MODEL MANAGEMENT

Daniel Varrd
Akos Horvath
Gabor Bergmann

further contributions by
M. Brambilla, J. Cabot and M. Wimmer

Model Driven Systems Development
Lecture 10

r us

Budapest University of Technology and Economics

Department of Measurement and Information Systems



f\& MORGAN CLAYPOOL PUBLISHERS

Chapter #10

MANAGING MODELS

Teaching material for the book & & -
Model-Driven Software Engineering in Practice Model-Driven Software
by Marco Brambilla, Jordi Cabot, Manuel Wimmer. EnginsecinginPruetice
Morgan & Claypool, USA, 2012.

Jordi Cabot
Manuel Wimmer

www.mdse-book.com



Motivation

Why Model managing?

= In MDE everything is a model but as important as that, no
model is an island

= All modeling artefacts in a MDE project are interrelated.
These relationships must be properly managed during the
project lifecycle

Reguirements

Use Case

Class Diagram -

C ]
Java Project

—

%oy org.eclpse .gmk

Marco Brambilla, Jordi Cabot, Manuel Wimmer.
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



= Model Interchange & Persistence
* Persistence to files (XMl, JSON)
* Persistence to repositories (CDO, EMFStore, NeoEMF)
* Interchange between tools

= Collaborative Modeling
o Connectivity
o Access Control
o Versioning
o Conflict Management

= Misc: Model Co-Evolution, Megamodeling




MODEL PERSISTENCE

AND INTERCHANGE

* Persistence to files (XMI, JSON)
* Persistence to repositories (CDO, EMFStore, NeoEMF)
* Interchange between tools




Persist to file: XMI 2.0 document

= OMG XMI Standard (XML Metadata Interchange)
o Supported by EMF out-of-the-box

<fb:Model xmlns:fb=".." xmlns:xmi="..
<teams xmi.type="Team” xmi.id="t1" name="Hungary">
<players xmi.id=pl’
name=‘Puskas’
number="10"
playsFor="tl1l'/>
</teams>
</fb:Model>

playsFor

~players

Puskas :
Player




Persist to file: emfjson document

= JSON standard: supported by emfjson project
o Similar to XMl, no substantial benefits

{
"eClass": "http://www.eclipselabs.org/emfjson/junit#//Node",
"label": "root",
"target": {
"$ref": "//@child.o"
})
"child": [
{

"eClass": "http://www.eclipselabs.org/emfjson/junit#//Node",

"label": "n1",
"source" : {
Il$r‘e_Fll: Il/ll




Fundamental Question: Cross-refs

= Models are graphs, not trees > cross-references
o AST not enough, must use linking

o Fragmentation into smaller files = cross-file refs

= Cross-reference serialization options

Identifier-based Positional
(fragile!)

REVOEET- B ../foo/bar/baz /child[3]/child[5]
(absolute or

relative) XMI standard solutions

“ 123e4567-e89b-... - e XPath
e XMI ID (resource-relative)

« XMI UUID (globally unigue)
emfjson is similar




Model Persistence

= Typically models are serialized in plain files, following the
previous XMI format or any other proprietary XML format

= Doesn’t work well with large models. Scalability issues
= Loading the whole model in memory may not be an option

» Random access strategies plus lazy loading (i.e. loading on
demand) are needed

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



NeoEMF vs. CDO vs. EMF Store

= NeoEMF = Eclipse CDO = EMF Store
o New & simple o Most features o Compromise
o No collaboration o Most daunting o Offline checkout
///,Storage \\\\ ////Storage ‘\\\\ ///, \\\\
Backend Backend
! !
Collaborative Collaborative
Repository ﬁ Repository ﬁ
Server Server I\
Modeling A Client £\ Clie;tl ;
tool 4 deli — MOCEINg ‘g
00 W :)ZISE ng T tools 1

Optional
K / K local checkout K Local checkou’d




Model Once Open Everywhere

= There's a clear need to be able to exchange models among
different modeling tools

= In a perfect world, you'd be able to choose ToolA for specifying model,
ToolB to check its quality, ToolC to execute it....

= We are still far away from this goal

= Solution attempt: XMI (XML Metadata Interchange), a standard
adopted by OMG for serializing and exchanging UML and MOF
models

= But each tools seems to understand the standard in a different
manner

Marco Brambilla, Jordi Cabot, Manuel Wimmer. :

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



XMI example

(simplified and partial versions of the actual XMl files)

Employee

1.* WorksIn

Department

- name : String

<packagedElement xmi:type="uml:Class" xmi:id="ceel"
name="Employee">

<ownedAttribute xmi:id="a@01" name="name"/>
</packagedElement>
<packagedElement xmi:type="uml:PrimitiveType"
xmi:id="t@01" name="String"/>
<packagedElement xmi:type="uml:Class" xmi:id="ce02"
name="Department">

<ownedAttribute xmi:id="a@@2" name="name"
type="t001"/>
</packagedElement>
<packagedElement xmi:type="uml:Association"
xmi:id="as@01" name="WorksIn" memberEnd="e001e002">

<ownedEnd xmi:id="e@01" type="c002"
association="ase01"/>

<ownedEnd xmi:id="e002" name="" type="co001"
association="ase01">

<upperValue xmi:type="uml:LiteralUnlimitedNatural”

xmi:id="un@01" value=""/>

</ownedEnd>

</packagedElement> ECLIPSE

- hame : String

<UML:Class xmi.id='c@01' name='Employee'
visibility="public' isSpecification='false'
isRoot="'false' islLeaf='false'
isAbstract="'false' isActive='false'>
<UML:Classifier.feature>
<UML:Attribute xmi.id='a@@1' name='name'
visibility="public' isSpecification="'false'
ownerScope="instance'
changeability="changeable'
targetScope="instance'>
<UML:StructuralFeature.multiplicity>
<UML:Multiplicity xmi.id="'mee1'>
<UML:Multiplicity.range>
<UML:MultiplicityRange xmi.id='mroel
lower="1"upper="1"'/>
</UML:Multiplicity.range>
</UML:Multiplicity>
</UML:StructuralFeature.multiplicity>

ArgoUML

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Access Versioning
Control

COLLABORATIVE MODELING




Challenges

= Connectivity (online/offline)

= Access Control

o Granularity & model fragmentation

o Read & write permissions, obfuscation, policies
= Versioning

o Versioned Storage

o Model Comparison (Matching, Differencing)

" Conflict Management
o Serialization & Locking to avoid conflict

o Merging to resolve conflict




Offline Connectivity
1a) Checkout@ 1b) Checkout . Workflow

6) Commi o ,Take home” the model
ommit

2) Commit * Work on the model separately

5) M _
(Resc?I:/geed * Use desktop modeling tool

conflict)

o Upload updated model
) conflict o VCS-like workflow

= Goal:

o Offline use of local copies

3) Commit
attempt

o VCS compatibility
o Pristine modeling tools




Online Connectivity

1a) View Model 1b) View
|
Workflow Carer
o Web client or 4) Immediate
_ hange propagation
connected desktop tool 3) Immediate
mode

o Simulataneously by change

several users
o ~“Google Spreadsheets

= Goal: ) Vpdated
o Efficient change i
propagation

- -

(incrementality)




Model Repositories

= File-based VCS

= Model-aware repositories
o EMFStore: Eclipse open-source, model-level, offline
o CDO: Eclipse open-source, object-level, online

o Emerging enterprise solutions
* E.g. No Magic Teamwork Cloud, Obeo Designer Team

o Public cloud-based repositories
* Axellience GenMyModel

nnn 4B oeeo

<> uo & Ya Designer

The Model Repository




Access Versioning
Control

ACCESS CONTROL

* Granularity & model fragmentation
* Read & write permissions, obfuscation, policies




Access Control in Collaboration

View for HW
Supplier,

View for SW

Provider, %

View for SW ___
Provider, h

Integrate
= Different privileges for Writable by
o Stakeholders HW Supplier,
o Subcontractors

Challenge:
o In-house teams How to provide secure
T access for collaboration? :

M ECYETEM I TERZ



File-level Access Control

SW Supplier
System
Designer Platform
\ Provider

Test

setl
Authorities Test Doc

i KT S CETEATE set 2 1 2

Certification

=] Problem: How to give
2l partial access to an artifact?




File-level Access Control

R
| ( *
\ SW Supplier
System
Designer Platform
' Provider

Certification
Authorities

Traditional (Git/SVN) Solution:
* Splitting artifacts
* All-or-nothing access

ssssssssssssssssssssssssssssss




Consequence:

Designer

Certification
Authorities

Fila_levial Accegs Control

e ~1000 files for large automotive models

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Limits:

A
S

SW Supplier

Platform
Provider

Rigidity — can we change permissions?
Cyclic dependencies between files?

Hiding only some attributes of an object?
Obfuscating an attribute, without hiding it?




Model-level Access Control

" Fine-grained access control ‘

N o nt
o Additional access restrictions l l MONDO

MANAGEMENT ON THE CLOUD

* complementing file-based solutions

o Grant separate permissions on each
 object (class instance)

* slot (attribute instance)

josse

* link (reference instance) | »

Challenge:
How to express policy
for so many assets?

Challenge: ...rules may evaluate
How to identify assets in —) model queries for
rule-based policy? the model element




Internal (Referential) Consistency

= Goal: self-contained models in standard format
o Compatible with off-the-shelf model tooling

¥

" Internal consistency ( # well-formedness rules)
o Object invisible = slots, links, contents invisible

o Opposite references match up

O etc. ‘

= Permission dependencies / conflicts

Deriving Effective Permissions for Modeling Artifacts from Fine-grained Access Control Rules.
Csaba Debreceni, Gabor Bergmann, Istvan Rath and Daniel Varré. First International
Workshop on Collaborative Modelling in MDE, Saint Malo, France, Oct 4. 2016




Filtering and Obfuscation

= Read Access Control

o Hide
* Objects
e Reference links

e Attribute values

o Obfuscate
e Attribute values
e (or Metamodel)

seed

Challenge:

required attributes
m— (e.g. IDs, names)

! myAttr = “value” \ myAttr = “4562e0771”

: 08d6e0baf

object
’ obfuscator »
)

attribute

c2e2be580 = “value”

original
content

obfuscated

content » deobfuscator »




Al Versioning
Control

MODEL VERSIONING

* Versioned Storage
* Model Comparison (Matching, Differencing)




= Versioned Storage

o Store revisions
* Requires more space
 Diff operations expensive

o Store deltas only

Model Versioning & Branch & Merge

- A
‘L_ revision _‘1'
revision revision
A Al,
revision
- : AI
—> revision

v

* Requires reliable model differencing & patching

* History operations expensive

= Version History Structure

o Linear

o Branching

In all cases,
model comparison required




Model Comparison

= Comparing two models is a key operation in many model-
management operations like model versioning

= Goal of model comparison is to identify the set of differences
between two models

= These differences are usually represented as a model
themselves, called a difference model

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Model Comparison: Model matching

Phase 1 of a model comparison process

= ldentify the common elements in the two models

- How do we establish which elements have the same identity?
= Static identity: explicit id’s annotating the elements

= Signture identity: Identity based on the model element features (i.e.
name, contained elements,...)

= ldentity can be a probabilistic function (similarity matching)

= Works better if users redefine the concept of matching for
specific DSLs (so that their specific semantic can be taken into
account)

Model comparison =
Graph similarity problem

Marco Brambilla, Jordi Cabot, Manuel Wimmer. |
Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Example: Model Comparison

__________ = What is the best matching?
Name: string :
us :
1
1
Cat Dog "l
1
11
11
11
11
11
Animal e

Mammal
Name: string

l----J----




Model Comparison: Model differencing

Phase 2 of a model comparison process

= Matched elements are searched for differences

= A difference corresponds to an atomic add / delete / update /
move operation executed on one of the elements

= These differences are collected and stored in the difference
model

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Example: Model Difference

Animal
Name: string

Cat

Animal

Mammal
Name: string

I----:--------

l----J----

= \What is the difference?

= Matching (A)
Del Gen: Cat = Animal
Del Gen: Dog = Animal
Add Cls: Mammal
Add Gen: Mammal = Animal
Add Gen: Cat 2 Mammal
Add Gen: Dog 2 Mammal
Move Att:
Name: Animal 2 Mammal
= Matching (B)
o Rename: Animal 2 Mammal
o Add Cls: Animal
o Add Gen: Mammal = Animal

O O O O O O O




Best Practices to Help Model Matching

" If possible, use element identifiers that are

o Unique
* Can be local (qualified), broken by moving elements
* Preferably globally unique (move-resitant)

o Stable (across reloading&saving)
= How?

o Intrinsic: part of the domain, available in metamodel
* E.g. book ISBN number

o Extrinsic: only provided by modeling tool / persistence

* Use UUID/GUID = randomly generated, collisions unlikely




Access Versionin
Control &

CONFLICT MANAGEMENT

* Serialization & Locking to avoid conflict
* Merging to resolve conflict




Conflict Management

1b) Checkout

= Can we avoid conflicts? follCtice kot

o Global serialization

6) Commit
* Changes are sequenced

2) Commit
5) Merge
(Resolved
conflict)

* Online mode only

o Locking

e Temporary write ban

* Not for security,
but coordination

3) Commit
attempt




Locking Challenges

= Granularity (similar to Access Control) Xﬁ?‘
o File-based (inflexible) by VCS AT
o Fine-grained by model-aware repos

] Properties &7 | [®]] Problems

= Lock compatibility (e.g. R/W) m—

= Incidental/accidental changes
Style Parents: e
o E.g. move on diagram > conflicts?  #eems e

= \What initiates a lock?

Manually initiated View-driven locking Property-based locking

e Explicit locks e Derived locks ® Protecting preconditions
e Model regions are e Locks are placed based of complex refactoring
manually locked by users on the focus of the user e Changes violating a

property are disallowed




Conflict Management

= Can we avoid conflicts? = C“‘?C'@“@ folicheckout
o Global serialization

6) Commit

* Changes are sequenced

2) Commit

5) Merge
(Resolved
conflict)

* Online mode only

o Locking

e Temporary write ban

* Not for security,
but coordination

3) Commit
attempt

= |If conflict: merging
o Based on 3-way difference

o Lot of work, error-prone




Model Versioning

sm VO P

S ) (

J2 A { 8 |

O

>

© sm.xmi

‘é’ 1. <State id=“S1”, name = “A”>

— 2. <State id="S2”, name = “B">

3. <Transition id=“T1”, source=“S1”, target=“S2"> 7

0 sm V1’ J smv1”

O 1\ (

.7) >

5 B | oA B
>

% sm.xmi sm.xmi

= 1. <State id=“S2”, name=“B”> 1. <State id=“S1”, name = “A”>

3 2. <State id="S2”, name = “B">

g 3. <Transition id=“T1”, source=“S1”, target=“S2">
O 17 4. <Transition id="T2", source="S2”", target=“S1"> 7
. s sm V1 J
g L s K
n 9 <
g -<>3 L
8 % sm.xmi
=0 1. <State id="S2”, name="B">

= 2. <Transition id=“T2”, source="“S2”, target=“S1"> 7

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Model Merge Solutions

= File-based merging
o Challenge: referential integrity
o Automated: &
o Manual: XMl not really human-readable ®
o When it works: textual concrete syntax

= Model-aware merging

o Challenges:
 Referential integrity ©
* Incidental (non-essential) changes, e.g. diagram move

* High-level well-formedness




Model-aware Merging Ul

= Generic Merge on = Domain-specific Merge on
Abstract Syntax Concrete Syntax

o EMF Diff/Merge o Sirius support
o EMF Compare in EMF Compare

AT—
QD Compare ('bak/extlibraryRight.ecore' - 'bak/extlibraryLefi.ecore’ - "bak/extlibraryRight.ecore’) &3 = 0 £U representations.aird 52 = B8
&) Model differences (38 over 38 differences still to be merged — B differences < v /&’ A & G ‘ 4%} ﬁk | =lIEE :=:b' | E:“ﬂ [ Model differences (G of G differances are nat merged — 76 differences filtered from view) Y B v~
¥ [ Magazine -> Circulatingltem [eClassifiers add] [% Node John [children add
B8 Circulatingitem -> Item, Borrowable [eSuperTypes add] Edge DEdge [ 1
» B title : EString [eStructuralFeatures add =

« 5 > Famib
B o pages : EInt [eStructuralFeatures add) ..' n af:\‘/:man Clara

P B2 Periodical -> Item [eClassifiers delete] v 2 > Manaryan
» [ Magazine -> Periodical [eClassifiers add] & Wian John [chilaren add
> ﬁ’ Titleditem [eClassifiers add] 7% Man John [members add]
E? Model Compare (Containment Features) j g Model Compare (Diagram) = =
bak /extlibraryLeft.ecore bak/extlibraryRight.ecore escomp I = Pau alig QQSESM fesccomp = ;PM aiid mﬂddla
» [ Circulatingltem -> Item, Borrowable » [ Lendable n ﬂ
» » [ Circulatingltem - Item, Lendable -~ -
» H AudioVisualitem -> Circulatingltem ¥ H Periodical -> Item, Titleditem - -
» [ BookOnTape -> AudioVisualltem » [H AudioVisualltem - > Circulatingltem, Titleditem 1 Lea Elias . Léa Elias
» [ VideoCassette -> AudioVisualltem » [ BookOnTape -> AudioVisualltem an - an =4
» [ Borrower -» Person » [ VideoCassette -> AudioVisualltem
» [ Person -> Addressable » [ Borrower -> Person . ’ ™~ /
b [ Employee -> Person » [ Person -> Addressable ﬁ fotel ;D“e ;Bwan -ﬁ.“’“‘ ﬂ Clera n fatel ;D“e ;BW .i‘.ﬁm ﬁ Clera
» [ Addressable » H Employee -=> Person
¥ H Addressable . .
> y—————— A A . A
Yl || Magazine -> CirculatmgltemI 1 _-h ’ ™ Ao an
(#) Circulatingltem S S—
P | = title : EString ¥ H Magazine -> Periodical
b | = pages : Elnt »| H Titleditem

ECYETEM I TERZ



Merging with DSE

Referential

Solution

o

(CompvarisonJ-----

& well-formedness
 Constraints —

, on
Design Space N mm
Explorati Merged

Solution

Comparison =====
( Y J- Operations

Can be domain-specific

g
Annotate 7 Execute @
Changes DSE Merge ™
e Restrict Design Space

MUST § MAY

Solution

e Conflict-free models

“Werged Jan

Cemetery gtAL

e Three-way merge
e State-based

fmmi@em="  Incidental changes

MUEGYETEM 1762



MODEL CO-EVOLUTION

www.mdse-book.com



Model Co-Evolution

Tools

= Model versioning keeps track of the changes in a single modeling
artefact but each change may affect many other related artefacts

= Co-Evolution in MDE

= Co-evolution is the change of a model triggered by the change of a
related model

= Current View
= Relationship: r(a,b)
a—a

“bob|r(@,b)
= Challenge: Relationship Reconciliation ' 1 '

= Current research focus is on one-to-one relationships: . A .
= Model / Metamodel evolution

= Metamodel / Transformation evolution

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Model / Meta-model Co-evolution

Example
A A (®
7 A rename(B, C) — 7
D — D
Metamodel [p1] [D2] D1 | [D2]
A
o Metamodel A Metamodel A’
| E
§ Instance of Metamodel A Instance of Metamodel A
Models
, , A cast(b:B, c:C
La_ll\é H bl:B | ( ) I | al/:? |—>| cl:C |
a2:A b2:B a2:A 2:C

Assumption: Renamed Class does not represent a new modeling concept!

Marco Brambilla, Jordi Cabot, Manuel Wimmer. ==

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Model / Meta-model Co-Evolution

Process

= Classification of meta-model changes
= Non-breaking operations: No need to migrate the models

= Breaking and resolvable: Automatic migration of existing models is
possible

= Breaking and unresolvable: User intervention is necessary

= Tools like Edapt and Epsilon Flock can derive a migration
transformation to adapt current models to the new
metamodel structure when possible

Marco Brambilla, Jordi Cabot, Manuel Wimmer. :

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Meta-model / Transformation co-evolution

Other co-evolution scenarios

Target MM

Evolution
Source Target
Metamodel t, Metamodel

MMa > MMb v1.0

b

h Y

~
7o MMb’ v2.0

t3
v v3.0

MMb*

t, ... Forward Transformation
t,,t5 ... Migration Transformations

Marco Brambilla, Jordi Cabot, Manuel Wimmer. ~“j“*=

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. s



GLOBAL MODEL
MANAGEMENT

www.mdse-book.com



Global Model Management

= Model-based solution to the problem of managing all this model
ecosystem appearing iIn any MDE project

= We represent with a model, the megamodel, all the models (and
related artefacts like configuration files) and relationships in the
ecosystem

= A megamodel can be viewed as a metadata repository for the
project

= A megamodel is a model whose elements are in fact other models

= As a model, a megamodel can be directly manipulated using the
same tools employed to manipulate “normal” models

Marco Brambilla, Jordi Cabot, Manuel Wimmer. :

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Global Model Management

The metamodel of a megamodel

extends * 4

|
MetaMeta Weaving v 1
Model Model | Transformation
MetaModel

- * target
Identified * S0Urc

Element
d

* [inke

=

re ateﬁﬂ o
? * sour¢eOf
I' .
K ml _iiehﬂl J

* targetOf
yaY

Model

R —— Transformation
Record

Mega
Model
targetReferenceModel |
srcReferenceModel
targetModel
srcModel

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



Global Model Management

Using megamodels

Elementreference s
Model reference « + w

Megamodel
Synchronize :
Repository ! A X _w
" 011::101 ‘- — I >tem
J foo10101 q |
/ 0100001 ' —
i J

e

01100101

01010010
10010101
0100001

-

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.



f\& MORGAN CLAYPOOL PUBLISHERS

MODEL-DRIVEN SOFTWARE
ENGINEERING IN PRACTICE

—

>

Marco Brambilla, A

Jordi Cabot, Bt Prre:
Manuel Wimmer.

Morgan & Claypool, USA, 2012. ——

Jordi Cabot
Manuel Wimmer

www.mdse-book.com
www.morganclaypool.com =i
or buy it at: www.amazon.com



http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

