
Budapest University of Technology and Economics 
Department of Measurement and Information Systems 

MODEL MANAGEMENT 

Dániel Varró 

Ákos Horváth 

Mostly Contributed by 

M. Brambilla, J. Cabot and M. Wimmer 

Model Driven Software Development 
Lecture 12 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Teaching material for the book 

Model-Driven Software Engineering in Practice 

by Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Morgan & Claypool, USA, 2012. 

www.mdse-book.com 

MANAGING MODELS 

Chapter #10  



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Motivation 
Why Model managing?  

 In MDE everything is a model but as important as that, no 

model is an island 

 

 All modeling artefacts in a MDE project are interrelated. 

These relationships must be properly managed during the 

project lifecycle 

 

 
Requirements 

Use Case 

Class Diagram 

Java Project 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Content 

 Model interchange 

 

 Model Persistence 

 

 Model Comparison 

 

 Model Versioning 

 

 Model Co-Evolution 

 

 Global Model Management 

 

 Model Quality 

 

 Collaborative modeling 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

MODEL INTERCHANGE 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Once Open Everywhere  

 There’s a clear need to be able to exchange models among 
different modeling tools 

 In a perfect world, you’d be able to choose ToolA for specifying model, 
ToolB to check its quality, ToolC to execute it…. 

 

 We are still far away from this goal 

 

 Solution attempt: XMI (XML Metadata Interchange), a standard 
adopted by OMG for serializing and exchanging UML and MOF 
models 

 

 But each tools seems to understand the standard in a different 
manner 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

XMI example  
(simplified and partial versions of the actual XMI files) 

 

 

Employee 
WorksIn 1..* 

- name : String 

Department 

- name : String 
1 

<packagedElement xmi : type="uml : Clas s " xmi : id=" c001 " 

name="Employee"> 

<ownedAt t r ibute xmi : id=" a001 " name="name"/> 

</packagedElement> 

<packagedElement xmi : type="uml : Pr imi t iveType " xmi : id=" 

t001 " name="St r ing "/> 

<packagedElement xmi : type="uml : Clas s " xmi : id=" c002 " 

name="Department"> 

<ownedAt t r ibute xmi : id=" a002 " name="name" type=" t001 "/> 

</packagedElement> 

<packagedElement xmi : type="uml : As s o c i a t i on " xmi : id=" 

as001 " name="WorksIn" 

memberEnd=" e001 e002"> 

<ownedEnd xmi : id=" e001 " type=" c002 " a s s o c i a t i o n=" 

as001"/> 

<ownedEnd xmi : id=" e002 " name="" type=" c001 " a s s o c i a t i 

o n=" as001"> 

<upperValue xmi : type="uml : Li t e r a lUnl imi t edNa tur a l " xmi : 

id="un001" value=""/> 

</ownedEnd> 

</packagedElement> 

<UML: Clas s xmi . id = ' c001 ' 

name = 'Employee ' v i s i b i l i t y = ' publ i c ' i s S p e 

c i f i c a t i o n = ' f a l s e ' i sRoot = ' f a l s e ' 

i sLe a f = ' f a l s e ' i sAbs t r a c t = ' f a l s e ' i sAc t i v 

e = ' f a l s e '> 

<UML: C l a s s i f i e r . f e a tur e> 

<UML: At t r ibut e xmi . id = ' a001 ' 

name = 'name ' v i s i b i l i t y = ' publ i c ' i s S p e c i f i 

c a t i o n = ' f a l s e ' 

ownerScope = ' ins tanc e ' c h a n g e a b i l i t y = ' 

changeable ' targe tScope = ' ins tanc e '> 

<UML: St ruc tur a lFe a tur e . mu l t i p l i c i t y > 

<UML: Mu l t i p l i c i t y xmi . id = ' m001'> 

<UML: Mu l t i p l i c i t y . range> 

<UML: Mul t ipl i c i tyRang e xmi . id = ' mr001 ' 

lower = '1 ' upper = '1 '/> 

</UML: Mu l t i p l i c i t y . range> 

</UML: Mu l t i p l i c i t y> 

</UML: St ruc tur a lFe a tur e . mu l t i p l i c i t y > 

</UML: Clas s> 

ECLIPSE ArgoUML 



Example: metamodel and model 

 Team metamodel   Team model 

Element 

name : String 

Player 
number : Integer 

Team +players +playsFor 
0..* 11..* 0..* 11..* 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Example: XMI 1.0 DTD 

<!ELEMENT Team.players (Player)*> 
<!ELEMENT Player.playsFor (Team)*> 

<!ELEMENT Element.name 
 (#PCDATA|XMI.reference)* > 

<!ELEMENT Team (Element.name, 
 XMI.extension*, 
 Team.player) > 

<!ATTLIST Team 
 %XMI.element.att 
 %XMI.link.att > 

<!ELEMENT Player (Element.name, 
 XMI.extension*, 
 Team.playsFor) > 

<!ATTLIST Player 
 %XMI.element.att 
 %XMI.link.att > 

Element 

name : String 

Player 
number : Integer 

Team +players +playsFor 
0..* 11..* 0..* 11..* 



Example: XMI 1.0 document 
<Team id=‘t1’> 
 <Element.name>  
   Hungary 
 </Element.name> 
 <Team.players> 
   <Player id=‘p1’> 

 <Element.name> Puskas  
  </Element.name> 
  <Player.number> 10 
  </Player.number> 
  <Player.playsFor 
  xmi.idref=‘t1’/>  
     </Player> 
 </Team.players> 
</Team> 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Example: XMI 1.1 document 

<FB:Team id=‘t1’ name=‘Hungary’> 
  <FB:Team.players> 
    <FB:Player id=‘p1’ 
   name=‘Puskas’ 
   number=’10’ 
   playsFor='t1'/>  
    </FB:Player> 
  </FB:Team.players> 
</FB:Team> 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Example: XMI 2.0 document 

<fb:Model xmlns:fb="…„ xmlns:xmi="…" 
 <teams xmi.type="Team" xmi.id="t1" name="Hungary"> 
   <players xmi.id=‘p1’ 
   name=‘Puskas’ 
   number=’10’ 
   playsFor='t1'/>  
  </teams> 
</fb:Model> 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Once Open Everywhere  
Recent advances 

Model Interchange Working Group3 (MIWG) to enable the 

assessment of model interchange capability of modeling 

tools by comparing the vendor XMI exports for a test suite 

 

New The new Diagram Definition standard will allow to 

exchange not only the modeling content but also the 

graphical layout of the models 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

MODEL PERSISTENCE 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Persistence 

 Typically models are serialized in plain files, following the 

previous XMI format or any other proprietary XML format 

 

 Doesn’t work well with large models. Scalability issues 

 Loading the whole model in memory may not be an option 

 Random access strategies plus lazy loading (i.e. loading on 

demand) are needed 

 

 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Persistence 
Alternatives 

 CDO (Connected Data Objects) Model Repository 

 Run-time persistence framework optimized for scalable query and 

transactional support for large object graphs.  

 Back-ends: object, NoSQL, and relational databases. 

 For relational databases, CDO relies on Teneo6, a Model-Relational 

mapping and runtime database persistence 

 

 Pure NoSQL solutions: Morsa and MongoEMF. Both use 

MongoDB as backend. 

 

   Newer alternatives aim at using the Cloud as model 

storage solution 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

MODEL COMPARISON 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Comparison  

Comparing two models is a key operation in many model-

management operations like model versioning 

 

Goal of model comparison is to identify the set of differences 

between two models 

 

 These differences are usually represented as a model 

themselves, called a difference model  

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Comparison: Model matching  
Phase 1 of a model comparison process 

 Identify the common elements in the two models 

 

 How do we establish which elements have the same identity? 

 Static identity: explicit id’s annotating the elements 

 Signture identity: Identity based on the model element features (i.e. 

name, contained elements,…) 

 

 Identity can be a probabilistic function (similarity matching) 

 

 Works better if users redefine the concept of matching  for 

specific DSLs (so that their specific semantic can be taken into 

account) 

 Model comparison =  

Graph similarity problem 



Example: Model Comparison 

 What is the best matching? Animal 
Name: string 

Cat Dog 

Mammal 
Name: string 

Cat Dog 

Animal 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Comparison: Model differencing  
Phase 2 of a model comparison process 

Matched elements are searched for differences 

 

 A difference corresponds to an atomic add / delete / update / 

move  operation executed on one of the elements 

 

 These differences are collected and stored in the difference 

model 

 



Example: Model Difference 

 What is the difference? 

 Matching (A) 
o Del Gen: Cat  Animal 

o Del Gen: Dog  Animal 

o Add Cls: Mammal 

o Add Gen: Mammal  Animal 

o Add Gen: Cat  Mammal 

o Add Gen: Dog  Mammal 

o Move Att:  
Name: Animal  Mammal 

 Matching (B) 
o Rename: Animal  Mammal 

o Add Cls: Animal 

o Add Gen: Mammal  Animal 

 

 

Animal 
Name: string 

Cat Dog 

Mammal 
Name: string 

Cat Dog 

Animal 
(A) 

(B) 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Comparison tools 

 EMF compare: 

 Most popular one 

 Generic comparison facilities for any kind of EMF model 

 Differences can be exported as a model patch 

 

 SiDiff: 

 Mainly similarity-based matching 

 Adaptable to any graph-like model 

 

 Epsilon Comparison  Language: 

 Includes a DSL to enable the implementation of specialized higher-level 
changes 

 With it, high-level changes such as refactorings may be also detected 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

MODEL VERSIONING 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Versioning   

 Programmers can’t live without version control systems like 

SVN or GIT. Designers need the same for models 

 

 VCSs help detect, manage and resolve conflicts arising 

when merging models 

 

Current VCSs are text-based. Using them to merge models 

may result in inconsistent results due to the graph-based 

semantics of models. 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Versioning   

 A B 

1. <State id=“S1”, name = “A”> 

2. <State id=“S2”, name = “B”> 

3. <Transition id=“T1”, source=“S1”, target=“S2”> 

1. <State id=“S1”, name = “A”> 

2. <State id=“S2”, name = “B”> 

3. <Transition id=“T1”, source=“S1”, target=“S2”> 

4. <Transition id=“T2”, source=“S2”, target=“S1”> 

1. <State id=“S2”, name=“B”> 

2. <Transition id=“T2”, source=“S2”, target=“S1”> 

1. <State id=“S2”, name=“B”> 

sm V0 

sm.xmi 

sm.xmi 

sm V1’ 

B 

sm.xmi 

sm.xmi 

A B 

sm V1’’ 

B 

sm V1 

In
it

ia
l 
V

e
rs

io
n

 
C

o
n

c
u

rr
e

n
t 

V
e

rs
io

n
s

 
In

c
o

n
s

is
te

n
t 

M
e
rg

e
d

 V
e
rs

io
n

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Versioning   
Tools 

 Dedicated model-based VCSs are needed 

 

 Some first attempts: 

 EMFStore: Official Eclipse project for model repositories. Follows the 
same SVN interaction protocol at the model-level 

 AMOR (Adaptable model versioning): Several conflict detection and 
resolution strategies possible. Visual merge process by means of 
annotations of conflicts directly on the graphical view of the models 

 CDO includes branching support for models 

 Epsilon Merging Language is a rule-based language for merging 
(heterogeneous) models 

 

 Versioning of the graphical layout is still an open question (should 
moving a class two inches to the right count as a change?) 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

MODEL CO-EVOLUTION 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Co-Evolution    
Tools 

 Model versioning keeps track of the changes in a single modeling 
artefact but each change may affect many other related artefacts 

 

 Co-Evolution in MDE 

 Co-evolution is the change of a model triggered by the change of a 
related model 

 Current View 

 Relationship: r(a,b) 

 a  a’ 

 b  b’ | r(a’,b’) 

 Challenge: Relationship Reconciliation 

 Current research focus is on one-to-one relationships: 

 Model / Metamodel evolution 

 Metamodel / Transformation evolution 

 … 

 

 

 

a a' 

b b' 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model / Meta-model Co-evolution 

 

A 

D 

B 

D1 D2 

Metamodel A 

a1:A 

a2:A 

b1:B 

b2:B 

a1:A 

a2:A 

c1:C 

c2:C 

Instance of Metamodel A Instance of Metamodel A’ 

A 

D 

C 

D1 D2 

Metamodel A‘ 

 rename(B, C) 

 cast(b:B, c:C) 

Assumption: Renamed Class does not represent a new modeling concept! 

Metamodel 

Models 

c
o

n
fo

rm
s
T

o
 

Example 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model / Meta-model Co-Evoltion  
Process 

Classification of meta-model changes 

 Non-breaking operations: No need to migrate the models 

 Breaking and resolvable: Automatic migration of existing models is 

possible 

 Breaking and unresolvable: User intervention is necessary 

 

 Tools like Edapt and Epsilon Flock can derive a migration 

transformation to adapt current models to the new 

metamodel structure when possible 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Meta-model / Transformation co-evolution 
Other co-evolution scenarios 

MMa MMb 

MMb‘ 

Source 

Metamodel 

Target MM 

Evolution  

t1 

t2 

t1  … Forward Transformation 

t2,t3 … Migration Transformations 

v1.0 

v2.0 

Target 

Metamodel 

v3.0 
MMb‘‘ 

t3 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

GLOBAL MODEL 

MANAGEMENT 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Global Model Management 

 Model-based solution to the problem of managing all this model 
ecosystem appearing in any MDE project 

 

 We represent with a model, the megamodel, all the models (and 
related artefacts like configuration files) and relationships in the 
ecosystem 

 

 A megamodel can be viewed as a metadata repository for the 
project 

 

 A megamodel is a model whose elements are in fact other models 

 

 As a model, a megamodel can be directly manipulated using the 
same tools employed to manipulate “normal” models 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Global Model Management 
The metamodel of a megamodel 

Terminal 

Model 

MetaMeta 

Model 

Entity 

Relationship Model 

MetaModel 

Weaving 

Model Transformation 

Model Mega 

Model 

1 

Identified 

Element 

* 

relatedTo 

* sourceOf 

* targetOf 

* linked 

* source 

* target 

extends * 

conformsTo 1 

Reference 

Model 

* elements 

Transformation 

* 
* 

 srcReferenceModel 

 targetReferenceModel 

Directed 

Relationship 

 targetModel 

 srcModel 

Transformation 

Record 

* 
* 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Global Model Management 
Using megamodels 

t 

x 

(x)= y 
Synchronize 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Global Model Management 
MoScript 

DSL to write model management scripts on megamodels 

 

 It allows the automation of complex modelling tasks, 

involving several (batch) consecutive manipulations on a set 

of models.  

 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Global Model Management 
MoScript Examples 

• Query operations 

 

 

 

 

• Model to Model transformations (M2M)  

Model::allInstances()−>any(m | m.indentifier = ’SimpsonFamily’)                   

−>allContents()−>collect(el | el.name)) 

Collection {’Bart’, ’Homer’, ’Lisa’, ’Maggie’, ’Marge’}  

let j2dNet : Transformation = Transformation::allInstances() 

 −>any(t | t.identifier = ’j2dNet’) 

in 

 

Model::allInstances() 

 −>select(m | m.conformsTo.kind = ’Java’))  

 −>collect (jModel | j2dNet.applyTo(jModel)) 

1 

2 

3 

4 

5 

6 

7 

TransformationRecord::allInstances()−>collect(tr | tr.run()) 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

MODEL QUALITY 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Original 

model 
1st 

refinement 

nth 

refinement 

Model 
Transformation 

Model 
Transformation 

Source 
Code ... 

MDE-based software development process 

Errors in models will lead to errors in  

the resulting software 

Motivation 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Quality 

Modeling Tools only check for well-formedness  

 Is a model conforming to its metamodel? i.e. is a model a valid 

instance of its metamodel? 

 

 But this is just the tip of iceberg when it comes to evaluate 

the quality of a model. There are many other properties to 

verify: 

 For static models: satisfiability, liveliness, redundancy, subsumption … 

 For dynamic models: absence of deadlocks, reachability,… 

 

 Evaluation of these properties can be done through formal 

model verification or testing 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Example property: satisfiability 

 A model is satisfiable if it is possible to create a valid 

instantiation of that model. A instantiation is valid if it 

satisfies all model constraints 

More difficult than it seems 

 

 

  

 

 MDE 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Model Quality 

Modeling Tools only check for well-formedness  
 Is a model conforming to its metamodel? i.e. is a model a valid 

instance of its metamodel? 

 

 But this is just the tip of iceberg when it comes to evaluate 
the quality of a model. There are many other properties to 
verify: 
 For static models: satisfiability, liveliness, redundancy, subsumption … 

 For dynamic models: absence of deadlocks, reachability, infinite 
recursion… 

 

 Evaluation of these properties can be done through formal 
model verification or testing 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Example of unsatisfiability (1) 

 Due to EnrolsIn |student|>=20*|course| 

 Due to Likes |student|=5*|course| 

 

Student 
EnrolsIn 20..* 

Course 

Likes 

1 

5 1 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Example of unsatisfiability (2) 

….. 

Strong Satisfiability 

And no person is his 

own ancestor 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

EMF/UML model 

1. Class diagram / metamodel 

2. OCL constraints 
 

Solution? 

Constraint Satisfaction Problem / SAT 
SMT / … 

1. Variables  – basic types + struct/list 

2. Domains  – finite 

3. Constraints  – Prolog 

4. Property -> Additional Constraint 
 

Translate 

 Solve 

Deduce 

Property? 

Typical formal verification approach 

Ex: EMFtoCSP tool 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Testing models 
Derive tests from your models 

 Same as we test code, models can also be tested 

 Tools like USE can create snapshots of a system and evaluate OCL constraints on 

them to test the OCL expressions 

 

 Specially useful for dynamic models & operations like model 

transformations 

 E.g. we may want to check a transformation generates a valid output model every time 

a valid input model is provided 

 

 Several black-box and white-box techniques for model testing have 

been proposed 

 

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 
www.mdse-book.com 

COLLABORATIVE 

MODELING 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Collaborative modeling 

Modeling is by definition a team activity 

 

Offline synchronization of models can be handled using the 

model versioning tools seen before 

 

Online collaborative modeling (several users updating the 

same model at the same time) is more problematic 

 Based on a short transaction model where changes are immediately 

propagated to everybody 

 Very lightweight conflict management mechanisms (e.g. voluntary 

locking)  

 Conflict resolution by explicit consensus among all parties 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Collaborative modeling 
Tools  

 EMFCollab 
 Master copy in a server. Slave copy in each client. 

 Commands to modify the models are serialized and distributed across 
the network 

 

 SpacEclipse-CGMF 
 Integration of collaborative functionality in GMF-based editors 

 This functionality can be generated as part of the generation of the 
own GMF editor and workspace 

 

Dawn 
 Subproject of CDO 

 Aimed at providing collaborative access to GMF diagrams.  

 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Teaching material for the book 

Model-Driven Software Engineering in Practice 

by Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Morgan & Claypool, USA, 2012. 

www.mdse-book.com 

MODEL-DRIVEN SOFTWARE 

ENGINEERING IN PRACTICE 
Marco Brambilla, 

Jordi Cabot, 

Manuel Wimmer. 

Morgan & Claypool, USA, 2012. 
 

www.mdse-book.com 

www.morganclaypool.com  

or buy it at: www.amazon.com 

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

