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Motivation 
Why Model managing?  

 In MDE everything is a model but as important as that, no 

model is an island 

 

 All modeling artefacts in a MDE project are interrelated. 

These relationships must be properly managed during the 

project lifecycle 

 

 
Requirements 

Use Case 

Class Diagram 

Java Project 
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Content 

 Model interchange 

 

 Model Persistence 

 

 Model Comparison 

 

 Model Versioning 

 

 Model Co-Evolution 

 

 Global Model Management 

 

 Model Quality 

 

 Collaborative modeling 
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MODEL INTERCHANGE 
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Model Once Open Everywhere  

 There’s a clear need to be able to exchange models among 
different modeling tools 

 In a perfect world, you’d be able to choose ToolA for specifying model, 
ToolB to check its quality, ToolC to execute it…. 

 

 We are still far away from this goal 

 

 Solution attempt: XMI (XML Metadata Interchange), a standard 
adopted by OMG for serializing and exchanging UML and MOF 
models 

 

 But each tools seems to understand the standard in a different 
manner 
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XMI example  
(simplified and partial versions of the actual XMI files) 

 

 

Employee 
WorksIn 1..* 

- name : String 

Department 

- name : String 
1 

<packagedElement xmi : type="uml : Clas s " xmi : id=" c001 " 

name="Employee"> 

<ownedAt t r ibute xmi : id=" a001 " name="name"/> 

</packagedElement> 

<packagedElement xmi : type="uml : Pr imi t iveType " xmi : id=" 

t001 " name="St r ing "/> 

<packagedElement xmi : type="uml : Clas s " xmi : id=" c002 " 

name="Department"> 

<ownedAt t r ibute xmi : id=" a002 " name="name" type=" t001 "/> 

</packagedElement> 

<packagedElement xmi : type="uml : As s o c i a t i on " xmi : id=" 

as001 " name="WorksIn" 

memberEnd=" e001 e002"> 

<ownedEnd xmi : id=" e001 " type=" c002 " a s s o c i a t i o n=" 

as001"/> 

<ownedEnd xmi : id=" e002 " name="" type=" c001 " a s s o c i a t i 

o n=" as001"> 

<upperValue xmi : type="uml : Li t e r a lUnl imi t edNa tur a l " xmi : 

id="un001" value=""/> 

</ownedEnd> 

</packagedElement> 

<UML: Clas s xmi . id = ' c001 ' 

name = 'Employee ' v i s i b i l i t y = ' publ i c ' i s S p e 

c i f i c a t i o n = ' f a l s e ' i sRoot = ' f a l s e ' 

i sLe a f = ' f a l s e ' i sAbs t r a c t = ' f a l s e ' i sAc t i v 

e = ' f a l s e '> 

<UML: C l a s s i f i e r . f e a tur e> 

<UML: At t r ibut e xmi . id = ' a001 ' 

name = 'name ' v i s i b i l i t y = ' publ i c ' i s S p e c i f i 

c a t i o n = ' f a l s e ' 

ownerScope = ' ins tanc e ' c h a n g e a b i l i t y = ' 

changeable ' targe tScope = ' ins tanc e '> 

<UML: St ruc tur a lFe a tur e . mu l t i p l i c i t y > 

<UML: Mu l t i p l i c i t y xmi . id = ' m001'> 

<UML: Mu l t i p l i c i t y . range> 

<UML: Mul t ipl i c i tyRang e xmi . id = ' mr001 ' 

lower = '1 ' upper = '1 '/> 

</UML: Mu l t i p l i c i t y . range> 

</UML: Mu l t i p l i c i t y> 

</UML: St ruc tur a lFe a tur e . mu l t i p l i c i t y > 

</UML: Clas s> 

ECLIPSE ArgoUML 



Example: metamodel and model 

 Team metamodel   Team model 

Element 

name : String 

Player 
number : Integer 

Team +players +playsFor 
0..* 11..* 0..* 11..* 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Example: XMI 1.0 DTD 

<!ELEMENT Team.players (Player)*> 
<!ELEMENT Player.playsFor (Team)*> 

<!ELEMENT Element.name 
 (#PCDATA|XMI.reference)* > 

<!ELEMENT Team (Element.name, 
 XMI.extension*, 
 Team.player) > 

<!ATTLIST Team 
 %XMI.element.att 
 %XMI.link.att > 

<!ELEMENT Player (Element.name, 
 XMI.extension*, 
 Team.playsFor) > 

<!ATTLIST Player 
 %XMI.element.att 
 %XMI.link.att > 

Element 

name : String 

Player 
number : Integer 

Team +players +playsFor 
0..* 11..* 0..* 11..* 



Example: XMI 1.0 document 
<Team id=‘t1’> 
 <Element.name>  
   Hungary 
 </Element.name> 
 <Team.players> 
   <Player id=‘p1’> 

 <Element.name> Puskas  
  </Element.name> 
  <Player.number> 10 
  </Player.number> 
  <Player.playsFor 
  xmi.idref=‘t1’/>  
     </Player> 
 </Team.players> 
</Team> 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Example: XMI 1.1 document 

<FB:Team id=‘t1’ name=‘Hungary’> 
  <FB:Team.players> 
    <FB:Player id=‘p1’ 
   name=‘Puskas’ 
   number=’10’ 
   playsFor='t1'/>  
    </FB:Player> 
  </FB:Team.players> 
</FB:Team> 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 



Example: XMI 2.0 document 

<fb:Model xmlns:fb="…„ xmlns:xmi="…" 
 <teams xmi.type="Team" xmi.id="t1" name="Hungary"> 
   <players xmi.id=‘p1’ 
   name=‘Puskas’ 
   number=’10’ 
   playsFor='t1'/>  
  </teams> 
</fb:Model> 

Puskas :  
Player 

Hungary :  
Team 

playsFor 

players 
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Model Once Open Everywhere  
Recent advances 

Model Interchange Working Group3 (MIWG) to enable the 

assessment of model interchange capability of modeling 

tools by comparing the vendor XMI exports for a test suite 

 

New The new Diagram Definition standard will allow to 

exchange not only the modeling content but also the 

graphical layout of the models 
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MODEL PERSISTENCE 
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Model Persistence 

 Typically models are serialized in plain files, following the 

previous XMI format or any other proprietary XML format 

 

 Doesn’t work well with large models. Scalability issues 

 Loading the whole model in memory may not be an option 

 Random access strategies plus lazy loading (i.e. loading on 

demand) are needed 
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Model Persistence 
Alternatives 

 CDO (Connected Data Objects) Model Repository 

 Run-time persistence framework optimized for scalable query and 

transactional support for large object graphs.  

 Back-ends: object, NoSQL, and relational databases. 

 For relational databases, CDO relies on Teneo6, a Model-Relational 

mapping and runtime database persistence 

 

 Pure NoSQL solutions: Morsa and MongoEMF. Both use 

MongoDB as backend. 

 

   Newer alternatives aim at using the Cloud as model 

storage solution 
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MODEL COMPARISON 
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Model Comparison  

Comparing two models is a key operation in many model-

management operations like model versioning 

 

Goal of model comparison is to identify the set of differences 

between two models 

 

 These differences are usually represented as a model 

themselves, called a difference model  
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Model Comparison: Model matching  
Phase 1 of a model comparison process 

 Identify the common elements in the two models 

 

 How do we establish which elements have the same identity? 

 Static identity: explicit id’s annotating the elements 

 Signture identity: Identity based on the model element features (i.e. 

name, contained elements,…) 

 

 Identity can be a probabilistic function (similarity matching) 

 

 Works better if users redefine the concept of matching  for 

specific DSLs (so that their specific semantic can be taken into 

account) 

 Model comparison =  

Graph similarity problem 



Example: Model Comparison 

 What is the best matching? Animal 
Name: string 

Cat Dog 

Mammal 
Name: string 

Cat Dog 

Animal 
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Model Comparison: Model differencing  
Phase 2 of a model comparison process 

Matched elements are searched for differences 

 

 A difference corresponds to an atomic add / delete / update / 

move  operation executed on one of the elements 

 

 These differences are collected and stored in the difference 

model 

 



Example: Model Difference 

 What is the difference? 

 Matching (A) 
o Del Gen: Cat  Animal 

o Del Gen: Dog  Animal 

o Add Cls: Mammal 

o Add Gen: Mammal  Animal 

o Add Gen: Cat  Mammal 

o Add Gen: Dog  Mammal 

o Move Att:  
Name: Animal  Mammal 

 Matching (B) 
o Rename: Animal  Mammal 

o Add Cls: Animal 

o Add Gen: Mammal  Animal 

 

 

Animal 
Name: string 

Cat Dog 

Mammal 
Name: string 

Cat Dog 

Animal 
(A) 

(B) 
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Model Comparison tools 

 EMF compare: 

 Most popular one 

 Generic comparison facilities for any kind of EMF model 

 Differences can be exported as a model patch 

 

 SiDiff: 

 Mainly similarity-based matching 

 Adaptable to any graph-like model 

 

 Epsilon Comparison  Language: 

 Includes a DSL to enable the implementation of specialized higher-level 
changes 

 With it, high-level changes such as refactorings may be also detected 
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MODEL VERSIONING 
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Model Versioning   

 Programmers can’t live without version control systems like 

SVN or GIT. Designers need the same for models 

 

 VCSs help detect, manage and resolve conflicts arising 

when merging models 

 

Current VCSs are text-based. Using them to merge models 

may result in inconsistent results due to the graph-based 

semantics of models. 
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Model Versioning   

 A B 

1. <State id=“S1”, name = “A”> 

2. <State id=“S2”, name = “B”> 

3. <Transition id=“T1”, source=“S1”, target=“S2”> 

1. <State id=“S1”, name = “A”> 

2. <State id=“S2”, name = “B”> 

3. <Transition id=“T1”, source=“S1”, target=“S2”> 

4. <Transition id=“T2”, source=“S2”, target=“S1”> 

1. <State id=“S2”, name=“B”> 

2. <Transition id=“T2”, source=“S2”, target=“S1”> 

1. <State id=“S2”, name=“B”> 

sm V0 

sm.xmi 

sm.xmi 

sm V1’ 

B 

sm.xmi 

sm.xmi 

A B 

sm V1’’ 

B 

sm V1 

In
it

ia
l 
V

e
rs

io
n

 
C

o
n

c
u

rr
e

n
t 

V
e

rs
io

n
s

 
In
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o
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s
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e
rg

e
d

 V
e
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n
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Model Versioning   
Tools 

 Dedicated model-based VCSs are needed 

 

 Some first attempts: 

 EMFStore: Official Eclipse project for model repositories. Follows the 
same SVN interaction protocol at the model-level 

 AMOR (Adaptable model versioning): Several conflict detection and 
resolution strategies possible. Visual merge process by means of 
annotations of conflicts directly on the graphical view of the models 

 CDO includes branching support for models 

 Epsilon Merging Language is a rule-based language for merging 
(heterogeneous) models 

 

 Versioning of the graphical layout is still an open question (should 
moving a class two inches to the right count as a change?) 
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MODEL CO-EVOLUTION 
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Model Co-Evolution    
Tools 

 Model versioning keeps track of the changes in a single modeling 
artefact but each change may affect many other related artefacts 

 

 Co-Evolution in MDE 

 Co-evolution is the change of a model triggered by the change of a 
related model 

 Current View 

 Relationship: r(a,b) 

 a  a’ 

 b  b’ | r(a’,b’) 

 Challenge: Relationship Reconciliation 

 Current research focus is on one-to-one relationships: 

 Model / Metamodel evolution 

 Metamodel / Transformation evolution 

 … 

 

 

 

a a' 

b b' 

 

 
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Model / Meta-model Co-evolution 

 

A 

D 

B 

D1 D2 

Metamodel A 

a1:A 

a2:A 

b1:B 

b2:B 

a1:A 

a2:A 

c1:C 

c2:C 

Instance of Metamodel A Instance of Metamodel A’ 

A 

D 

C 

D1 D2 

Metamodel A‘ 

 rename(B, C) 

 cast(b:B, c:C) 

Assumption: Renamed Class does not represent a new modeling concept! 

Metamodel 

Models 

c
o

n
fo

rm
s
T

o
 

Example 
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Model / Meta-model Co-Evoltion  
Process 

Classification of meta-model changes 

 Non-breaking operations: No need to migrate the models 

 Breaking and resolvable: Automatic migration of existing models is 

possible 

 Breaking and unresolvable: User intervention is necessary 

 

 Tools like Edapt and Epsilon Flock can derive a migration 

transformation to adapt current models to the new 

metamodel structure when possible 
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Meta-model / Transformation co-evolution 
Other co-evolution scenarios 

MMa MMb 

MMb‘ 

Source 

Metamodel 

Target MM 

Evolution  

t1 

t2 

t1  … Forward Transformation 

t2,t3 … Migration Transformations 

v1.0 

v2.0 

Target 

Metamodel 

v3.0 
MMb‘‘ 

t3 
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GLOBAL MODEL 

MANAGEMENT 
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Global Model Management 

 Model-based solution to the problem of managing all this model 
ecosystem appearing in any MDE project 

 

 We represent with a model, the megamodel, all the models (and 
related artefacts like configuration files) and relationships in the 
ecosystem 

 

 A megamodel can be viewed as a metadata repository for the 
project 

 

 A megamodel is a model whose elements are in fact other models 

 

 As a model, a megamodel can be directly manipulated using the 
same tools employed to manipulate “normal” models 
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Global Model Management 
The metamodel of a megamodel 

Terminal 

Model 

MetaMeta 

Model 

Entity 

Relationship Model 

MetaModel 

Weaving 

Model Transformation 

Model Mega 

Model 

1 

Identified 

Element 

* 

relatedTo 

* sourceOf 

* targetOf 

* linked 

* source 

* target 

extends * 

conformsTo 1 

Reference 

Model 

* elements 

Transformation 

* 
* 

 srcReferenceModel 

 targetReferenceModel 

Directed 

Relationship 

 targetModel 

 srcModel 

Transformation 

Record 

* 
* 
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Global Model Management 
Using megamodels 

t 

x 

(x)= y 
Synchronize 
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Global Model Management 
MoScript 

DSL to write model management scripts on megamodels 

 

 It allows the automation of complex modelling tasks, 

involving several (batch) consecutive manipulations on a set 

of models.  
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Global Model Management 
MoScript Examples 

• Query operations 

 

 

 

 

• Model to Model transformations (M2M)  

Model::allInstances()−>any(m | m.indentifier = ’SimpsonFamily’)                   

−>allContents()−>collect(el | el.name)) 

Collection {’Bart’, ’Homer’, ’Lisa’, ’Maggie’, ’Marge’}  

let j2dNet : Transformation = Transformation::allInstances() 

 −>any(t | t.identifier = ’j2dNet’) 

in 

 

Model::allInstances() 

 −>select(m | m.conformsTo.kind = ’Java’))  

 −>collect (jModel | j2dNet.applyTo(jModel)) 

1 

2 

3 

4 

5 

6 

7 

TransformationRecord::allInstances()−>collect(tr | tr.run()) 
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MODEL QUALITY 
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Original 

model 
1st 

refinement 

nth 

refinement 

Model 
Transformation 

Model 
Transformation 

Source 
Code ... 

MDE-based software development process 

Errors in models will lead to errors in  

the resulting software 

Motivation 
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Model Quality 

Modeling Tools only check for well-formedness  

 Is a model conforming to its metamodel? i.e. is a model a valid 

instance of its metamodel? 

 

 But this is just the tip of iceberg when it comes to evaluate 

the quality of a model. There are many other properties to 

verify: 

 For static models: satisfiability, liveliness, redundancy, subsumption … 

 For dynamic models: absence of deadlocks, reachability,… 

 

 Evaluation of these properties can be done through formal 

model verification or testing 
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Example property: satisfiability 

 A model is satisfiable if it is possible to create a valid 

instantiation of that model. A instantiation is valid if it 

satisfies all model constraints 

More difficult than it seems 

 

 

  

 

 MDE 
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Model Quality 

Modeling Tools only check for well-formedness  
 Is a model conforming to its metamodel? i.e. is a model a valid 

instance of its metamodel? 

 

 But this is just the tip of iceberg when it comes to evaluate 
the quality of a model. There are many other properties to 
verify: 
 For static models: satisfiability, liveliness, redundancy, subsumption … 

 For dynamic models: absence of deadlocks, reachability, infinite 
recursion… 

 

 Evaluation of these properties can be done through formal 
model verification or testing 
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Example of unsatisfiability (1) 

 Due to EnrolsIn |student|>=20*|course| 

 Due to Likes |student|=5*|course| 

 

Student 
EnrolsIn 20..* 

Course 

Likes 

1 

5 1 
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Example of unsatisfiability (2) 

….. 

Strong Satisfiability 

And no person is his 

own ancestor 
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EMF/UML model 

1. Class diagram / metamodel 

2. OCL constraints 
 

Solution? 

Constraint Satisfaction Problem / SAT 
SMT / … 

1. Variables  – basic types + struct/list 

2. Domains  – finite 

3. Constraints  – Prolog 

4. Property -> Additional Constraint 
 

Translate 

 Solve 

Deduce 

Property? 

Typical formal verification approach 

Ex: EMFtoCSP tool 
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Testing models 
Derive tests from your models 

 Same as we test code, models can also be tested 

 Tools like USE can create snapshots of a system and evaluate OCL constraints on 

them to test the OCL expressions 

 

 Specially useful for dynamic models & operations like model 

transformations 

 E.g. we may want to check a transformation generates a valid output model every time 

a valid input model is provided 

 

 Several black-box and white-box techniques for model testing have 

been proposed 
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COLLABORATIVE 

MODELING 
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Collaborative modeling 

Modeling is by definition a team activity 

 

Offline synchronization of models can be handled using the 

model versioning tools seen before 

 

Online collaborative modeling (several users updating the 

same model at the same time) is more problematic 

 Based on a short transaction model where changes are immediately 

propagated to everybody 

 Very lightweight conflict management mechanisms (e.g. voluntary 

locking)  

 Conflict resolution by explicit consensus among all parties 
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Collaborative modeling 
Tools  

 EMFCollab 
 Master copy in a server. Slave copy in each client. 

 Commands to modify the models are serialized and distributed across 
the network 

 

 SpacEclipse-CGMF 
 Integration of collaborative functionality in GMF-based editors 

 This functionality can be generated as part of the generation of the 
own GMF editor and workspace 

 

Dawn 
 Subproject of CDO 

 Aimed at providing collaborative access to GMF diagrams.  
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