Model Queries

General Concepts
Graph Patterns
Incrementality

VIATRA QUERY

Model Driven Systems Development
Lecture 04

e r

Budapest University of Technology and Economics

Department of Measurement and Information Systems

MOTIVATION

Motivation: early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal ang

i AUTOSAR:
SRSYEULILMIIOR" | siandardized SW architecture

t5ignals of the automotive industry

!

S

ST — ET— e now supported by modern modeling tools
S sy Design Rule/Well-formedness constraint:

g sklrtion e each valid car architecture needs to respect
O o s e o designers are immediately notified if violated
P;:itinn of I5ignals in the selected IPDU C ha I Ienge :

T e © > 500 design rules in AUTOSAR tools
0 e >1 million elements in AUTOSAR models

T iR 8 syt sdtor: cemosystom 51 < models constantly edited by designers

& Element description “:E_\, Problems &3

| errors, 2 warnings, 0 others

Description = [| resource | Path | Location | Tvpe |
= @ Errors ¢4 ibems)
& 15ignal of a grouped System Signal should be mapped to an IPdu along with the ISignal of the System Signal Group | demo_swe, atml lalma JrootP... | AUTOSARP...
@ 15ignal of a grouped System Signal should be mapped to an IPdu along with the ISignal of the System Signal Group | demo_swe, arxml lalma JrootP... AUTOSARF...
3 15ignal of a grouped System Signal should be mapped to an IPdu along with the ISignal of the System Signal Group | demio_swe, atml Jlalma JrootP... | AUTOSARP...
3 Reference iPduTimingSpecification has invalid multipliciey! (Must be in: [1, 170 demao_swe, arxml lalma JrootP... AUTOSARF...
| Y CUNN I N PR S T T——_—

L] EGYETEM 1768EG&

A simple example

[Automaton) = Well-formedness
() constraint:

initial | | states I
! o Transition source & target

[State from (Transition

states must be owned by
kind:StateEnum
¢ to —— same automaton
Metamodel

= Goal: to find violations...

o A violation is a Transition,
whose ,,from” link

al a2 points to a State x, and ,,to”
st | tl] st link points to a State y,
s1 ffr toy s2 where the automaton of x

. is not the automaton of y
Violation example

o How to check this?

A more complex example

[>[Region] P ﬁutomaton]
N
«abstract»J L J
transitions

initial

VYV V

states

Sta

kind:StateEnum

te]%Cl'ransition1
—

to

Metamodel

a2

st

al

st

A 4

t1

s1 fr

to

st

st
s2

Violation example

= Well-formedness
constraint:

o Transition source & target
states must be owned by
regions belonging to
same automaton

= Goal: to find violations...

o A violation is a Transition,
whose ,,from” link
points to a State x, and ,to”
link points to a State y,
where...

o How to check this?

Another complex example

= Well-formedness
constraint:

o A SystemSignal and its
group must be in the same

P : SignallPdu IPdu
=
R3:signalToPduMapping wignaﬁopdumapping
M_CHILD M_PARENT
: ISignalTolPduMapping : ISignalTolPduMapping
l R1:signal l R5:signal NEG
S_CHILD : ISignal S_PARENT : ISignal

l R2:systemSignal l R6:systemSignal

R7:systemSignal

SS_CHILD : SystemSignal |€ SS_PARENT:S ystemSignalGroup

Programmatic traversal vs. queries

= Goal: find constraint violations in model

o Traverse model in general-purpose language

for (Automaton automaton : automatons) {
for (Transition transition : automaton.getTransitions()) {
State sourceState = transition.from;
// which automaton defines this state?
Automaton sourceAutomaton = null;
for (Automaton candidate : automatons) {
if (candidate.getStates().contains(sourceState)) {
sourceAutomaton = candidate;

break;
)) ,simple
// ... do the same for targetState, then examp|e"
if (sourceAutomaton != targetAutomaton)

// report violation

(though much simpler when
bidirectional navigation is available)

Programmatic traversal vs. queries

= Goal: find constraint violations in model

o Traverse model in general-purpose language
o Use a Query DSL

* More concise
* Declarative functional specification of the query
* Freely interpreted by query engine (e.g. optimization)

* Can be platform-independent

= Validation is just one use cases for model queries

o Derived features
o M2M/M2T Transformation, Simulation

Query Language Styles

| P : SignallPdu |

L] L]
= SQL-like (relational algebra) s,/ N
M_CHILD M_PARENT
: I1SignalTolPduMapping : ISignalTolPduMapping
o Example: EMF Query
| s_cHuD:Isignal | | S_PARENT:Isignal |
R2:systemSignal R6:systemSignal

o0 © Good for attribute restrictions e mm——

o ® Not very concise for relationships (many joins)

* Functional StYle context Transition inv:
Automaton.allInstances()->forAll(a |
O Example: OCL a.states->includes(self.from) =

a.states->includes(self.to)
o Not very declarative)5

= |Logic style

o Domain relational calculus / graph patterns / Datalog

o Even more declarative

Model Query as Logic

(Automaton) A violation is a Transition, in formal logic
L J whose ,from” link points to a State x | (Domain Relational
N and ,to” link points to a State y, Calculus)
initial | | states N\ransitions where the automaton of x
Yy is not the automaton of y
State]:ﬂTransitionI
esEtetmp———{ {t|Transition(t) A 3x,y, ax, ay: from(t,x) Ato(t,y)
A states(ax, x) A states(ay,y) A ax + ay}
Metamodel Datalog-like query languages
violates(t):-
Transition(t),from(t,x),to(t,y),
states(ax,x),states(ay,y),ax=\=ay
al a2 ax E——— ay
st t1 st st t st
sl fr toY s2 X fr to y

Violation example Graph pattern

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

®= For a programmer:
o A piece of code that searches for parts of the model

= For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

" A query engine: SupportiREEalCI) R ubIGHE)
e all tuples of model elements g,b6

o the definition&execution EREEA e R =Re 1= a Ao alelalo]y
of model queries e along the match A=a and B=b
' * parameters A,B can be input/ output

&t

L] EGYETEM 1782

Motivating example

Signal L+ entry Route . Sensor
[actualState : SignalStatekind L+ exit * mul:etleﬁnltgz =
ﬁ\ L | + route + sensar | *
\ «type»
\

Signalstatekind \\ * | + switchPosition + trackElement | *
= 5TOP \\ SwitchPosition TrackElement |
=1 FAILLIRE N | @ switchState : SwitchStateKind
= GO \ . 4 connectsTo

\\ * | 4+ switchPosition . |
\\

SwitchStateKind \ _ '
=1 FAILURE S L | + switch
= LEFT "\ Switch Segment
=] RIGHT actual®gate : SwitchStateKind length : Elnt
=) STRAIGHT N

\

Graph Pattern Matching for Queries

switchPosition
L route: Route
8 routeDefinition

L2 sensor ::
sensor: Sensor [€ =

E E guunt® ';" g
E I—.ﬁ,—l ¢““‘ :.
;ﬁ | ﬂ & : om:L=2> G
. straight| =], 258 Bt S n]

— T — | (graph morphism)

o CSP:

’ * Variables: Nodes of L

* Constraints: Edges of L

* Domain values: G

o Complexity: |G| AL

All sensors with a switch that belongs to a route must directly be linked to the same route.

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
w routeDefinition 0
Y sensor

sensor: Sensor [€ switch: Switch

-~ = Search Plan:

;ﬁ i «’&J ém ﬁ‘n o Select the first node

to be matched

switch

o Define an ordering on
graph pattern edges

= Search is restarted from
scratch each time

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition

w routeDefinition switch
A 4 sensor]]
sensor: Sensor |€ e switch: Switch
-
s = Search Tree:

straight| | M 6“ 4&1

Graph Pattern Matching (Local Search)

switchPosition ; w
0 route: Route sp: SwitchPosition
“ routeDefinition e
Y sensor

sensor: Sensor [€ switch: Switch

-
e = Alternate Search Tree:

N e (A K] A

switch

/ Local Search
based PM
e Runtime depends
on search plan
e Good search plan:
narrow at root
wide at leaves

INCREMENTALITY IN
QUERIES AND TRANSFORMATIONS

Validation of Well-formedness Constraints

Domain-specific

modeling language pattern switchWOSignal(sw) {
+ connec ted[—.. E SWItCh(SW)
Sisignal | 4 mountedTo Emckﬂer;;"t ‘ \ neg find switchHasSignal(sw);

pattern switchHasSignal(sw) {
- Switch(sw);

- Signal(sig);
Signal.mountedTo(sig, sw);

Model sizes in practice

"= Models with 10M+ elements are common:
o Car industry
o Avionics
o Source code analysis

= Models evolve and change continuously

Application Model size Validation can take hours |

System design models 108
Sensor data 10°
Geospatial models 1012

Source: Markus Scheidgen, How Big are Models — An Estimation, 2012.

Performance of query evaluation

= Query performance = Execution time
as a function of
o Query complexity
o Model size
o Result set size

= Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
qguery results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

Incremental Graph Pattern Matching

8 routeDefinition

Y

sensor: Sensor

sensor

<€

switchPosition ; w

switch

%ﬂ straight 4_M

ujt.y

switch: Switch

route _|sp[switch | sensor
rl spl swl

= Main idea: More space, less time
o Cache matches of patterns
o Instantly retrieve match (if valid)
o Update caches upon model changes
o Notify about relevant changes

= Approaches:
o TREAT, LEAPS, RETE, ...

o Tools: VIATRA, GROOVE, MoTE, TCore

Batch vs. Live Query Scenarios

= Batch query
(pull / request-driven):

1.
2.

Designer selects a query

One/All matches are
calculated

Action is applied on
one/all matches

All Steps 1-3 are redone if
model changes

= Query results obtained
upon designer demand

= Live query
(push / event-driven):
1. Modelis loaded
2. Queries loaded

3. Calculate full match set

Model is changed
5. lterate Steps 3 and 4 until
system is stopped
= Query results are always
available for designer

VIATRA Query: An Open Source Eclipse Project

/ N e N
e Declarative graph query * Incremental evaluation

language e Cache result set

* Transitive closure, e Maintain incrementally
Negative cond., etc. upon model change

e Compositional, reusable
Definition Execution
A

e Derived features,
e On-the-fly validation
e VView generation,

e Works out-of-the-box
with EMF applications

Formerly known as
EMF-INCQUERY

http://eclipse.org/viatra

GRAPH MODEL QUERIES: THE

LANGUAGE

The VIATRA QUERY Language (VQL)

8 routeDefinition

Y

sensor

switchPosition] -

switch

sensor: Sensor €

Switch: Switch

pattern routeSensor(sensor: Sensor) = {
TrackElement.sensor(switch,sensor);
Switch(switch);
SwitchPosition. switch(sp, switch);
SwitchPosition(sp);
Route.switchPosition(route, sp);
Route(route);
neg find head(route, sensor);

}

pattern head(R, Sen) ={
Route.routeDefinition(R, Sen);

= VQL: declarative query language
o Attribute constraints

Local + global queries

Compositionality+Reusabilility

Negation, Aggregations

O O O O

Recursion, Transitive Closure over
Regular Path Queries

o Syntax: DATALOG style

Statecharts metamodel

= Other detailed examples

..{ H TratfichstL

[0.*] visualisations »
[1.1] tophodel [0.*] transitions

[0..%] _-’inte|'Iu|::tT|'a|'|:iti-:||'|s

[0.*] states
! 1 - .
E Visualisation E State]— | EE Transition
- [1..1] start

= red : EBoolean = false = name : EString 1

= green: EBoolean = false ¥ A [1..1] fromState [0..*] outTransition

= yellow : EBoolean = false [1..1] visualisation [::

= : EStri

¢ hame : EString | [1.1] toState -

[0..%] inTransition - _}

E TimedTransition]
= delay : Ent =0

[0.*] fAimedTransitions

E InterruptTransitio n|

:

—_—

= name : EString

\"/o]| B Simple queries

// s 1is a state of a statemachine with name n

pattern state(s: State, n: java String) {
State.name(s,n);

}

// 01ld VIATRA style

pattern state(s,n) {
State(s);
NamedElement.name(s,n);

}

// Smart type inference

pattern state(s,n) {
State.name(s,n);

}

// Checks if a state is red

pattern redState(s: State) {
State.visualisation.red(s, true);
State.visualisation.green(s, false);
State.visualisation.yellow(s, false);

pattern state(s: State, n: java String) {
State.name(s,n); ”

}
// 0ld VIATRA style

pattern state(s,n) (Type constraint }
State(s); '

NamedElement.name(s,n);

{Support for EMF types J

and Java datatypes

}
// Smart type infere __.._.[Query parameters

pattern state(s,n .

} State.name(s,n) _IAttribute navigation

// Checks if a state 1s red
pattern redState(s: State) {
State.visualisation.red(s, true);
State.visualisation.green(s, false);
State.visualisation.yellow(s, false);

[Conjunction of
constraints

Path expression

e o

L] EGYETEM 1782

VQL Pattern composition and negation

// t is an interrupt transition between a

// from state and a to state with event e

pattern interruptTransition(t,from,to,e) {
Transition.fromState(t,from);
Transition.toState(t,to);
InterruptTransition.name(t,e);

// The result of event is non-deterministic in state
pattern nondeterministicState(state, event) {
find interruptTransition(,state,tol,event);
find interruptTransition(,state,to2,event);
tol != to2;

}
// No events handled by state

pattern noInterruptTransition(state) {
State(state);
neg find interruptTransition(_,state, ,);

|'Pattern composition / call

Negation
»,No such”)

|Anonymous variables ,any”
|(see Prolog/Datalog)

L] EGYETEM 1782

\"/o]| B Transitive closure and disjunction

pattern transition(from,to) {
Transition.fromState(t,from);
Transition.toState(t,to);

}
pattern reachable(from:State,to:State) {
—— 2 (R .
y orf?m to; _Disjunction
find transition+(from,to); -..___(On pattern level)
}

("
___Transitive closure

pattern unreachableState(s:State) { ‘__Over binary (2-param) patterns
TrafficDSL.states(dsl,s); '
TrafficDSL.start(dsl,start); ;

neg find reachable(start,s);) i i

e negative calls do not bind

variables of header parameters

e patterns should be connected by

edges (avoid Cartesian product)
T e 20O T

MUEGYETEM 1762

teachersWithMostCourses(S,T)

F 1
| I
| |
1
i S:School teaCherS> T:Teacher = :Course N i Exercise: this would be
i i even more efficient
| NEG i ! .
E Teachers | 12: Teacher — :Course | #M i with max find...
: : how and why?
E check (M > N) i
! 1
1

pattern teachersWithMostCourses(

school : School, teacher : Teacher) = {
School.teachers(school,teacher);

neg find moreCourses(teacher);

Match counting

xLtern moreCourses(teacher : Teacher) = {
n == count find coursesOfTeacher(teacher, course);
m == count find coursesOfTeacher(teacher2, course2);
Teacher(teacher2);

teacher != teacher2; (

Check expression
for attribute values

._ __(_pure!)

check(n < m);

L] EGYETEM 1782

\"/o] B Clarifying semantics

pattern reachableRec(from:State,to:State) { from to o)
from == to; M
sl sl w
} or { c
find transition(from, intermediate); s1 52 g
find reachableRec(intermediate, to); 52 52 0

}

= Set semantics =2 query results form a relation (sets of tuples)
o Order of tuples returned is undetermined

o No tuples are duplicated (super important for aggregation!)
* Not even if they differ in a hidden internal variable (e.g. intermediate)
* Not even if they come from different or-connected pattern bodies (e.g. <s1,s1> via loop)

= (Partial) parameter binding/substitution Nl sidasssimaick

parameter is input/output
o Find all states reachable from s1 < substitute sl into from, filter relation

= Recursion semantics: least fixed point

, , , , } Recursion is difficult, hence
o (Runtime option switch required) transitive closure support

Overview of VIATRA QUERY Language

= Features of the pattern language

o Works with any (pure) EMF based DSL and application
o Reusability by pattern composition

o Recursion, negation

o Generic and parameterized model queries

o Bidirectional navigability of edges / references

o Immediate access to all instances of a type

o Complex change detection

= Benefits

o Fully declarative + Scalable performance

VIATRA QUERY Development Tools

ls! example.traceability &3
. Resource Set Loaded Mode! * Works with most EMF-based

v & platform:/resource/example/example.traceabili .
* Fj} CP5 To Deployment i i Y EdItOFS OUt-Of-the-bOX
v [0 platform:/resource/example/example.cyberphysicalsystemn .
- Cyber Physical System * Reveals matches as selection
platform:/resource/example/eample. deployment
4 Deployment

Selection | Parent | List | Tree | Table | Tree with Columns L & Query Resulis &2

] Properties &3 ReteEngine

Property Value » [Resource Set
Cps % Cyber Physical System » 28 Engine options: defaults
Deployment 4 Deployment » 2" Base index options: defaults

Engine details

PSOYario
f

Qu e r| es a re a p p I |ed & i ¥ 9 org.eclipse.viatra.examples.cps.gueries.hostipAddress - 6 matches

¥ @ host=Host Instance Aragorn, ip=152.66.102.6
_ _ @ host=Host Instance Arwen, ip=152.66.102.2
u pd ates On the ﬂy @ host=Host Instance Celeborn, ip=152.66.102.4
POLLE [TR R AT @ host=Host Instance Cirdan, ip=152.66.102.1

&= pattern hostIpAddress(host: HostInstance, ip : java String) { @ host=Host Instance Sauron, ip=152.66.102.3
4 F{Type constraint stating that wvariobles "host' and "ip' are @ host=Host Instance Shelob, ip=152.66.102.5

16 HostInstance.nodelp{host,ip);

Pattern Editor Query Results

VIATRA QUERY
VALIDATION FRAMEWORK

VIATRA QUERY Validation Framework

= Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses VIATRA QUERY graph patterns to specify constraints

= Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

* Execution model is different

Well-formedness rule specification by graph patterns

= \WFRs: Invariants which must hold at all times

= Specification = set of elementary constraints +
context
o Elementary constraints: Query (pattern)

o Location/context/key: a model element on which the
problem marker will be placed

= Constraints by graph patterns Match:

o Define a pattern for the “bad case” A violation of
the invariant

 Either directly
* Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Statechart validation constraint

= “All interrupt names on transitions going out of a single state must
be distinct.”

= Capture the bad case as a query

o There are two outgoing interrupt transitions triggered by the same event

= Add a @constraint annotation to derive an error/warning message

@Constraint(key = {a, event}, message = ,State $a.name$ handles event
$e.name$ ambiguously", severity = "warning")
pattern nondeterministicState(a, event) {

find interruptTransition(_,a,tol,event);

find interruptTransition(_,a,to2,event);

tol != to2;
}
@Constraint(key = {state}, message = "There should be at least one timed
transition going from a state", severity = "error"
pattern noTimedTransition(state) {
State(state);

neg find timedTransition(_,state,_,_);

ExaAMPLE GUI — VIATRA Model Validation

Plug-in Development - bpmn.instancemodel/default.bpmn_diagram - Eclipse Platform

B0 HE | ®E v L8 KR SR E=E [| @=Plug-in Dev... | »
[Arial S : B 7 |A.&v,;.—>.| |?g§jf.og.;;0w§.| | .'ﬁj-}:n|wu% =

= T N W Y T T

Works with most EMF-

based tools out-of-the-
box

Manages error-warning

markers on-the-fly as the g"“’"

user is editing the model Sy
= |Instantaneous feedback el —

onely s a lonely activity
& Simple is a bad looping activity
s SomeTask is a lonely activity defaull
& The gateway should have a default gate to ensure that at least one gate will be valid at runtime.

Markers in the Problems View

Validation lifecycle

= Constraint violations
o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present
= Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

CALCULATING DERIVED FEATURES

BY INCREMENTAL QUERIES

Metamodels with Derived Features

/interruptTransitions(A,B): Derived
B is an InterruptTransition Reference
* B is a transition in A

..{ H TratfichstL
0,* visualisati I
[0 visualisations [1.1] tanndel_‘ " [0..*] transitions [0..*] finterfuptTransitions
[0.*] states
! 1 - .
B visualisation B state]— | EE Transition |
- [1..1] start
= red : EBoolean = false = name : EString
= green: EBoolean = false ¥ A [1..1] fromState [0..*] outTransition
= yellow : EBoolean = false [L.1] visualisation [:
= : EStri
¢ hame : EString [1.1] toState - [0..#] inTransition - x

E TimedTransition] E InterruptTransitiun|

(DeriVEd Featu Fes. __‘[= delay : Eint =0 ‘ = name : EString ‘

:

e Values calculated from other elements iransitions
e Defined declaratively as model queries

(e.g. OCL, graph queries)
e Tooling: handle as regular EMF elements)

—_—

Handling Derived Features as Queries

Derived
. Reference
DF specification:
aS d query — ,.{ H TratfichstL
alisations l [1..1] topModel " [0.*] transitions [IZI..'*]_-“inte|'Iu|:|tT|'a|'|:iti-:||'|:

@QueryBasedFeature
pattern
interruptTransitions(dsl:TrafficDSL,t) |
{ Eﬁ Transition

TrafficDSL.transitions(dsl,t); o) _

InterruptTransition(t); [[Oounsion
} - [0, inTransition =

1

Auto-generated

DF handler (Java)

E TimedTransition] E InterruptTransitinn|

:

private IncqueryDerivedF ¢ interruptTransitionsHandler;
public EList<InterruptTiisition> getInterruptTransitions() {
if (interruptTransitionsHandler == null) {
interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(
this, SystemPackageImpl.Literals.DATA _READING_TASK,

"system.queries.InterruptTransitions”, "TrafficDSL", "InterruptTransition",
FeatureKind.MANY_REFERENCE, true, false);}

return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

=0 = name : EString

—_—

Query-based Derived Features: Why?

= Benefits of declarative derived specification

o Guaranteed consistency of change notifications

e Required e.g. for correct Ul display (e.g. derived node label)
* Provided by VIATRA QUERY incremental engine

o Conciseness

* As with implementing any model query

* Especially if change notifications are relevant

= Exercise: how would you manually implement:

»A Component X strongly depends on another
Component Y if it or any of its direct or indirect
child components Z has a feature F typed with Y,
but only mandatory (non-0 lower bound
multiplicity) features and child components count”

How to manually react to:

Changing a multiplicity
Moving a component

VIATRA VIEWERS

Live abstractions

Complex model Computed overlay
aka. “View”

1 Defined by a query
ltems = SELECT ...

Id Label Prop0 Propl

0 N1 a B

1 N2 o D

Live abstractions

Ul update

Complex model Computed overlay
aka. “View”
Change notification

1 Defined by a query

‘1 ltems = SELECT ..
ﬂ' [¢] Label Prop0 Propl

0 N1 a B

| 1 N2 c D

Query result update 2 A e F

VIATRA Viewers

On-the-fly

abstractions over

1. Model
Modification

the model

-

2. Change Y

Live
Queries

Notifications

3. Continuous,

efficient

Labeled, hierarchic

property graph

Derived ‘
Model

4. Ul updates

synchronization

= Visualize things that are not (directly) present in your model

" Provides an easy-to-use API for integration into your presentation layer

o Eclipse Data Binding

o Simple callbacks

m Query based view annotations

4 Unblink

T “¢ Blink

WX Light event

@Format(color = "#ff0000")
@Item(item = S, 1abe1 - lln")
pattern redState(s: State,n) { .. }

X Polics event

?Mmgxa

¥4 Polife event
4 Yellow

@Item(item = s, label = "n"))
pattern state(s,n) = { .. } 60 ms
@Format(lineColor = "#0000ff") wileaIEED,
@Edge(source = from, target = to, label = "d ms")
pattern timedTransition(t,from,to,d) = { .. }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "e event")
pattern interruptTransition(t,from,to,e) = { .. }

What can | do with all this? — query-based live abstractions

Eclipse
technology —

Trees, tables,
Properties EMF.Edit
(JFace viewers)

The real deal:
doesn’t hide abstract syntax

: GEF, GMF, Easy to read and write
Diagrams -

Graphiti for non-programmers

Textual DSLs Ktext Easy to read and write

for programmers

JFace, Zest, Makes understanding and
yFiles VIATRA Viewers | working with complex models

Your tool! a lot easier

PERFORMANCE BENCHMARKS

The Train Benchmark

= Model validation workload: = Models:
o User edits the model Randomly generated

o Instant validation of Close to real world instances

®
®
well-formedness constraints o Following different metrics
o Model is repaired accordingly o Customized distributions

®

Low humber of violations

= Scenario: m Queries:
o Load o Two simple queries
o Check (<2 objects, attributes)
o Edit o Two complex queries
o Re-Check (4-7 joins, negation, etc.)

o Validated match sets

Batch validation Incremental validation

i
Instance Read > Check » ' Edit » ReCheck » v
model

What Tools are Compared?

19Drools
?® Neoy]
@ the graph database i‘ >
ol IncQuery
MHS&)
clarkparsia store

Batch validation runtime (complex queries)

432177.000

181949.503

76601.998

32249.970

13577.460 -

5716.205

2406.562

1013.179

Time [ms]

179.583

75,606

31.830

530478.000

220304.255

91491.004

37995.652

15779.361 -

6553.072

2721.450

1130.202

469.366

Time [ms]

194.925

80.951

Batch Modelvalidation (x,y:logscale)

426,555 -

Batch execution is dominated by
* l[oading the model

* initializing the

indexers

/

on (x,y:logscale)

’g’_ — = -
i |
[EMF-IncQuery: 2.8 million nodes +

11.2 million edges

1

—
L

)____-)/

88k nodes +
347k edges

[

= 0.7 million nodes +
ko

2.8 million edges

Tools
=t Allegro Graph
&= Drools
= Eclipse OCL+IA
= 4store
9|é EMF-IncQuery
Jawva Refactored
= Pellet
& Neod)
Eclipse OCL
= Sesame
MySQL
&= Stardog
OpenVirtuoso

Tools
= Allegro Graph
= Drools
= Eclipse OCL+1A
= 4store
34 EMF-IncQuery
Java Refactorec
< Neodj
Eclipse OCL
#~ Stardog
OpenVirtuoso

Re-validation time (complex queries)

Incremental Transformation and Validation (x,y:logscale)

4536.000
in] /
2120.055 d
660,560 //3// //
463.122 E/ . . : | | = ! . _ {
216.456 ?__...-—4"4 / L — /2 C | E‘:Tegm Graph
- 1 — #= Drools
101100 — = / N Eclip;e OCL+1A
- 47.284 it = e 7 | . = dstore
E 22100 — B ove reracrrad
E 10.329 /‘f— i gii'{ij
4.828 by Eclipse OCL
= co— — A = Sesame
‘ Incremental Transformation and Validation (x,y:logscale) . HgﬂySSL
| tardog
5058.000 r OpenVirtuoso
2170.625 /’_’%{///t:/]
931.517 H = i
399.758 . e
171.555 5
ST i EMF-IncQuery:
i o nc .
5 N - Characteristic * close to zero response time
E) .
T e - difference * up to models with
= Qe
2457 . (note the log scale) 14 million elements
1.072 ,
0.460 . '
0.197 y /l(—_—/ ' -
0.085 S |
0.036 / . .
0016 ' O 0 o]0
O 2dee

http://incquery.net/publications/trainbenchmark for more details

Memory [kByte]

1e+07 |

1e+06 |

100000 |

AllTestCaseAvg Memory Usage

" Most standard JVMs start having
severe performance issues with
very large models

/]
Incremental engines impose
a typically linear memory
consumption overhead

11k 22k 46k 89k 180k 358k 714k
Model Size [#elem]

Java —— Drools —a— Eclispe OCL
EMF-IncQuery —w— OCL Impact Analysis —s—

1418k

CONCLUSIONS

Selected Applications of VIATRA QUERY

-
e Complex traceability
e Query driven views
e Abstract models by

derived objects

[Foolchain for

MA configs

-

e Experiments on open

e Local search vs.

source Java projects

Incremental vs.
Native Java code

Detection of bad y o
code smells - f

(
e Connect to Matlab

Simulink model
e Export: Matlab2EMF
e Change model in EMF
e Re-import:
EMF2Matlab

ATLAB-EMF

ridge

f
e Live models

f/_
e Rules for operations

e Complex structural
constraints (as GP)

e Hints and guidance

e Potentially infinite
state space

Design Space
Exploration

rf
e Itemis (developer)

(refreshed 25
frame/s)

e Complex event
processing

Gesture

recognition

e Embraer

e Thales

e ThyssenKrupp
e CERN

