
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Foundations of
Model Transformation

Model Driven Systems Development
Lecture 9-10

End-to-End Traceability

En
d

-to
-En

d
Trace

ab
ility

Models and Transformations in Critical Systems

System Design
Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Model Transformations
• systematic foundation of
knowledge transfer:
theoretical resultstools
• bridge / integrate
existing languages&tools

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases,
Monitors, Fault Trees, etc.)

Code
Generation

Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System V&V
Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Related projects
• CESAR, SAVI, …
• HIDE, DECOS, DIANA,
MOGENTES, CERTIMOT,
GENESYS, SENSORIA, MONDO

Definition of Model Transformation

Source
model

Source
language

Target
model

Target
language

Transformation
specification

Transformation
execution

May be declarative

If interpreted, needs
an MT engine

Motivating Example

Object Relational Schema mapping

Example: Object-relational maping

 Important as:

o Model transformation
benchmark

o Most widely used industrial
model transformation
(pl. Hibernate, EJB, CDO)

 Objective:

o Input:
UML class diagram

o Output
Relational database schema

Several alternative ORM
strategies, we’ll use one

Informal definition of the MT

Topmost (generalization) classes  Database table + 2 column:
•Unique identifier (primary key),
• type definition

Informal definition of the MT

Subclasses  Store instances in the same table as the root class

Informal definition of the MT

Class attributes  Column of the table

Informal definition of the MT

Type of the attributes  foreign key

Informal definition of the MT

Association  A table with two columns
• source and target identifiers
• foreign keys (for consistency)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Language structure (UML)

 Abstract syntax
o Graph based model

representation
o Machine readable

 Concrete syntax
o Visual/textual

representation
o Human readable

cref

Customer:Table Product:Table

CustId:Column

CustKind:Column

CustFavourite:Column

ProdId:Column

CustFFav:FKey

pkey

pkey

tcols tcols

fkeys fkeys

kcols

Language structure (RDB Schema)

Concrete syntax Abstract syntax

*
Class

Association

Attribute

src dst

attrs type

parent

*

UML

*Column

*
Table

FKey

fkeys

kcols

tcols

pkey
cref

*

*

DB

*

tref

Asc2Tab

Cls2Tab

Attr2Colc2a

t2c

t2a

Ref

a2t

c2t

a2c

Metamodel of the O-R mapping
 Source, Target metamodels

 Correspondence /
traceability metamodel:
o For saving correspondence

between source and target

o Many use cases, see later

Elaborating the Solution

 How to execute?

1) Evaluate model query on source model, find matches

• Classes without superclass

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

Query

CP:Class

Topmost classes  Table + 2 columns:
•Unique identifier (primary key),
• type definition

Create

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Revision: graph pattern matching

Create

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

Query

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Revision: graph pattern matching
Negated constraint
 Successful match of negative

condition pattern does not match

Create

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

Query

CP:Class

Elaborating the Solution

 How to execute?

1) Evaluate model query on source model, find matches

• Classes without superclass

2) For each match, create new model elements

• Table with primary key and type columns

• Something is missing…

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

Query

CP:Class

Topmost classes  Table + 2 columns:
•Unique identifier (primary key),
• type definition

Create

Elaborating the Solution

 How to execute?

1) Evaluate model query on source model, find matches

• Classes without superclass

2) For each match, create new model elements

• Table with primary key and type columns

• Correspondence (traceability) between table and class

*
C:Class

parent

Query

CP:Class

T:TableR:Cls2Tab
t2c c2t

C:Column

tcols pkey

K:Column

tcols

Create

What will we
use it for?

Elaborating the Solution

 Which table should the column belong to?

o Build on previous steps, using correspondence

 Apply the same idea for the rest:

o Associate subclass to table of parent class

o Map associations, map types of attributes, etc.

*
C:Class

Query

T:TableR:Cls2Tab
t2c c2t

F:Column

tcols

Create

A:Attribute

attrs

Attr2Col
a2cc2a

Class attributes  Column

Chaining and Traceability of
Model Transformations

Code Generation by Model Transformations

Source Model Target CodeCode DOM/AST

M2M M2T

Model-to-Model (M2M)
Transformation
• SRC: In-memory model (objects)
• TRG: In-memory model (objects)

Model-to-Text (M2T)
Transformation
• SRC: In-memory model (objects)
• TRG: Textual code (string)

Chaining of Model Transformations

Source Model Target CodeCode DOM/AST

M2M M2T

Inter Model 1 Inter Model 2

M2M

M2M

M2M

Goal:
• Reduce abstraction gap

by „divide and conquer”
• Intermediate models
• Chain of

model transformations

Model Transformation Flows / Chains

Source Model Target CodeCode DOM/AST

M2T

Inter Model 1 Inter Model 1

M2M

M2M

M2M

Source Model 2

M2M

Joint optimization steps

Traceability in Model Transformations

Source Model Target CodeCode DOM/AST

M2M M2T

Traceability / correspondence links:
• Connect SRC and TRG models

Objectives:
• Make transformation specification easier
• Support end-to-end traceability
• Improve incrementality (see later)

Direct links Correspondence model Soft links

Cross-reference between
SRCTRG

Stored in separate
metamodel & model

Match by id / qualified name
using model query / index

Intrusive: must extend
meta & instance models

Complex, large overhead Requires unique identifier;
limited expressiveness

Forms of Traceability

Association TableAsc2Tabt2a a2t

Association Tablefrom

Association Table

name name
==

Rule-based Transformations

Model Transformation Specification

 Imperative with direct model manipulation

o Quick&easy for simple batch transformations

o But what if we need…

• Incrementality?

• Bidirectionality?

 Rule-based declarative

o Graph Transformation based

o Hybrid: query + imperative action (VIATRA etc.)

o „Relational” (QVT-R, TGG, ATL, etc.)

o „Explicit”

Rule-based MT core idea

 Unit: MT rule

 This is just the core idea, many variants

o We’ll discuss two formalisms later (VIATRA, GT)

For each occurrence of… …transform it like this

Root class in inheritance hierarchy Create entity table with default columns

Attribute of class Add columns to table of class

Association between classes Create switch with foreign key columns

PRECONDITION
Declarative Model Query

ACTION
May be imperative

Inversion of Control (IoC)

 Declarative rule execution

o Transformation engine interprets preconditions

o Rules are fired by engine when&where enabled

 Several variants

o „As long as possible” / „fire why possible” semantics

• Iterate while there are rule activations

• Select one activation (conflict resolution), fire it

o „Fire all current” semantics

• Select all current activations, fire them all, stop

o Arbbitrary control flow

Rule-based Systems

 Where have I seen rule-based systems?
o Model transformations

o Build scripts (MAKEFILE, Maven, etc.)
• Rule: build this artifact like this (action) when

those others are ready and dirty (precondition)

o Business rule & expert systems (Jboss Drools, etc.)

o Context-free grammars (see Textual Syntax Lecture)

o CSS

o…

 There are some vague commonalities

We are interested in this

Easy example

Build Script Example

 Example rules

 Example execution trace

stateMachine.uml stateMachine.h

stateMachine_impl.cpp

Codegen

ArtifactRule

stateMachine_client.cpp

Link

Compile
Client

Compile
Machine

client.o

machine.o

main.exe

StateRule Application

Client
code
dirty
START

Compile client
client.o
updated

link main.exe
updated

Common Rule-based Problems

 Problem 1: Termination

o Vital to ensure!

o Non-terminating examples

• Makefile: a build step overwrites (re-dirties) one of its inputs

• MT rule creates new object, has to be xformed same rule

• MT Rule1 creates element, Rule2 deletes it, Rule 1 again, …

o No systematic way to guarantee, requires thought

State

START

State State State State …

Common Rule-based Problems

 Problem 2: Ordering of steps (rule applications)

o May be required for correctness

• MT example: transform attribute only after relevant class

o In other cases, only performance is impacted

• Makefile: if client is built before dirty .uml, must rebuild

o How to manage?

• Smart engine (limited applicability, works for Makefile)

• Express in precondition (attribute rule requires class)

• Rule priorities (execute class rules before attribute rules)

State

START
State step1 State

State step2 State …

…

Common Rule-based Problems

 Problem 3: Confluence

o Final state must be determined by start state

• No matter the internal choices (which rule to apply now?)

• Confluence is important; full determinism is optional

o Examples

• ORM: Which root class to transform first? Doesn’t matter.

• Makefile: Which dirty file to recompile first? Doesn’t matter.

o No systematic way to guarantee, requires thought

State

START
State State State

State
State State State

END

Graph Transformation (GT) Rules

The Motivation for GT

 Writing correct rule-based MTs may be hard

o Termination

o Confluence

o …

 Graph Transformation (GT)

o Formal mathematical model…

o …to represent MT rules…

o…and reason about them

Model = Labelled Graph

value

List

Cell Cell

first

next Cell Cellnextnext

Object Object Object Object

value value value

Operation = Graph Transformation

LHS

List

Cell

first

List

Cell Cell

first

next

Object

value

RHS

Graph transformation as graph rewriting rules
Left Hand Side: Precondition Right Hand Side: Postcondition

List

Cell

first

next

Object

value

Cell Cell Cellnextnext

Object Object Object

value value value

first

List

Cell

first

LHS

Execution of Graph Transformation Rules

Matching Precondition

first

List

Cell

first

next

Object

value

Cell Cell Cellnextnext

Object Object Object

value value value

first

Execution of Graph Transformation Rules

List

Cell

first

LHS

first

Matching precondition

Execution of Graph Transformation Rules

List

Cell

first

next

Object

value

Cell Cell Cellnextnext

Object Object Object

value value value

Rewriting the graph by the match

List

Cell

first

LHS

first

List

Cell Cell

first

next

Object

value

RHS

Execution of Graph Transformation Rules

List

Cell next

Object

value

Cell Cell Cellnextnext

Object Object Object

value value value

Cell

first

next

Object

value

List

Cell Cell

first

next

Object

value

RHS

We get a new graph

State Space

G0

Initial Graph + Transformations State Space

Potentially infinite state space

State Space

G0

Initial Graph + Transformations State Space

Potentially infinite state space

?

State Space

G0

Initial Graph + Transformations State Space

Potentially infinite state space

?

Solutions are
in the state space

Structure of a GT rule

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHSmatch of the
RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graph Transformation Rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:

• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

*
C:Class

LHS RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

Structure of a GT rule
 Graph Transformation Rules

o Left hand side - LHS
• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

C:Class

LHS

*
C:Class

parent

NAC

CP:Class

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS
Image of the RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

Structure of a GT rule

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

 Graph Transformation (GT):
o Declarative and formal paradigm

o Rule base transformation

o Match of the LHS
Image of the RHS

o Generalization of Chomsky
grammars (hierarchy)
(text  graph)

 Graph Transformation Rules
o Left hand side - LHS

• Graph pattern

• Precondition for the rule application

o Right hand side - RHS:
• Graph pattern + LHS mapping

• Declarative definition of the rule
application

– What we get (and not how we get it)

o Negative Application Condition(NAC):
• Graph pattern + LHS mapping

• Negative precondition of the rule
application

• If it can be made true
the rule cannot be applied

• Multiple NACs  only one is true 
rule cannot be applied

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
1. Graph pattern matching

o Match of the LHS pattern in the underlying
model

o match m: LHS  G mapping

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
NAC check
 Is there a match g for the NAC in G along the

m: LHS  G match?

 Successful match of NACm is not a match

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
3. Non-deteministic selection

o Random selection of a match (if more
than one)

o No match rule fails

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (UML)

Book:Class

Customer:Class Product:Class

VIPCustomer:ClassNormalCustomer:Class CD:Class

appendix:Attributefavourite:Attribute

reviews:Association

orders:Association

parent parent

attrs attrs

type

type

src dst

dstsrc

parentparent

Application of GT rules
4. Deletion

o Deletion of LHS \ RHS from G

o In LHS yes, in RHS no

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Application of GT rules
5. Creation (and binding)

o Creation of RHS \ LHS in G with
their corresponding relations

o Output:
a „match” of RHS in G

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

G (DB)
tCust:Table

CustId:Column

CustKind:Column

pkey

tcols

Typical problems…

RHS

T:Table*
C:Class R:Cls2Tab

t2c c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

1) Saving the source model, traceability

2) Application of the same rule along the same match

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

The Image of
C is the same

in G!

G (UML)

Product:Class

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

type

dst

Semantics : Handling of Dangling edges
 Dangling edges:

o Delete a node
• What to do with the

dangling edges?

 Greedy approach

o Delete all dangling edges

o Pro:
• Intuitive for engineers

• Easy to implement

o Con:
• Verification is hard

(side effect of rules)

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

Customer:Class

parent

src

parent

G (UML)

Product:Class

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

type

dst

parent

src

parent

Customer:Class

Semantics : Handling of Dangling edges
 Dangling edges:

o Delete a node
• What to do with the dangling

edges?

 Conservative approach
o The rule cannot be applied if

it would produce a dangling
edge

o Pro:
• Side effect free rules

• Helps verification

o Con:
• Harder to implement

• What is its meaning for
engineers (not
mathematicans)

RHS

T:Table

P:Column

tcols pkey

K:Column

tcols

*
C:Class

parent

LHS

CP:Class

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Semantics: Injective matching
 Injective matching

(„kisajátító”)

o For all nodes in the LHS
separate nodes are
matched in G

 Pro:

o Intuitive for engineers

 Con:

o Verbose specification of
rules
(many alternate subrules)

Product:Classdst

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Semantics: Non-injective matching
 Non-Injective matching

(„közösködő”)
o For multiple nodes in the

LHS 
the same node can be
matched in G

 Con:
o Contradictionary

specification for a node
• For CF : keep it

• For CT : delete

 Solution:
o Nodes to be deleted in

LHS are matched with
injective semanticsProduct:Class

dst

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G (UML)

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Conflict / Parallel independence

 Parallel independence
(between two rule applications)
o Neither prevents the application

of the other

 Conflict (between two rule
apps)
o If they are not parallel

independent

 Parallel independence
(between two rules)
o Any two of their rule application

are parallel independent
Product:Classdst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G1 (UML)

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Sequential independence

 Sequential independence
(two following rule
applications)
o Their order can be swapped

without any effect on their
final result

Product:Classdst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G2 (UML)

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Sequential independence

 Sequential independence
(two following rule
applications)
o Their order can be swapped

without any effect on their
final result

 ExampleProduct:Classdst

type

A:Attrib

attrs

RHS

CF:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G1 (UML)

VIPCustomer:ClassNormalCustomer:Class

favourite:Attribute

orders:Association

attrs

parent

src

parent

Customer:Class

Causal dependence I.

 Sequential independence
(two following rule applications)

o Their order can be swapped
without any effect on their final
result

 Causally dependent
(two following rule applications)

o If they are not serial
independent

Product:Classdst

type

A:Attrib

attrs

RHS

CT:Class

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Assoc

src

RHS

CF:Class

A:Assoc

src

LHS

CF:Class

CT:Class

dst

G2 (UML)

NormalCustomer:Class

favourite:Attribute

orders:Association

VIPCustomer:Class

attrs

parent

src

parent

Customer:Class

Causally dependence II.

 Serial independence
(two following rule applications)
o Their order can be swapped

without any effect on their final
result

 Causally dependent
(two following rule applications)
o If they are not serial

independent

 Example
Product:Classdst

type

A:Attrib

attrs

LHS

CF:Class

CT:Class

type

A:Attrib

attrs

RHS

CT:Class

Summary
 Graphtransformation,

as a modeltransformation paradigm
o Rule and pattern based formal specification
o Querying and manipulating graph based models
o Intuitive graph based specification

 Structure

o LHS graph pattern: precondition
o RHS graph pattern: postcondition
o NAC: negative

condition

 Rule application

o Graph pattern matching
o Deletition + Creation
o Dangling edges and injectivity
o Affect of multiple rule application (conflicts and causality)

*
C:Class

parent

LHS

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

*
C:Class R:Cls2Tab

t2c

RHS

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

Incrementality in
model transformations

No Incrementality: Batch Transformations

1. First transformation

2. Source model changes

3. Re-execute from scratch
for all source models

SRC1

SRC2

TRG1TRACE1

TRG2TRACE2

Dirty Incrementality

1. First transformation

2. Source model changes

3. Re-execute from scratch
only for changed models

SRC1

SRC2

TRG1TRACE1

TRG2TRACE2

Pros:
• Large-step incrementality
• Avoids continuous exec.
Cons:
• Complex MT can be slow
• Cleanup (after an error)?
• Chaining?

Incrementality by Traceability

1. First transformation

2. Source model changes

4. Re-execute MT only for
untraceable elements

SRC1

SRC2

TRG1TRACE1

TRG2TRACE2

3. Detect missing trace links

Pros:
• Small-step incrementality
• Better performance
Cons:
• Highly depends on

traceability links
• Smart matcher needed

Event Driven Transformations

1. First transformation

2. Source model changes

4. Propagate change

SRC1

SRC2

TRG1TRACE1

TRG2TRACE2

3. Process change notification

Pros:
• Refined context: driven by

changes of query result set
• Chaining
• Avoids continuous comp.
Cons:
• Language-level restrictions

Aspects of Incrementality

 Goals: to save work by…

o Target Incrementality

• …reusing unchanged parts of the target

• Further benefits
– Existing links to unchanged parts preserved

– Existing analysis on unchanged parts preserved

– Does not propagate along transformation chains

o Source Incrementality

• …ignoring unchanged parts of the source

• Use incremental model query!

Incremental Forward Transformation

MSRC
MTRGTRACE

M’SRC M’TRG
TRACE’

1. First transformation

2. Source model changes

3. Apply changes to
target model

Practical application scenarios:
• Incremental model synchronization
• Tool integration

Revisit Motivating Example

*
C:Class

parent

Query

CP:Class

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

R:Cls2Tab
t2c

Create

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

 Map new, unmapped root classes to tables

 Remove old tables no longer having a source class

C:Class

Query

R:Cls2Tab
t2c

T:Table
c2t

C:Column

tcols pkey

K:Column

tcols

Delete

Incremental Backward Transformation

MSRC
MTRGTRACE

M’SRC TRACE’ M’TRG

1. First transformation

2. Target model changes

3. Apply changes to
source model

Extra challenge if not hard enough:
SRCTRG specified
TRGSRC inferred

Recent Approaches:
A. Schürr, P. Stevens, N. Foster, T. Hettel,
Cicchetti&Pierantonio, Czarnecki&Diskin

Note: bidirectionality is hard

VIATRA: A Reactive Incremental
Transformation Platform

Reactive Event Driven Transformations

VIATRA:
Reactive

Transformation
Engine

Observed
events

Controlled
events

Actions

What has changed?

When to react?
Perform in

consistent state

Reactive Event Driven Transformations

VIATRA:
Reactive

Transformation
Engine

Observed
events

Controlled
events

Actions

• Model modified
• Match appeared
• Event sequence identified

• „Run” button pushed
• Consistent state reached after

editing
• Transaction committed

• Modify model
• Add error marker
• Update view
• Send e-mail

Reactive Event Driven Transformations

VIATRA:
Reactive

Transformation
Engine

Observed
events

Controlled
events

Actions

• Event source
• Event occurence

(type, data)
• Life cycle

• Jobs

• Scheduler

Rule specifications

• Agenda
• Conflict Resolver
• Executor

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

lifecycle(ActivationLifecycles.incremental).

action(::Appeared)[

match | // perform action].

action(::Disappeared)[

match | // perform action].

build

Event data

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

lifecycle(ActivationLifecycles.incremental).

action(::Appeared)[

match | // perform action].

action(::Disappeared)[

match | // perform action].

build

Rule specification

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

lifecycle(ActivationLifecycles.incremental).

action(::Appeared)[

match | // perform action].

action(::Disappeared)[

match | // perform action].

build

Observed events

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

lifecycle(ActivationLifecycles.incremental).

action(::Appeared)[

match | // perform action].

action(::Disappeared)[

match | // perform action].

build

Job specification

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

lifecycle(ActivationLifecycles.incremental).

action(::Appeared)[

match | // perform action].

action(::Disappeared)[

match | // perform action].

build

Activation
state-event
transitions

Language Example

Query language

Xtend (Java)

pattern someCondition(param1, param2) {...}

val rule = createRule().precondition(someCondition).

action[match | // perform action].build

val incrRule = createRule().precondition(someCondition).

lifecycle(ActivationLifecycles.incremental).

action(::Appeared)[

match | // perform action].

action(::Disappeared)[

match | // perform action].

build

Jobs associated
with event types

Activation Lifecycles

 Batch transformation

 Event-driven transformation

Appeared

Update
d

/updateJob

/appearJobAppeared

Disappeared

Fired

/disappearJob

Phases

Disabled

Appear
Update

Fire
Disappear

Initial

Enabled

Transitions

Only feature of
event data object

has changed

Scheduling

Reactive
Transformation

Pfatform
Scheduler

EMF Transactions

Viatra EMF
Base Index

Viatra
Query Engine

User interface

Workflow

…

„Consistent state
reached, execute
activations now”

Conflict Resolution

 Multiple actions available

o Activations of different rules

o Different activations in the same rule

• Different matches of the precondition pattern

 Which activation to execute next?

 Conflict resolver can be selected

o Global conflict set: deals with all rules

o Scoped conflict set: selected rules

o Customizable resolution strategy: e.g. priority-based

VIATRA: Overview of Features

•Explore design model
candidates

•Satisfying multiple criteria

•Rule based exploration

•Optimization

Design
Space

Exploration

•Detect complex event
sequences

•Rule based reaction

•Xtext based language

Complex
Event

Processing

•Remove sensitive information
from confidential models

•Original model
Obfuscated model

Model
Obfuscator

 Reactive MT Platform

o MT Language:
• Internal DSL over Xtend

• Transformation API

o MT Engine:
• Event-driven virtual machine

• Batch + Incremental MTs

• Control flow library

• Compiles to Java

• Debugger

• High performance

o Integrations:
• EMF, Viatra Query, Xtend,

EMF-UML, …

Performance benchmarks

https://github.com/viatra/viatra-cps-benchmark

CPS Reallocation Benchmark
 Benchmark setup

o Rule-based redeployment
for cloud-based CPS
• Model generator + Unit tests

• M2M + M2T transformations

 Different target
architecture / platform

o Industrial (Low-Synch)

o Client-Server

o Publish-Subscribe

Test Scenario
 Different transformation variants

o Batch
• Xtend (2 versions)
• IncQuery+Xtend

o Incremental
• Dirty (2 approaches)
• Explicit traceability
• Query-driven
• Change-driven (VIATRA-EVM)

 Executions
o First transformation execution
o Small modification + (re)execution

 Environment
o New machine with 16 GB RAM

 Parameters
o 10 GB Heap
o Maximum 10 minutes execution

times for complete chain

Scale SRC Objects SRC References TRG Objects TRG References Trace Objects Trace References

SUM
Objects

SUM
References

1 395 772 366 736 354 720 1 115 2 228

2 849 1 821 773 1 535 762 1 535 2 384 4 891

4 1 694 4 697 1 534 2 972 1 522 3 056 4 750 10 725

8 3 604 17 111 3 266 6 108 3 254 6 520 10 124 29 739

16 7 820 89 193 7 124 12 395 7 112 14 236 22 056 115 824

32 17 714 594 181 16 308 24 837 16 297 32 605 50 319 651 623

64 43 795 4 424 529 40 960 50 028 40 948 81 908 125 703 4 556 465

Trace model’s size
similar to target model

Benchmark results

 Runtime of initialization and first M2M phase

Benchmark results

 Runtime of model modification and M2M phase

Design Space Exploration

Á. Hegedüs, Á. Horváth, D. Varró:
A model-driven framework for guided design space exploration.
Automated Software Engineering (August 2014)

DOI: 10.1007/s10515-014-0163-1

Model-Driven Guided Design Space Exploration

End-to-End Traceability

En
d

-to
-En

d
Trace

ab
ility

System
Design Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Design + V&V Artifacts
(Source code, Glue code,

Config. Tables, Test Cases, Monitors,
Fault Trees, etc.)

Code & Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System
V&V Model

Model generation

Back-Annotation
Model generation

Back-Annotation
Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Model-driven guided
design space exploration
• Quick fixes for DSMLs
• Design of ARINC653 configs

Design Space Exploration

105

Design Space Exploration

Design
Alternative 1

Design
Alternative 2

Design
Alternative 3

Design
Alternative 4

Goals

Global
Constraints

Operations

Initial Design

Special state space exploration
• potentially infinite state space
• „dense” solution space

Model Driven Guided Design Space Exploration

106

Design Space Exploration

Seq of Transf.
Rules 1

Seq of Transf.
Rules 2

Seq of Transf.
Rules 3

Seq of Transf.
Rules 4

Model queries
as Goals

Model queries
as Constraints

Transf. Rules
as Operations

Initial
Model

Guidance for exploration: Hints
• designer / end user
• formal analysis

Modified model

Operation

Initial model

Solution model

Constraints
violated

Goals
satisfied

Guided Design Space Exploration

 High-level overview

107

Initial model

Modified model

Operation

Solution
model

Cut-off criteria
satisfied

Selection
criteria used

Design Space Exploration for IMA Config. Design

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality

3

System

Display

AirCond

Panel

3

1

2

3

7

4

5

6

8

Communication
channels

Temperature

Pressure

Humidity

Design Space Exploration

Design
Alternative 1

Design
Alternative 2

Design
Alternative 3

Design
Alternative 4

Goals

Global
Constraints

Operations

Initial Design

Supply fresh air

Supply hot air

Monitor
temperature

Set
temperature

Designing ARINC653 configurations

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality
(critical + non-critical)

3

System

Display

AirCond

Panel

3

Redundancy
requirement

Job instances, Partitions, Modules

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality
(critical + non-critical)

3

System

Display

AirCond

Panel

3

1

2 3

7

Job instances

4

5 6

8

Partitions

Modules

Constraints

2

5

3

4

8

8

8

8

Memory needs
+ constraints

Do not mix critical
and non-crit. jobs

Do not mix
instances of the
same critical job

Additional constraints
• WCET,
• scheduling, etc.
• interfaces
• datatypes

Allocating communication channels

Pack

Controller

Zone

Controller

Aft Zone

Forward
Zone

Flight
DeckAir

Conditioning
panel

System
Display

Zone
Controller

Pack
Controller

Pack

Pack

Pack
Controller

SW functionality

3

System

Display

AirCond

Panel

3

1

2

3

7

4

5

6

8

Communication
channels

Temperature

Pressure

Humidity

Model Driven Development of IMA Configs

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Inputs:
• Platform Independent Model (PIM)
(functional + nonfunc. reqs; Simulink)

• Platform Description Model (PDM)
for ARINC 653 (DSML)

Output:
• Integrated system model
• Ready for simulation
• End-to-end traceability

Model Driven Development of IMA Configs

Capture
constraints

Explore
alternatives

Human
decision

Automate
consequences

Functional
Architecture

Platform
description

Component
database

Allocation

Integrated
System
Model

Model transformation chains:
• Designer-guided manual steps
• Automated steps

• design space exploration
• optimization
• code generators

• Continuous validation of design rules

