
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Model Queries

General Concepts
Graph Patterns
Incrementality
VIATRA QUERY

Model Driven Systems Development
Lecture 04

MOTIVATION

Motivation: early validation of design rules

SystemSignalGroup design rule (from AUTOSAR)

o A SystemSignal and its group must be in the same IPdu

o Challenge: find violations quickly in large models

o New difficulties

• reverse
navigation

• complex
manual
solution

AUTOSAR:
• standardized SW architecture
 of the automotive industry
• now supported by modern modeling tools
Design Rule/Well-formedness constraint:
• each valid car architecture needs to respect
• designers are immediately notified if violated
Challenge:
• >500 design rules in AUTOSAR tools
• >1 million elements in AUTOSAR models
• models constantly edited by designers

A simple example

 Well-formedness
constraint:

o Transition source & target
states must be owned by
same automaton

 Goal: to find violations...

o A violation is a Transition,
whose „from” link
points to a State x, and „to”
link points to a State y,
where the automaton of x
is not the automaton of y

o How to check this?

Metamodel

t1

s2

st

fr to

Violation example

a2

s1

st

a1

Automaton

transitions

State Transition from

to

states initial

kind:StateEnum

A more complex example

 Well-formedness
constraint:

o Transition source & target
states must be owned by
regions belonging to
same automaton

 Goal: to find violations...

o A violation is a Transition,
whose „from” link
points to a State x, and „to”
link points to a State y,
where…

o How to check this?

State CompState Transition

Region

«abstract»

from

to

transitions
states initial

kind:StateEnum

Metamodel

Violation example

a2

Automaton

t1

s2

st

fr to

c2

s1

st

a1

c1

st

st

Another complex example

 Well-formedness
constraint:

o A SystemSignal and its
group must be in the same
IPdu

Programmatic traversal vs. queries

 Goal: find constraint violations in model

o Traverse model in general-purpose language

 for (Automaton automaton : automatons) {
 for (Transition transition : automaton.getTransitions()) {
 State sourceState = transition.from;
 // which automaton defines this state?
 Automaton sourceAutomaton = null;
 for (Automaton candidate : automatons) {
 if (candidate.getStates().contains(sourceState)) {
 sourceAutomaton = candidate;
 break;
 }
 }
 // ... do the same for targetState, then
 if (sourceAutomaton != targetAutomaton)
 // report violation
 }
}

„simple
example”

(though much simpler when
bidirectional navigation is available)

Programmatic traversal vs. queries

 Goal: find constraint violations in model

o Traverse model in general-purpose language

o Use a Query DSL

• More concise

• Declarative functional specification of the query

• Freely interpreted by query engine (e.g. optimization)

• Can be platform-independent

 Validation is just one use cases for model queries

o Derived features

o M2M/M2T Transformation, Simulation

o …

Query Language Styles

 SQL-like (relational algebra)

o Example: EMF Query

o Good for attribute restrictions

o Not very concise for relationships (many joins)

 Functional style

o Example: OCL

o Not very declarative

 Logic style

o Domain relational calculus / graph patterns / Datalog

o Even more declarative

context Transition inv:
 Automaton.allInstances()->forAll(a |
 a.states->includes(self.from) =
 a.states->includes(self.to)
);

Model Query as Logic
A violation is a Transition,
whose „from” link points to a State x
and „to” link points to a State y,
where the automaton of x
 is not the automaton of y

Metamodel

t1

s2

st

fr to

Violation example

a2

s1

st

a1

Automaton

transitions

State Transition from

to

states initial

kind:StateEnum 𝑡|𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) ∧ ∃𝑥, 𝑦, 𝑎𝑥, 𝑎𝑦: 𝑓𝑟𝑜𝑚(𝑡, 𝑥) ∧ 𝑡𝑜(𝑡, 𝑦)
∧ 𝑠𝑡𝑎𝑡𝑒𝑠(𝑎𝑥, 𝑥) ∧ 𝑠𝑡𝑎𝑡𝑒𝑠(𝑎𝑦, 𝑦) ∧ 𝑎𝑥 ≠ 𝑎𝑦

in formal logic
(Domain Relational
Calculus)

Datalog-like query languages

Graph pattern

violates(t):-
Transition(t),from(t,x),to(t,y),
states(ax,x),states(ay,y),ax=\=ay

t

y

st

fr to

ay

x

st

ax

MODEL QUERIES
AND GRAPH PATTERN MATCHING

What is a model query?

 For a programmer:

o A piece of code that searches for parts of the model

 For the scientist:

o Query = set of constraints that have to be satisfied by
(parts of) the (graph) model

o Result = set of model element tuples that satisfy the
constraints of the query

o Match = bind constraint variables to model elements

 A query engine: Supports

o the definition&execution
of model queries

Query(A,B) ∧condi(Ai,Bi)

• all tuples of model elements a,b
• satisfying the query condition
• along the match A=a and B=b
• parameters A,B can be input/ output

Motivating example

Abstract

Meta-
model

Model

«type»

Graph Pattern Matching for Queries

 Match:

o m: L G
(graph morphism)

o CSP:

• Variables: Nodes of L

• Constraints: Edges of L

• Domain values: G

o Complexity: |G|^|L|

L

G
straight

left

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

All sensors with a switch that belongs to a route must directly be linked to the same route.

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Search Plan:

o Select the first node
to be matched

o Define an ordering on
graph pattern edges

 Search is restarted from
scratch each time

1
2

0

3

4

straight

left

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Search Tree:

1
2

0

3

4

straight

left
X

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Graph Pattern Matching (Local Search)

 Alternate Search Tree:

4
3

0

2

1

straight

left
X

X

Local Search
based PM
• Runtime depends
 on search plan
• Good search plan:
 narrow at root
 wide at leaves

INCREMENTALITY IN
QUERIES AND TRANSFORMATIONS

Validation of Well-formedness Constraints

Meta-
model

Model

pattern switchWOSignal(sw) {

 Switch(sw);

 neg find switchHasSignal(sw);

}

pattern switchHasSignal(sw) {

 Switch(sw);

 Signal(sig);

 Signal.mountedTo(sig, sw);

}

Query

Modify

User

Result

Model sizes in practice

 Models with 10M+ elements are common:

o Car industry

o Avionics

o Source code analysis

 Models evolve and change continuously

Source: Markus Scheidgen, How Big are Models – An Estimation, 2012.

Application Model size

System design models 108

Sensor data 109

Geospatial models 1012

Validation can take hours

Performance of query evaluation

 Query performance = Execution time
as a function of

o Query complexity

oModel size

o Result set size

 Motivation for incrementality

o Don’t forget previously computed results!

o Models changes are usually small, yet up-to-date
query results are needed all the time.

o Incremental evaluation is an essential, but not a well
supported feature.

route: Route sp: SwitchPosition

switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Incremental Graph Pattern Matching

 Main idea: More space, less time
o Cache matches of patterns

o Instantly retrieve match (if valid)

o Update caches upon model changes

o Notify about relevant changes

 Approaches:
o TREAT, LEAPS, RETE, …

o Tools: VIATRA, GROOVE, MoTE, TCore

straight

left

route sp switch sensor

r1 sp1 sw1

Batch vs. Live Query Scenarios

 Batch query
(pull / request-driven):

1. Designer selects a query

2. One/All matches are
calculated

3. Action is applied on
one/all matches

4. All Steps 1-3 are redone if
model changes

 Query results obtained
upon designer demand

 Live query
(push / event-driven):

1. Model is loaded

2. Queries loaded

3. Calculate full match set

4. Model is changed

5. Iterate Steps 3 and 4 until
system is stopped

 Query results are always
available for designer

• Declarative graph query
language

• Transitive closure,
Negative cond., etc.

• Compositional, reusable

Definition

• Incremental evaluation

• Cache result set

• Maintain incrementally
upon model change

Execution

• Derived features,

• On-the-fly validation

• View generation,

• Works out-of-the-box
with EMF applications

Features

VIATRA Query: An Open Source Eclipse Project

http://eclipse.org/viatra
Formerly known as
EMF-INCQUERY

GRAPH MODEL QUERIES: THE
LANGUAGE

The VIATRA QUERY Language (VQL)

 VQL: declarative query language
o Attribute constraints

o Local + global queries

o Compositionality+Reusabilility

o Negation, Aggregations

o Recursion, Transitive Closure over
Regular Path Queries

o Syntax: DATALOG style

pattern routeSensor(sensor: Sensor) = {
 TrackElement.sensor(switch,sensor);
 Switch(switch);
 SwitchPosition. switch(sp, switch);
 SwitchPosition(sp);
 Route.switchPosition(route, sp);
 Route(route);
 neg find head(route, sensor);
}
pattern head(R, Sen) = {
 Route.routeDefinition(R, Sen);
}

route: Route sp: SwitchPosition

Switch: Switch sensor: Sensor

switchPosition

switch

sensor

routeDefinition

Example

 Other detailed examples
incquery.net/incquery/new/examples/

Statecharts metamodel

VQL Simple queries
// s is a state of a statemachine with name n
pattern state(s: State, n: java String) {
 State.name(s,n);
}
// Old VIATRA style
pattern state(s,n) {
 State(s);
 NamedElement.name(s,n);
}
// Smart type inference
pattern state(s,n) {
 State.name(s,n);
}
// Checks if a state is red
pattern redState(s: State) {
 State.visualisation.red(s, true);
 State.visualisation.green(s, false);
 State.visualisation.yellow(s, false);
}

// s is a state of a statemachine with name n
pattern state(s: State, n: java String) {
 State.name(s,n);
}
// Old VIATRA style
pattern state(s,n) {
 State(s);
 NamedElement.name(s,n);
}
// Smart type inference
pattern state(s,n) {
 State.name(s,n);
}
// Checks if a state is red
pattern redState(s: State) {
 State.visualisation.red(s, true);
 State.visualisation.green(s, false);
 State.visualisation.yellow(s, false);
}

VQL Simple queries Query definition

Query parameters

Type constraint

Attribute navigation

Optional parameter type

Path expression

Conjunction of
constraints

Support for EMF types
and Java datatypes

VQL
// t is an interrupt transition between a
// from state and a to state with event e
pattern interruptTransition(t,from,to,e) {
 Transition.fromState(t,from);
 Transition.toState(t,to);
 InterruptTransition.name(t,e);
}

Pattern composition and negation

// The result of event is non-deterministic in state
pattern nondeterministicState(state, event) {
 find interruptTransition(_,state,to1,event);
 find interruptTransition(_,state,to2,event);
 to1 != to2;
}
// No events handled by state
pattern noInterruptTransition(state) {
 State(state);
 neg find interruptTransition(_,state,_,_);
}

Pattern composition / call
Negation
„no such”

Anonymous variables „any”
(see Prolog/Datalog)

VQL Transitive closure and disjunction

pattern transition(from,to) {
 Transition.fromState(t,from);
 Transition.toState(t,to);
}

pattern reachable(from:State,to:State) {
 from == to;
} or {
 find transition+(from,to);
}

pattern unreachableState(s:State) {
 TrafficDSL.states(dsl,s);
 TrafficDSL.start(dsl,start);
 neg find reachable(start,s);
}

Disjunction
(on pattern level)

Transitive closure
over binary (2-param) patterns

Note that:
• negative calls do not bind
variables of header parameters
• patterns should be connected by
edges (avoid Cartesian product)

VQL Check expression & Aggregation

pattern teachersWithMostCourses(
 school : School, teacher : Teacher) = {
 School.teachers(school,teacher);
 neg find moreCourses(teacher);
}
pattern moreCourses(teacher : Teacher) = {
 n == count find coursesOfTeacher(teacher,_course);
 m == count find coursesOfTeacher(teacher2,_course2);
 Teacher(teacher2);
 teacher != teacher2;
 check(n < m);
}

Check expression
for attribute values
(pure!)

Match counting

Exercise: this would be
even more efficient
with max find…
how and why?

VQL Clarifying semantics

pattern reachableRec(from:State,to:State) {
 from == to;
} or {
 find transition(from, intermediate);
 find reachableRec(intermediate, to);
} Query

from to

s1 s1

s1 s2

s2 s2

… …

R
e

su
lts

 Set semantics query results form a relation (sets of tuples)
o Order of tuples returned is undetermined

o No tuples are duplicated (super important for aggregation!)
• Not even if they differ in a hidden internal variable (e.g. intermediate)

• Not even if they come from different or-connected pattern bodies (e.g. <s1,s1> via loop)

 (Partial) parameter binding/substitution

o Find all states reachable from s1 substitute s1 into from, filter relation

 Recursion semantics: least fixed point
o (Runtime option switch required)

Recursion is difficult, hence
transitive closure support

No need to pre-declare which
parameter is input/output

Overview of VIATRA QUERY Language
 Features of the pattern language

o Works with any (pure) EMF based DSL and application

o Reusability by pattern composition

o Recursion, negation

o Generic and parameterized model queries

o Bidirectional navigability of edges / references

o Immediate access to all instances of a type

o Complex change detection

 Benefits

o Fully declarative + Scalable performance

VIATRA QUERY Development Tools

Query Results Pattern Editor

Loaded Model

Queries are applied &
updates on-the-fly

• Works with most EMF-based
editors out-of-the-box

• Reveals matches as selection

VIATRA QUERY
VALIDATION FRAMEWORK

VIATRA QUERY Validation Framework

 Simple validation engine

o Supports on-the-fly validation through incremental
pattern matching and problem marker management

o Uses VIATRA QUERY graph patterns to specify constraints

 Simulates EMF Validation markers

o To ensure compatibility and easy integration with
existing editors

o Doesn’t use EMF Validation directly

• Execution model is different

Well-formedness rule specification by graph patterns

 WFRs: Invariants which must hold at all times

 Specification = set of elementary constraints +
context

o Elementary constraints: Query (pattern)

o Location/context/key: a model element on which the
problem marker will be placed

 Constraints by graph patterns

o Define a pattern for the “bad case”

• Either directly

• Or by negating the definition of the “good case”

o Assign one of the variables as the location/context

Match:
A violation of
the invariant

@Constraint(key = {a, event}, message = „State $a.name$ handles event
$e.name$ ambiguously", severity = "warning")
pattern nondeterministicState(a, event) {
 find interruptTransition(_,a,to1,event);
 find interruptTransition(_,a,to2,event);
 to1 != to2;
}
@Constraint(key = {state}, message = "There should be at least one timed
transition going from a state", severity = "error")
pattern noTimedTransition(state) {
 State(state);
 neg find timedTransition(_,state,_,_);
}

EXAMPLE

 “All interrupt names on transitions going out of a single state must
be distinct.”

 Capture the bad case as a query
o There are two outgoing interrupt transitions triggered by the same event

 Add a @constraint annotation to derive an error/warning message

Statechart validation constraint

EXAMPLE GUI – VIATRA Model Validation

Markers in the Problems View

Standard Eclipse BPMN Editor

• Works with most EMF-
based tools out-of-the-
box

• Manages error-warning
markers on-the-fly as the
user is editing the model
= Instantaneous feedback

Validation lifecycle

 Constraint violations

o Represented by Problem Markers (Problems view)

o Marker text is updated if affected elements are
changed in the model

o Marker removed if violation is no longer present

 Lifecycle

o Editor bound validation (markers removed when
editor is closed)

o Incremental maintenance not practical outside of a
running editor

CALCULATING DERIVED FEATURES
BY INCREMENTAL QUERIES

Metamodels with Derived Features
Derived

Reference

/interruptTransitions(A,B):
• B is an InterruptTransition
• B is a transition in A

Derived Features:
• Values calculated from other elements
• Defined declaratively as model queries
 (e.g. OCL, graph queries)
• Tooling: handle as regular EMF elements

Example

Handling Derived Features as Queries

@QueryBasedFeature
pattern
interruptTransitions(dsl:TrafficDSL,t)
{
 TrafficDSL.transitions(dsl,t);
 InterruptTransition(t);
}

private IncqueryDerivedFeature interruptTransitionsHandler;
public EList<InterruptTransition> getInterruptTransitions() {
 if (interruptTransitionsHandler == null) {
 interruptTransitionsHandler = IncqueryFeatureHelper.getIncqueryDerivedFeature(
 this, SystemPackageImpl.Literals.DATA__READING_TASK,
 "system.queries.InterruptTransitions", "TrafficDSL", "InterruptTransition",
 FeatureKind.MANY_REFERENCE, true, false);}
 return interruptTransitionsHandler.getManyReferenceValueAsEList(this);}

Derived
Reference

DF specification:
as a query

Auto-generated
DF handler (Java)

Query-based Derived Features: Why?

 Benefits of declarative derived specification

o Guaranteed consistency of change notifications

• Required e.g. for correct UI display (e.g. derived node label)

• Provided by VIATRA QUERY incremental engine

o Conciseness

• As with implementing any model query

• Especially if change notifications are relevant

 Exercise: how would you manually implement:
„A Component X strongly depends on another
Component Y if it or any of its direct or indirect
child components Z has a feature F typed with Y,
but only mandatory (non-0 lower bound
multiplicity) features and child components count”

How to manually react to:
• Changing a multiplicity
• Moving a component

VIATRA VIEWERS

Live abstractions

Complex model

abstract

Computed overlay
aka. “View”

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

Items = SELECT …

Defined by a query

Live abstractions

Complex model

abstract

Computed overlay
aka. “View”

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

2 N3 e F

Items = SELECT …

Defined by a query

Model
Modification

Change notification

Query result update

UI update

Id Label Prop0 Prop1

0 N1 a B

1 N2 c D

VIATRA Viewers

EMF Model
Live

Queries

2. Change
Notifications

1. Model
Modification

Live
Queries

Derived
Model

UI

3. Continuous,
efficient
synchronization

4. UI updates

Labeled, hierarchic
property graph

On-the-fly
abstractions over

the model

 Visualize things that are not (directly) present in your model

 Provides an easy-to-use API for integration into your presentation layer

o Eclipse Data Binding

o Simple callbacks

Example Query based view annotations

@Format(color = "#ff0000")
@Item(item = s, label = "n")
pattern redState(s: State,n) { … }

@Item(item = s, label = "n")
pattern state(s,n) = { … }

@Format(lineColor = "#0000ff")
@Edge(source = from, target = to, label = "d ms")
pattern timedTransition(t,from,to,d) = { … }

@Format(lineColor = "#ff0000")
@Edge(source = from, target = to, label = "e event")
pattern interruptTransition(t,from,to,e) = { … }
}

What can I do with all this? – query-based live abstractions

Syntax
Eclipse

technology
Pros

Trees, tables,
Properties

(JFace viewers)
EMF.Edit

The real deal:
doesn’t hide abstract syntax

Diagrams
GEF, GMF,
Graphiti

Easy to read and write
for non-programmers

Textual DSLs Xtext
Easy to read and write

for programmers

JFace, Zest,
yFiles

Your tool!
VIATRA Viewers

Makes understanding and
working with complex models

a lot easier

PERFORMANCE BENCHMARKS

The Train Benchmark
 Model validation workload:

o User edits the model
o Instant validation of

well-formedness constraints
o Model is repaired accordingly

 Scenario:
o Load
o Check
o Edit
o Re-Check

 Models:
o Randomly generated
o Close to real world instances
o Following different metrics
o Customized distributions
o Low number of violations

 Queries:
o Two simple queries

(<2 objects, attributes)
o Two complex queries

(4-7 joins, negation, etc.)
o Validated match sets

Incremental validation Batch validation

Instance
model

Read Check Edit ReCheck !

100x

What Tools are Compared?

Batch validation runtime (complex queries)

2.8 million nodes +
11.2 million edges

0.7 million nodes +
2.8 million edges

EMF-IncQuery:
Batch execution is dominated by
• loading the model
• initializing the indexers

88k nodes +
347k edges

Re-validation time (complex queries)

Characteristic
difference

(note the log scale)

EMF-IncQuery:
• close to zero response time
• up to models with
 14 million elements

http://incquery.net/publications/trainbenchmark for more details

2.8 million nodes +
11.2 million edges

Memory usage

Incremental engines impose
a typically linear memory
consumption overhead

Most standard JVMs start having
severe performance issues with
very large models

CONCLUSIONS

Selected Applications of VIATRA QUERY
• Complex traceability

• Query driven views

• Abstract models by
derived objects

Toolchain for
IMA configs

• Connect to Matlab
Simulink model

• Export: Matlab2EMF

• Change model in EMF

• Re-import:
EMF2Matlab

MATLAB-EMF
Bridge

• Live models
(refreshed 25
frame/s)

• Complex event
processing

Gesture
recognition

• Experiments on open
source Java projects

• Local search vs.
Incremental vs.
Native Java code

Detection of bad
code smells

• Rules for operations

• Complex structural
constraints (as GP)

• Hints and guidance

• Potentially infinite
state space

Design Space
Exploration

• Itemis (developer)

• Embraer

• Thales

• ThyssenKrupp

• CERN

Known Users

