
Budapest University of Technology and Economics
Department of Measurement and Information Systems

MDE IN DEVELOPMENT PROCESSES

Ákos Horváth
and

Dániel Varró

Based on the slides of Ákos Szőke

Model Driven Software Development
Lecture 13

MOTIVATION

Success of SW Development processes
(Standish group CHAOS report)

A joke?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Technological adoption
Why Model Engineering?

 In any change of technology, organizational, managerial and

social aspects are the main reasons of failure.

 Introducing MDSE without considering these aspects is a

sure path to failure.

 Some common-sense advice:

 First MDSE project should not be a critical one

 Make sure management is committed

 Get somebody with experience on board

 Start small, with a pilot project and grow from there

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Socio-technical aspects
Why Model Engineering?

 Pains and gains of software modeling
 Modeling introduces new tasks and roles in the dev. Process

 Some of them are a pain (i.e. now there is more work to be done)

 Some others get the gain (i.e. maintenance is easier with models)

 If people in the pain and the gain sides are not the same be careful
with motivation and perception problems on the use of modeling.
Recognize the pain work

 Socio-technical congruence:
 MDSE requires new skills, roles and dependencies in the dev. team

 Your organization must be able to match those requirements (e.g. if
nobody enjoys / is good at modeling, who will take in charge the
modeling tasks in the process?).

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MDSE IN A TRADITIONAL

DEVELOMENT PROCESS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Classical development processes
Waterfall, spiral, iterative, incremental…

 Already model-based.

 Models are typically

employed in each phase of

the process

 Requirement models

 Analysis models

 Design models

 Deployment models…

 How MDSE contributes?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE in Classical dev. processes

 Key contribution: Going from model-based to model-driven

 Opportunity to (semi)automate the transitions between the different

phases of the process

Original

model
1st

refinement

nth

refinement

Model-to-model
Transformation

Model-to-text
Transformation

...

ONE OF THE FIRST ATTEMPT
RUP

Steps of the problem solving

Identify the Symptoms

Discover the cause

Eliminate problems (cause)

Identify the Symptoms

 Requirements does not fit

 Requirements are contradictory

 Interfaces of the Modules

 Problematic Maintenance

 Late detection of errors

 Poor quality

 Slow performance

 Difference between the developers

Discover the cause

 Unspecified requirements

 Ambiguouss communication

 Too complicated modules and systems

 Undetected inconsistencies

 Low code-coverage (with tests)

 Subjective assessment

 Waterfall development process

 Uncontrolled change management

 Poor automation

 Unspecified
requirements

 Ambiguouss
communication

 Too complicated
modules and systems

 Undetected
inconsistencies

 Low code-coverage
(with tests)

 Subjective
assessment

 Waterfall
development process

 Uncontrolled change
management

 Poor automation

Eliminate Problems – Best practices

 Requirements
does not fit

 Requirements are
contradictory

 Interfaces of the
Modules

 Problematic
Maintenance

 Late detection of
errors

 Poor quality

 Slow performance

 Difference
between the
developers

Best Practices

Develop
Iteratively

Manage
Requirements

Use Component
Architectures

Model Visually
(UML)

Continuously
Verify Quality

Control Changes
(UCM)

„Best practices”

„ A best practice is a well-documented
technique or methodology that, through
experience and research, has proven to
reliably lead to a desired result.”

Practice 1 – Develop Iteratively!

Develop Iteratively

Manage
Requirements

Use Component
Architectures

Model Visually
(UML)

Continuously
Verify Quality

Control Changes
(UCM)

Best
Practices

Uncertainty cone

[Larman, 2004]

17

Practice 2 – Manage Requirements!

Manage Requirements

Develop
Iteratively

Use Component
Architectures

Model Visually
(UML)

Continuously
Verify Quality

Control Changes
(UCM)

Best
Practices

Practice 3 –Component Architectures

Develop
Iteratively

Manage
Requirements

Model Visually
(UML)

Continuously
Verify Quality

Control Changes
(UCM)

Best
Practices

Use Component
Architectures

Practice 4 – Model (Visualy)

Develop
Iteratively

Manage
Requirements

Use Component
Architectures

Continuously
Verify Quality

Control Changes
(UCM)

Best
Practices

Model Visualy
(UML)

Practice 4 – Continuously Verify Quality

Develop
Iteratively

Manage
Requirements

Use Component
Architectures

Model Visualy

Control Changes
(UCM)

Best
Practices

Continuously Verify Quality

 Product metrics
 etc., size, functionality, complexity, structure

 Process (development and support)
metrics

etc.,. Number of errors, assessment of
requirements satisfiability

 Project metrics
 pl. productivity, schedule, price , man-month

Practice 4 – Continuously Verify Quality

Develop
Iteratively

Manage
Requirements

Use Component
Architectures

Model Visualy

Continuously
Verify Quality

Best
Practices

Control Changes (UCM)

 Continuos integration

 Build automation

 Test execution

 Synchronized repos

ALERT REPORT

Rational Unified Process

Develop
Iteratively

Manage
Requirements

Use Component
Architectures

Model Visualy

Continuously
Verify Quality

Best
Practices

Rational Unified Process - Overview

 Software development methodology:

o Use-case driven

o Architecture centric

o Iterative

 Software development process:

oWell defined(who, what, when, how)

o Well-structured (life-cycle, milestones, decisions)

 Product for software development

o Customizable (project size)

o Helps all product developers

Use Case-driven

25

OK

OK

Fail

Realized By

Implemented

By
Verified By

Implementation
Model

Test ModelDesign Model

Use-Case
Model

Models

Core Process
Workflows Test

Implemen-
tation

Analysis &
Design

Requirements

Business Use-
Case Model

Business
Modeling

Business
Object Model

BBB

B

Realized
By

Automated
By

Architecture centric: MDA

26

Requirements

Analysis

Design

Coding

Testing

Deployment

Vision/scope

SRS

SDD

Iterative process

Programmer’s
shortcut

Code

Code

(Non)Functional
features

Requirements

Analysis

Design

Coding

Testing

Deployment

MDA process

Code

Code

(Non)Functional
features

PSM

PIM

PIM

Mostly text Diagram + text Code Legend: Model

 In all iteration:
RADIT steps

 Each iteration is built
over the preceding
one

 Converge to final
product

27

Iterative and Incremental process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

HAS MDSE A PLACE IN AN

AGILE WORLD?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Agile development process

 Agile Manifesto proposes to center development around:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 Has MDSE a place in this manifesto? Common criticims:

 Models are not working software

 Can’t be tested

 Are just documentation

 Extra work to adapt to changes

 But we know better (e.g. models are executable) and others
agree…

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Agile Modeling

 Collection of modeling principles and practices suited for

lightweight development processes. Lead by Scott W.

Ambler

 Goal: avoid modeling for the sake of modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Agile Modeling
Principles (I)

 Model With A Purpose. identify a valid purpose for creating a model and
the audience for that model, then develop it to the point where it is both
sufficiently accurate and sufficiently detailed.

 Travel Light. Every artifact that you create, and then decide to keep, will
need to be maintained over time. Trade-off agility for convenience of
having that information available to your team in an abstract manner.

 Multiple Models. You need to use multiple models to develop software
because each model describes a single aspect/view of your software.

 Rapid Feedback. By working with other people on a model you are
obtaining near-instant feedback on your ideas.

 Assume Simplicity. Keep your models as simple as possible. Don't depict
additional features that you don't need today. You can always refactor in
the future (yes, there are model refactoring techniques)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Agile Modeling
Principles (II)

 Embrace Change. Requirements evolve over time and so your models

 Incremental Change. Develop good enough models. Evolve models
over time (or simply discard it when you no longer need it) in an
incremental manner.

 Working Software Is Your Primary Goal. The primary goal is not to
produce extraneous documentation, extraneous management artifacts,
or even models. Any (modeling) activity that does not directly
contribute to this goal should be questioned

 Enabling The Next Effort Is Your Secondary Goal. To enable it you
will not only want to develop quality software but also create just
enough documentation and supporting materials so that the people
playing the next game can be effective.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Agile Modeling
Practices

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Agile MDSE

 Agile Modeling + executable models

 Effective modeling of executable models to go from models

to working software automatically in the most agile possible

way.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MDSE VS DOMAIN-DRIVEN

DESIGN

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Domain-driven design

 Domain-driven design (DDD) is based on two main ideas:

 The primary focus of a SW project should be the domain itself and not

the technical details

 Complex domains must be modeled first. A set of design practices is

provided to create these models.

 Thus, DDD emphasizes the importance of domain models.

 DDD and MDSE have commonalities:

 Need of using models to represent the system domain

 Focus on platform-independent aspects (using MDA terminology)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Domain-driven design

 MDSE in DDD:
 Provides a framework to put DDD in practice (e.g. by providing modeling languages that can be

used in DDD)

 Maximizes the benefit you can get out of the domain models (e.g. by transforming them into running
code)

Domain

System

Domain

model

representationOf

implementationOf

DDD

MDE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MDSE AND TEST-DRIVEN

DEVELOPMENT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Test-driven development (TDD)

 Test-first philosophy:

 Create an executable test to check the correctness of the new

functionality-to-be

 Develop the code to pass the test

 Refactor the code and repeat

 Integration of MDSE in TDD can happen at two different

levels, depending on the kind of MDSE process we follow

 Model-driven testing

 Test-driven modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model-driven testing
Derive tests from your models

 If the system is NOT automatically generated from the models, we need
to check the implementation behaves as expected (i.e. as defined in the
models).

 Models can be used to generate the tests that the implementation will
need to pass.

Model

Abstract Tests

System

Executable Tests

derived

from

abstraction of

abstraction of

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Test-driven modeling
Test-first your models

 If the system is automatically generated from the models then there is no

need to test the system.

 Models should be then the focus of your testing strategy.

 For each new model excerpt, write first the model test, then write the

model and check the model passes the test

Summary

 MDSE can be intergated to (almost) any
development process

 Model-driven techniques (may) require novel
approaches

o Not yet mature

o Different requirements

 Do not model for its own sake!

