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Dynamid_.anguagesAnOveriew

System

e Statebased reactive
» Dataflowbased
 Event & Ruldased
» Agentbased

» Block diagrams

e Other

Property

* Requirements
e Scenarios

Analysis techniques:

« Simulation, Static analysis, Model
checking,

« Symbolic computation, ODE (Dif)

A Engineering languages:

0 StatechartsStatemate
Business Process Models,
SimulinkBlock Diagram,
Message Sequence Charts,
KAQOS, Drools, C(Hstere]
AnyLogic Modelica
Ptolemyl 1|

A Formalisms:

o Petri nets, Finite automata,
Timed automata, Cellular
autom. Bond graph, Process
algebra, Queuing network,
Kahn process network




Characteristicef DynamicLanguages

A Specification
o Consistency
o0 Completeness
o Unambiguity
A Time
o Untimed
0 Discrete
o Continuous

A Communication
0 Synchronous
0 Asynchronous

A Determinism
0 Stochastic
o0 Deterministic

A Causality
o Causal

o Non-causal
A Analysis
0 Exactvs.Approximative
0 Completevs.Incomplete
A Otherconcepts
o Conflict priority
0 Dependency




ProertSeC|f|cat|orLanguages
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Statebasedlanguages
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A Main concepts
o0 State, Transition
o Event Action
0 Statehierarchy history

A Examples
o0 Finiteautomata
o Timed automata
0 Cellularautomaton
0 Statemate(Hare)
o UMLStatecharts

o Matlab Simulink
Stateflow




Dataflowbasedlanguages

T A Main concepts

o Processactivity
channe) queue
tokern/ message

A Examples
o Activity Diagrams

0 Busines#rocess
Models
(alsoeventbased

0 Petrinets
0 Queuingnetworks

o Kahnprocess
networks

0 Esterel

Obtain Help to Fill




EventbasedR

ulelanguages

T m ~ | A Mainconcepts
e + ||| o Eventg(atomic, complex
L e emmmwamn e P o Eventqueud stream
, mm = : W}_ 0 Timestamp Timewindow
"L s e oo <* 500l 0 RulgPreconditionAction)

A Examples

<procCessSor>
<name>3tockProcessor<,/nams>

<rules>
<guery id="hellovorldRni=s">
<! [CDATA[

2elect T.5tockName a= shortHName, T.LastPrice a= price
from stockInputChannel

{
PARTITION BY shortName

MEASURES A.shortHName as StockMName, A.price as LastPrice

PATTEEN ( L B E B A )
DEFINE
L as A.price > prev(iA.price),
E as B.price < prev(B.price)
}) as T

Definition C QL

Diata manipulation CCLL<|:

Relation cperation

0 Businessules(Droolg

0 Graphtransformation

0 StreamprocessindCQL)
o0 Complexeventprocessing

FEGISTER STEEARM str (id INT,wal INT)

DECISTER QUERY gl

ISTRERH (»
SELECT id, S50M({wal) 25 =
FROM str [BROWS 3]
EROUP BY id)

Stream operation

Windowoperation




Agentbasedlanguages

.1 AConcepts

0 Agents+ Connections
o0 Behavior

) (create destruci
Gy |/ . o SpaceMobility,

o Environment

GIS environmental data

GIS social data
Temperat Village location
Crops
Precipitat

#% sescme A Characteristics
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A Examples
0 AnyLogic
0 Sociakimulators

= Agent-Based Model




ontinuoustime Languages

A Blockdiagrams(causa) A Multi-Physicgnon-causa)
(Simulink Ptolemy) (I\/Iodellca BondGraph$

CT Director This relation has been modified so that the tank % 9 sensor?
units population coming from growth population hurner
gets converted to joules which malches the units
on HeatProduction.work.

T_farwarad

TimedPlotter
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The Heatproduction.heat port has units
calories, but the HealExchanger.output T]amb hancle
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OtherDynamid_anguages

A Populationdynamics A ForresterSystem Dynamic
o N(t+1)=N(t)+ BD + I + E 0 StocksFlows
(birth, death, immigrants o FeedbackTimedelays
emmigrantg

o Calculatiorof rates

T TR

create r




Dynamic Metamodeling in DSLs




DynamicMetamodelingin DSLs

<uses > 7 MM € _<Uses>
>~ 7| StaticMetamodel |~ ™~
~ A =~ ~
-~ ' =~
MM trc __<uses> E<|_nst_ar£egf> _>> MM dyn
TraceMetamodel ! DynamidVetamodel

! A

I <<instanceO#> i <<nstanceQ$> !

i Mgtat |
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: ~

: - ~?|  StaticModel ~ |

1 ~~ 1

I~ <uses> <Uses>~ 1

< >
I\/Itrc — _qjief _______ > Mglyn
TraceModel DynamicdVodel

A ComplementStaticMetamodelwith
o Dynamiametamodel.currentState configuration etc.
0 Executiorntrace metamodel:previousstate, replay




Examplel: Busines®rocesses

Login
=

LI

& login
.;;? getCustomerData

=

_
[0 main |f

& logout

2| reply
=

H ExtensibleElements Static | Dynamic
H Process contain H Activity Jl H Dynamic Activity
1 activity o state | State
— f]ﬁ
contains 1 I <enumeration ==
H Receive £ State
H Scope H Sequence = gperation = startable
= variable = it
| - executed
contains _
P:Process —> main :Sequence
state =runs
contains contains
_ . next next
login :Receive ——>  ScC:Scope —> ...

operation = opl

state = startable

variable = vl

state = executed




Example2: PetriNets

H Place

place

»

Static | Dynamic

place

H Token

H Subnet

Outarcy  Inarct

H Transition

var :Place

place |
trans ace

rans

InhibitorAre

N: Net

: Token

N

t1 : Transition —> final: Place

: Token

yplace
intial : Place

v

place




Metamodelingof Executionlraces

race Execution trace " executeSAL Trace '—\L/ last
' metamodel
Iasth « |steps ﬁrsl StEpEl% start_fired:CStep ;|next
] Step { — selA_fired:CStep
noxt| N substep $ ' |%
substep thread_work:SStep

S|mpIeStEp|[SStep} Compoundstep (CStep) | / Idl/ \
SCope O
. t
scﬂy old new curren
1 1

"u"alue ﬁ .
value . value ' TVS: Wariable || process: || work:

State Value || Value
Element || Value Value Attnbute Element ' ' '

A Representatiorfor
0 Hierarchyof steps(simple compound
o OldvalueC Newvalue
0 Aim: Replayable




Statecharts for

Modeling Reactive Behavior

Statecharts




Statebasedbehaviourmodeling

A State partition (AKAstate space)
0 Asetof distinguishecsystem states
0 Examples

A{Mon, Tue Wed, Thy, Fri, Sat Sun}
A Statesof microwaveoven {full power, defrost, off}

0 DEF: Astate partition is aset, exactlyone elementof
whichcharacterizeshe systemat anytime.

A Current state
0 E.g todayis Wed, the microwaveis on defrost, etc.

0 DEF: At anygivenmoment, the currentstateisthe
elementof the partition whichis currentlyvalid




Compositestate modeling

A Modelingcomplexsystems
0 Asynchronousomponents
0 Compositestate spaceasproduct of state spaces

A Challengescalability

0 Exponentiakxplosionof state space
A 10 componentsof 6 localstateseachA 61° stated

0 More concisenotation required

A Solution statechartlanguages
0 Hierarchicalefinementwith history
o Concurrentregions




Statecharts= States+ Transitions

A Describes the states and state transitions of the system, of a
subsystem, or of one specific object.

o hierarchical and concurrent systems

A States

0 Concrete state:
A Combination of possible values of attributes
A Canhaveaninfinite state space

0 Abstract states: (like i&atecharty
A Predicates over concrete states
A One abstract staté many concrete states

A Hierarchical states:
I Frequent in embedded apps (e.g. control of car brake)

A Transitions

o Triggering Event
o Guard
o Action




Statechart introduction

A For defining reactive behavior of objects

0 Responds to events:
state transitions and actions

o Traditional approach: statsmachine
A Statechart extension to state machine
o State hierarchyrefinement of states

0 Concurent behavior parallel threads
o0 Memory. last active state configuration




States |.

A Attributes:
0 entry action
0 exit action
O static reaction
A State refinement
0 Simple state

0 OR refinement: axllary state machine,
only one active state

0 AND refinement: concurrent regions (state machines
all regions are active in parallel




Example for state refinement: TV

On | / off N\
Image oun




State |I.

A History state
0 Stores the last active state configuration

0 Incomingtransition: it sets the object to the saved
state configuration

0 Outgoingtransition: defines the default state, If there
were no active state since

A Initial state: becomes active when entered to the

region
AOne in each OR refinement
AOne in each AND region

A Finalstate: state machineterminates




Statechart elements

A State -
A (Transition) o e
A History state @ @
A Initial State O

A FinalState (o)




Transition |.

A Defining state changes
A Syntax:
trigger [guard] / action

0 trigger. event, triggered operation or timeut

0 guard transition condition
A Logic formula over the attributes of the objects and events
Areferring to a state: IS_IN(state) macro
AWithout trigger: if becomes true the transition is active

0 actiorr operationsY action semantics




Transition |l.

A Timeout trigger:

0 becomes active If the object staystime source state
for the predefined interval

e.g., tm(50), based on system time
A Complex transitions

0 Fork —

—

0 Join ———

.
o Condition |

A Transitions between different hierarchy levels




Transitionexample

///VVork

~

Groupl

i
T

tm(50)

[not_fatal] / recovery()

error | ‘ [fatal] / report status()

illegal_activity [fatal] / reportstatus()




Complex Example

A Traffic light for an intersection with a prioritized
road
o Off: (blinking yellow)
0 On: green for the priority road
0 Green, yellow, red etc. Differetimerange(timer)

0 3 waiting vehicle on priority road: green light despite
the timer’s 11 cks

o Automatically take photos of vehicles crossing the
piority road on red light. Manual on/off for this
feature.




1. Basic state machines
Red \




reset ﬁ nTz Red \

Ireset

i




3. Concurrent states

On
reset

-

T

1

T3

Red

E

Camera

Count




4. History States
On
reset /TZ il \

Camera Count

CarPass
/ Shoot

4

uoenuep
yorenuep

<
Bl

Ireset

—
w

4




Complete System
On
reset / T2 il \

Camera Count

CarPass SgjuzE

/ Shoot

»

uoenuep
yorenuep

enqueue

enquy

<
l

Ireset

<




ExampleConcreteState
reset ﬁ" ﬂEd \\\

ﬁt
T1 engqueue
enqueue
T4 a
Standby enqueue
Ireset \I T3 /

Active states Inactivestates
{Standby Countl, Red)n} {Off, Yellow Green RedYellowReg Count0, Coun2

o

Camera Count

CarPass
/ Shoot

4

uolenuep
Jorenuep

i i
M H 2



SemanticsHowdoesit work?

A Basics:
0 Hierarchical state machine (state chart)
0 Event queue + scheduler

A Semantics defines:
Behavior In case an event occurs

- one step of the state chart
0 (concurrent) transitions fire

0 State configuration changes
In all region in the active state and also awstatein
the OR refinement (recursively)




Semantics of State Transitions

A Separately processed events:

0 Scheduler only triggers the next event if the previous

one Is completely processed
stable configuration: there is no state change without an event

A Complete processing of events:

0 The largest set of possibleeabletransitions
(all enabled transitiosfire, if they are not in conflict)

o Howdoes it work?:

AA Steps of the event processing




Steps of event processing |.

A Scheduler triggers an event for tiseatechartin a
stable state configuration

A Enabled transitions:

0 Source state is active
0 The event is their trigger
o Guards are evaluated to true

Based on the number direabletransitions

o Only ore: fire!
0 None: do nothing
o More than one: select transitions to fire?




Steps of event processing |l.

A Selection ofireabletransitions:
0 Fireable= Enabledt+ Max priority

o0 Conflict: Has the same source state

AFormally: the intersection of their left (exit) states is not
empty

- Conflict resolutiord priority:

ADefined between two transitions (and t,)

At,>t, if and only if the source state qfis asubstatewithin
the state hierarchy oft( , | ower | evel 7))

- Priority insufficientto resolveconflictif
A Samesourcestate (or parallelsubregion$




Stepsof eventprocessingdll.

A Selection of transitions to fire:

o0 Parallelexecution of concurrent transitions

AMaximal setof fireabletransitions
(= cannot be extended any further)

AThere is no conflict between any two transitions

0 Selection of this set:
ANondeterministic¢




Stepsof eventprocessingV.

A Selected transitions fire:
IN nondeterministicorder

A Firing one transition:

0 Leaving the source states from the bottom to top anc
execute all the exit operations

0 Execute the action of the transition

0 Entering the target states from top to bottom and
execute the entry actions new state configuration




Stepsof eventprocessingV.

A Entering a new state configuration:
0 Simple target state: part of the state configuration

o Non-concurrentsuperstate direct target of one of its
substateor its initial state

0 Concurrent target state: all afs regions have to have
an active state either as direct targethate (maybevia
fork) or asinitial state

0 History state : thedst active state configuration
If there is none: the target state of the history state




State transition example

51211 $1212




State transition example

S1211- exitaction

51211 $1212




State transition example

S121- exitaction

51211 $1212




State transition example

S1111 S1112 $1113

S12- exitaction

51211 $1212




State transition example

B Transitionaction
;

51211 $1212




State transition example

S1111 S1112 $1113

- S11-entry action

51211 $1212




State transition example

S1111 S1112 $1113

l S111-entry action

51211 $1212




State transition example

S1111 S1112 $1113

l S1111- entry action

51211 $1212




YakinduStatechartTools

A Exampldool support Yakindu N\ o
0 Hierarchicabktate chartlanguage 0

Micro Magnetron Door
interface User: ®
in event open
in event close
in event start
[User.start && .
interface Timer: lactive(Door.Open)] | Off | User.open Closed
in event timeout - -——
interface Beeper: -
operation beep()
Timer.timeout /
Beeper.beep()
O Open |
= —h—

Lser.open

User.close




YakinduStatechartTools

A Java/C+€odegenerationfrom statechart
0 Magnetronswitchesto state On(simplified

/* The reactions of state On. */
private void reactMagnetron On() {
if (sCITimer.timeout) {
sCIBeeper.operationCallback.beep();
stateVector[@] = State.magnetron Off;
} else {
if (sCIUser.open) {
stateVector[@] = State.magnetron Off;




A Effective technique to model certain dynamic
systems

A Hierarchic refinement allows iterative
development

A Already used in many application domsin
0 Avionics, automotive,..




