPCustomer B NormalCustomer I
I\ N S, NN :
N ~ ay JHavourite : Product
I | \\ _., NNNL reviews
w L) > — e~ — -
(I ?mg\ ~ ~
i 1 vourite:Attribute ~ \\ appeMdigAttribute ——type
1 NS ~ S
I N ~ ~

CD:Class

~
Src- reviews:AssociatioﬂQt
|

parent parent — parent parent
~
N~
Customer:Class src orders:Association dst Product:Class

VIPCustomer:Class Book:Class

|No}naICustomer:CIass|

Application of GT rules

P:Column

AC check
Is there a match g for the NAC in G along the

tcoIsT k
PKEY m: LHS = G match?
T:Table m Successful match of NAC=» m is not a match
o e I
K:Column _J |__
\\ ~§~ VIPCustomer J| NormalCustomer I
S \\ N\ favourite : Product
“ ~
~ \ .
N - MEVIEWSs
R
\\ .
N \\ appeﬁd&A&rlbute —type
\\ ~ NN
N
VIPCustomer:Class SFC-reviews:Associatioﬂﬁt Book:Class CD:Class
]
parent parent ~ — parent parent
f i | S
Customer:Class src orders:Association dst m

Application of GT rules

3. Nodeteministic selection
P:Column . .
=— . o Random selection of a match (if more
Cols
T PKEY than one)
T:Table o No match=> rule fails
tcolsi orders
K:Column
RHS
l ~ VIPCustomer MormalCustomer Book CcD
I \\ -favourite : Product appendix : CD
\\ MEVIEWS
i LS | J
G (UML) > e
: : ~ : :
i —Pfavourite:Attribute \\ —Plappendix:Attribute —type
| N
| _attrs_l \ attrsl
No!‘nalCustomer Class| [VIPCustomer:Class[€—SrC-reviews:Associati ﬂ{t-b Book:Class CD:Class
I
| parent parent \\ — parent parent
S

Application of GT rules

4. Deletion
P:Column ot ‘ ¢
tcoIsT T o Deletion of LHS \ RHS from G
o InLHS yes, in RHS no
T:Table
tcolsl Product
K:Column
RHS ‘f "f
"-"IFGusl'nma; Hc;rmalﬂustmmr Book CcD
~favourite : Product -appendlx - CD
4 revIEws /I\ J
type
i —Pfavourite:Attribute —Plappendix:Attribute —type
|
| _attrs_l _attrsl
NoaﬂaICustomer:CIass VIPCustomer:Class [€—Src<reviews:Association fdst #{Book:Class CD:Class
I
—parent;—parent
orders:Association dst P»Product:Class [————

Application of GT rules

—p

CustKind:Column

CP: I-
parent |
C:Class »J,
V4
@
4 i K:Column
LHS ,j' I- QE
] [l
| I !
I [|
G (DBWV : I
tCust:Tablepkey| | L
tcols I :
[
—»|Custid:Column el :
<- I . J

5.

Creation (and binding)

o Creation of RHS \ LHS in G with
their corresponding relations

o Output:
a ,match” of LHS in G

Customer

PK |id

kind

Typical problems...

1) Saving the source model, traceability

The Image of

Cis the same C:Column
B in G! tcoIsT pkey

C:Class C:Class («—R:Cls2Tab—>T:Table
t2c c2t
tcolsl
K:Column
LHS RHS
2) Application of the same rule along the same match
C:Column
tcoIsT pkey
C:Class [«—R:Cls2Tab—>T:Table
t2c c2t

tcolsl

K:Column

LHS RHS

5. Different Semantics

Semantics : Handling of Dangling edges

P:Column - Dangling EdgES:
tcolST pl«iy-| o Delete a node
T:Table What to do with the

tcolsi dangling edges?

K:Column
= Greedy approach
RHS
o Delete all dangling edges
o Pro:
! * Intuitive for engineers
G (lJIVIL) type .
i * Easy to implement
| —Pifavourite:Attribute
I o Con:
| _attrs_l o))
e Verification is hard
Nog‘naICustomer:CIass VIPCustomer:Class (side effect of ruIes)
| parent parent
\ 4
SI’C-orders:Association dst¥Product:Class

Semantics : Handling of Dangling edges

P:Column
tcoIsT pkez|
T:Table

tcolsl
K:Column

S RHS

= Dangling edges:

o Delete a node

* What to do with the dangling
edges?

= Conservative approach

type

—Pifavourite:Attribute

_attrs_l

\ 4

Product:Class

ustomer:Clas |@p rders:Associationdst 9
SEER

o The rule cannot be applied if
it would produce a dangling
edge

o Pro:

* Side effect free rules
* Helps verification

o Con:

e Harder to implement

* What is its meaning for
engineers (not
mathematicans)

|

Semantics: Injective matching

SIc

STC Y 4
A:Assoc A:Assoc
dst \
I N |
- !
LHS \ —F
I v Sd
I T\ X
I \ 1 S
I v 7 S
G (UML), wex
" —Pfavou &‘El'Attri bute \\
| — attrs7] | \
\
VIPCustomel:Class \

NormaICust'mer:CIass

Src

orders:Association

dst

Product:Class

" |njective matching
(,,kisajatito”)
o For all nodes in the LHS=>

separate nodes are
matched in G

Pro:

o Intuitive for engineers

= Con:

o Verbose specification of
rules
(many alternate subrules)

Semantics: Non-injective matching

i SIrc SIrc \

: A:Assoc «Q A:Assoc|| 1

I dst \ : :
l\ N

: LHS —¢ SLAHS |

| l N 3

. | ,’ 1

1 G (UIVIL),', “‘] type
: 'I I[—bfavouﬂia:Attribute
: l' — attrs™] |

i VIPCustomet:Class

: parent V

J

dst

\ 4

Product:Class

= Non-Injective matching
(,,kozo6skodo”)

o For multiple nodes in the
LHS =>
the same node can be
matched in G

= Con:

o Contradictionary
specification for a node

* For CF : keep it
* For CT: delete

= Solution:

o Nodes to be deleted in
LHS are matched with
injectiv semantics

6. Affect of multiple GT rules

Conflict / Parallel independence

CF:Class ,+||CF:CIass|| CF:Class
Tsrc Y 4 *a I's lattrs

l
! /
: A:Assoc _ b= | |Ashttrib » A:Attrib
|

[-\~ / I l| CT:Class \
1 1 = ' J s

1 I I LHS RHS
: 1 X 1 .

! [N " | * Parallel independence
: i ! \\ I 1 (between two rule applications)
I G (U M |_) i Ltv ;V’ " o !c\lh(e;tgt(er]rez:ffects the application of
I 1 — :
I 1 —+faV°Uf'te=Att“bute II \ = Conflict (between two rules)
i | | / L\ o If they are not parallel
I independent
| NormaICustomer:CIas‘% VIPCustomer:Class = Parallel independence
: parent parqnt (between two rules)

o Any two of their rule application

= Customer:Class orders:Associationjdst

are parallel independent

Serial independence

|CF:CIass| CF:Class
Y 4 I |

Y 4 *a I's lattrs
A:Attrib » A:Attrib

CT:Class
LHS RHS

= Serial independence
(two following rule
applications)

o Their order can be swapped
without any effect on their
final result

parent

— Customer:Class AJdorders:Association dst

Product:Class

Serial independence

CF:Class ,+||CF:CIass|| CF:Class
Tsrc Y 4 L attrs lattrs
I\ » A:Assoc l{"' A:Attrib » A:Attrib
‘\ “ type
\ // I v
CT:Class \ / 'l I’| CT:Class \
LHS 1 RAS |47 1 1S RHS
\ ;o
: ,’ ’l 'l = Serial independence
G, (UML) : YV—we 7 (two following rule
1 —+favourite:Attribute II app“cations)
| — /

parent

NormaICustomer:CIas‘% VIPCustomer:Class

pargnt

o Their order can be swapped
without any effect on their
final result

Customer:Class AJdorders:AssociationIdst+

Product:Class

r) Example

Causally dependence I.

A:Assoc _ &= | [Ashttrib » A:Attrib
,/ ” *type Lattrs
// ', CT:Class CT:Class
~
gl LHS RHS
N I
(AN I o
I \\ I = Serial independence
\'l_tv gv’ (two following rule applications)
1 .
evourite:attributel] 1% o Their order can be swapped
\ without any effect on their final
/ “ result
NormaICustomer:CIas‘% VIPCustomer:Class \ = Causally dependent

parent

— Customer:Class

F

orders:Association

dst

Product:Class

(two following rule applications)

o If they are not serial
independent

Causally dependence II.

A:Attrib » A:Attrib
+type L attrs
’| CT:Class \ CT:Class
LHS RHS

= Serial independence
(two following rule applications)
o Their order can be swapped

without any effect on their final
result

—+ favourite:Attribute

NormaICustomer:CIas‘% IPCustomer:Class

= Causally dependent
(two following rule applications)

o If they are not serial
independent

=>» Example

parent pa rwt

— Customer:Class AJdorders:AssociationIdst

= Graphtransformation,
as a modeltransformation paradigm

o Rule and pattern based formal specification
o Querying and manipulating graph based models
o Intuitive graph based specification

= Structure

o LHS graph pattern: precondition
o RHS graph pattern: postcondition

o NAC: negative
condition

CP: S ‘C: C:Column

= Rule application fparent tcols plfy tcols® pkey
C:Class [>—|RiCls2Tab|——>|T:¥aiile~ C:Class [4>—{RiCls2Tabj——b[T:Table
. tcolsg tcolsg
Graph pattern matching o] ’ﬁlumn
Deletition + Creation Lc [Ris]

Dangling edges and injectivity

Affect of multiple rule application (conflicts and causality)

Model transformation approaches

MT: categories

= Model-to-Code (M2C)

o Text generation
o AST generation - special case of M2M
o Ad-hoc, dedicated, template based, etc.

= Model-to-Model (M2M)

o Between models

* Intra-domain transformation
(e.g., simulation, refactoring, validation)

* Inter-domain transformation
(PIM-to-PSM mapping, model analysis)

o Bridging semantical gaps

Model Transformation approaches

"= Direct Model Manipulation
= Relational

"= Graph Transformation based
= Hybrid
= Other

Direct Model Manipulation

= Models stored in a Model Space
= Manipulation through API
= Queries hand coded

= Examples:
o Base EMF
o Jamda
o SiTra

Relational Approaches

= Based on mathematical relations
o Defined as constraints
o Constraint logic programming

= Queries captured as constraints
= Model manipulation handled by labeling
= Fully declarative definition

= Example:

Graph Transformation based

Model are graphs = use Graph Transformation
Declarative definition

Precise formal semantics

Queries as graph patterns

Model manipulation as graph transformation rules

Examples:
o AGG

o GreAT

o ATOM

Hybrid approaches

"= Combines declarative and imperative definition
= "Developer friendly”
= Typically

o Queries = declarative

o Control Structure = imperative

= Complex language
= Largest transformations are using this approach

= Example:
o ATL
o Viatra2

Other - XSLT

" Models as XMl files

* Model Transformation as XSLT programs
"= Hard to maintain

= XMI representations are

o verbose

o poor readability

Implementing a

Graph Transformation Engine

Implementing GT engines

= Key elements

o Model Store
 Storing typed graphs
e Support easy import and export

o Pattern Matching
* Find match for LHS

o Model manipulation

* Fast model manipulation
* Rollback
* Notification

Pattern matching techniques

= Categories

o Interpreted: AGG (Tiger), VIATRA, MOLA, Groove, ATL
* underlying PM engine

o Compiled: Fujaba, GReAT, PROGRES, Tiger
 directly executed as a C or Java code (no PM engine)

= Base algorithms
o Constraint satisfaction: AGG (Tiger)

e variables + constraints

o Local search: Fujaba, GReAT, PROGRES, VIATRA, MOLA, Groove,
Tiger (Compiled)
* step-by-step extension of the matching
o Incremental: VIATRA, Tefkat

e Updated cache mechanism

Constraint satisfaction based Pattern Matching

= Realization:
o Nodes are handled as CSP variables
o Constraints derived from edges
o Type information as domain reduction
o Traversal: backtracking algorithm

" Pros:
o Adaptive algorithm

= Contras:
o Handling large models

o Scalability

Local Search based Pattern Matching

" Method

o usually defined in design/compile time
o simple search plan

o hard wired precedence for
constraint checking
(NAC, injectivity, attribute, etc.)

" Good performance expected when:

o Small patterns, bound input parameters

Pattern Matching: Local Search

"= PM can be the most time-consuming part

= Most implementations perform local gearch

- E IS DS IS LY I I ~ S TR T < J0-00N
LHS RHS
al:inarc a2:outarc a2:outarc
éPlace 4% Tran. —6Place Place } Place
y ttnl:tokens n2:tokens 1
Token Token

o Fujaba, GReAT, PROGRES, Groove, Tiger, GrGEN.NET...

o VIATRA2 also has a LS-based pattern matcher t)

o Good performance expected:

o Small patterns, bound input parameters p2,t1, p1, k1 |

Incremental Pattern Matching

Goal

o Store matching sets
o Incremental update
o Fast response

Good performance expected when:
o frequent pattern matching

o Small updates

Possible application domain

o E.g. synchronization, constraints, model simulation,
etc.

Example implementation (VIATRA): an adapted
RETE algorithm

Incremental Pattern Matching by RETE

= RETE net
o node: (sub)pattern
o edge: change propagation
= Demostrating the principle
o Input: Petri-net
o pattern: fireable transition
o change: new transition

Model / host graph

Intermediate nodes

Production node

Hybrid pattern matching

= Combine local search-based and incremental
pattern matching

= Motivation
o Incremental PM is better for most cases, but...

* Has memory overhead!
* Has update overhead

o =2 LS might be better in certain cases

* Memory consumption (cache size)

* Cache construction time penalty (overhead, simple
navigation patterns)

* Expensive updates (e.g., move operation)

Our research: Design and analysis of modeltransformation

Design of
Modeltransformation

e Effective and interactive

Modeltransformation engine design methods
e Support for Domain

experts work

Modeltransformation

e Mathematically precise +
intuitive MT language

e Reusable MT components

Modeling framework

Source MT rule Target-
language language
i i
Source : Target_
model MT engine model

o Effective runtime performance e Mathematical Precision
e >1 million model element e Verification and Validation
e IDE integration techniques

Verification of
Modeltransformation

Application of

Modeltransformation

