
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Model-based System Design -
Overview

Bergmann Gábor

bergmann@mit.bme.hu

Course outline

Engineering
Concepts

Abstract &
Concrete
Syntax

Queries &
M2M / M2T

Model
Management

Fundamentals
and Theory

Metalevels

Parse Trees

Query
Formalisms

Rule-based
xforms

Enabling
Technologies

EMF

Sirius, Xtext

Viatra

Industrial
Case Studies

AUTOSAR
Architect

Capella

OpenCPS

Course outline

Engineering
Concepts

Abstract &
Concrete
Syntax

Queries &
M2M / M2T

Model
Management

Fundamentals
and Theory

Metalevels

Parse Trees

Query
Formalisms

Rule-based
xforms

Enabling
Technologies

EMF

Sirius, Xtext

Viatra

Industrial
Case Studies

AUTOSAR
Architect

Capella

OpenCPS

Software Language Engineering &

Dev Toolchain Engineering

~60-75%

Engineering of

Critical Systems

25-40%

Course outline - SLE vs. MDSD

Engineering
Concepts

Abstract &
Concrete
Syntax

Queries &
M2M / M2T

Model
Management

Fundamentals
and Theory

Metalevels

Parse Trees

Query
Formalisms

Rule-based
xforms

Enabling
Technologies

EMF

Sirius, Xtext

Viatra

Industrial
Case Studies

AUTOSAR
Architect

Capella

OpenCPS

Software Language Engineering &

Dev Toolchain Engineering

~60-75%

Engineering of

Critical Systems

25-40%

We’ll cover many aspects common with a

programming languages / SLE course:

• Languages and syntax

• Processing models (incl. program code)

• Code generation

• …

We will NOT cover though:

• Type theory & inference

• Compiler optimizations

• …(anything specific to program models)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it on www.amazon.com

http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com

Motivations for MDSD

Model-based vs Model-driven

 We have valuable information in models reuse!

o Use our models/requirements/plans to derive…

• Documentation

• Source code

• Configuration, communication descriptors

• …

• Even other models!

 Model-driven Engineering:

o Models are the main artifacts, not code etc.

o The rest is mostly derived / generated

oMay shorten development time and increase quality

11

Model-to-text
transformation
(M2T)

Model-to-model
transformation
(M2M)

Artifact Derivation in MDE & Programming

 Mapping between abstraction levels

o e.g., From C to assembly

 Usage of design patterns

o e.g., arrays, function calls, loops in C

 Many similarities, NOT a strict separation

o pl. C++ templates, automatically generated ctor+dtor

 Prediction:

o yesterday’s design pattern today’s code generation
feature tomorrow’s language element

o Domain-specific instead of universal languages

12

Development Process for Critical Systems
Unique Development Process

(Traditional V-Model)

Critical Systems Design

 requires a certification process

 to develop justified evidence

 that the system is free of flaws

Software Tool Qualification

 obtain certification credit

 for a software tool

 used in critical system design

Qualified Tool Certified Output

DO-178C
IEC 61508

Innovative Tool Better System

Model-Driven Engineering of Critical Systems

Traditional V-Model Model-Driven Engineering

Main ideas of MDE
• early validation of system models
• automatic source code generation
 quality++ tools ++ development cost--

• DO-178B/C: Software Considerations in Airborne Systems and
Equipment Certification (RTCA, EUROCAE)
• Steven P. Miller: Certification Issues in Model Based Development
(Rockwell Collins)

Models and Transformations in Critical Systems

System Design
Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Model Transformations
• systematic foundation of
knowledge transfer:
theoretical resultstools

• bridge / integrate
existing languages&tools

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases,
Monitors, Fault Trees, etc.)

Code
Generation

Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System V&V
Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Related projects
• CESAR, SAVI, …
• HIDE, DECOS, DIANA,
MOGENTES, CERTIMOT,
GENESYS, SENSORIA

MDSD principles

Languages and Models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Models
What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection

of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an

original with respect to some purpose

ModelrepresentsSystem

Purposes:

• descriptive purposes

• prescriptive purposes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Languages

Domain-Specific Languages (DSLs): languages that are

designed specifically for a certain domain or context

DSLs have been largely used in computer science.

Examples: HTML, Logo, VHDL, Mathematica, SQL

General Purpose Modeling Languages (GPMLs, GMLs,

or GPLs): languages that can be applied to any sector or

domain for (software) modeling purposes

 The typical examples are: UML, Petri-nets, or state

machines

Domain Specific Modeling Languages
Concrete syntax

(Graphical/Textual)

Code
generation

View

Well-formedness
constraints

Behavioural semantics,
Simulation

Abstract syntax
(Metamodel)

Mapping

Source Code
(Documentation,

Configuration file)

Foundations of many modern tools
(design, analysis, V&V)

• Domains: avionics, automotive,
business modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types of models

 Static models: Focus on the static aspects of the system in

terms of managed data and of structural shape and

architecture of the system.

Dynamic models: Emphasize the dynamic behavior of the

system by showing the execution

 Just think about UML!
Usage / Purpose:
• Traceability Models:
• Execution Trace Models
• Analysis Models
• Simulation Models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodeling

 To represent the models

themselves as “instances” of

some more abstract models.

 Metamodel = yet another

abstraction, highlighting

properties of the model itself

 Metamodels can be used for:

 defining new languages

 defining new properties or

features of existing information

(metadata)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

Drawing vs. modeling

MDSD principles

Model Transformations

Some Well-known MDSE Concepts

Model Code

Code generation

Refactoring

Model
Refactoring

Re-engineering

Program comprehension

Query
Model
Query

Generative programming

A Classification of Transformations

Model Code
M2T: Model-to-Text

T2M:
Text-to-
Model

M2M: Model-to-Model T2T: Text-to-Text

Examples

 M2T: code generation from behavioural model
#ifndef DEFAULTSM_H_
#define DEFAULTSM_H_
#include "sc_types.h"
#include "StatemachineInterface.h"

class DefaultSM : public StatemachineInterface
{
public:
DefaultSM();
~DefaultSM();
/*! Enumeration of all states */
typedef enum
{
main_region_MyState,
DefaultSM_last_state

} DefaultSMStates;
//! Inner class for Sample interface scope.
class SCI_Sample
{
public:
/*! Gets the value of the variable 'a' that is defined in the interface scope 'Sample'. */
sc_boolean get_a();
/*! Sets the value of the variable 'a' that is defined in the interface scope 'Sample'. */
void set_a(sc_boolean value);
/*! Raises the in event 'evA' that is defined in the interface scope 'Sample'. */
void raise_evA(sc_boolean value);
/*! Checks if the out event 'evB' that is defined in the interface scope 'Sample' has been raised. */
sc_boolean isRaised_evB();
/*! Gets the value of the out event 'evB' that is defined in the interface scope 'Sample'. */
sc_integer get_evB_value();

private:
friend class DefaultSM;
sc_boolean a;
sc_boolean evA_raised;
sc_boolean evA_value;
sc_boolean evB_raised;
sc_integer evB_value;

};
/*! Returns an instance of the interface class 'SCI_Sample'. */
SCI_Sample* getSCI_Sample();
void init();
void enter();
void exit();
void runCycle();
sc_boolean isActive();
sc_boolean isFinal();
sc_boolean isStateActive(DefaultSMStates state);

private:
static const sc_integer maxOrthogonalStates = 1;
DefaultSMStates stateConfVector[maxOrthogonalStates];
sc_ushort stateConfVectorPosition;

Examples

 T2M: Representing code artifacts in models

class Point
{

public:
int32_t get_x();
void set_x(int32_t x);
int32_t get_y();
void set_y(int32_t y);

private:
int32_t x;
int32_t y;

};

Examples

 M2M model query: well-formedness validation

Examples

 M2M: model refactoring

Examples

 M2M: model simulation

Examples

 M2M: hidden formal methods for verification

Y2U

Extended Example - Gamma
S
ta

te
ch

a
rt

C
o

m
p

o
sitio

n
 F

ra
m

e
w

o
rk

g
a
m

m
a
.in

f.m
it.b

m
e
.h

u
γ

V. Molnár, B. Graics, A. Vörös, I. Majzik, and D.Varró. 2018. The Gamma statechart composition framework: Design, verification

and code generation for component-based reactive systems. In Proceedings of the 40th International Conference on Software

Engineering: Companion Proceeedings (ICSE '18). ACM, New York, NY, USA, 113-116. DOI:

https://doi.org/10.1145/3183440.3183489

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Model Engineering basic architecture

Model

Artifacts

(e.g. code)

Modeling

language

Platform

Meta-

modeling

language

Transformation

definition

Transformation

language

uses

defined using

defined by

Application domainApplication Meta-Level

Transformation /

Code generation

Abstraction (bottom-up)
Reuse

Construction (top-down)

Model Transformation Overview: Metamodels

Modeling tool

Source
model

Source
metamodel

Target
model

Target
metamodel

MT rule

Metamodel: Precise spec of a
modeling language

Modeling tool

Model Transformation Overview: Models

Source
model

Source
metamodel

Target
model

Target
metamodel

MT rule

Model: Description
of a concrete system

t1:Transition

t2:Transition

p1:Place p2:Place

a1:PTArc a2:TPArc

a4:TPArc a3:PTArc

tk:Token

Eclipse Modeling Framework (EMF):
• De facto modeling standard for
Eclipse based modeling tools

• Design metamodel auto-generate
interface, implementation, tree editor…

• Examples:
UML, AADL, SysML, BPMN, AUTOSAR
>30 in a single IBM tool

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Consequences or Preconditions

 Modified development process
 Two levels of development – application and infrastructure

 Infrastructure development involves modeling language, platform (e.g.
framework) and transformation definition

 Application development only involves modeling – efficient reuse of the
infrastructure(s)

 Strongly simplified application development
 Automatic code generation replaces programmer

 Working on the code level (implementation, testing, maintenance) becomes
unnecessary

 Under which conditions is this realistic … or just futuristic?

 New development tools
 Tools for language definition, in particular meta modeling

 Editor and engine for model transformations

 Customizable tools like model editors, repositories, simulation,
verification, and testing tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MD* Jungle of Acronyms

 Model-Driven Development (MDD) is a development paradigm that
uses models as the primary artifact of the development process.

 Model-Driven Architecture (MDA) is the particular vision of MDD
proposed by the Object Management Group (OMG)

 Model-Driven Engineering (MDE) is a superset of MDD because it
goes beyond of the pure development

 Model-Based Engineering (or “model-based development”) (MBE) is a
softer version of ME, where models do not “drive” the process.

MDA =

Model-Driven Architecture

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MDA Approach
Goals

 Interoperability through Platform Independent Models
 Standardization initiative of the Object Management Group (OMG), based

on OMG Standards, particularly UML

 Counterpart to CORBA on the modeling level: interoperability between
different platforms

 Applications which can be installed on different platforms  portability, no
problems with changing technologies, integration of different platforms,
etc.

 Modifications to the basic architecture
 Segmentation of the model level

 Platform Independent Models (PIM): valid for a set of (similar) platforms

 Platform Specific Models (PSM): special adjustments for one specific
platform

 Requires model-to-model transformation (PIM-PSM; compare QVT) and
model-to-code transformation (PSM-Code)

 Platform development is not taken into consideration – in general industry
standards like J2EE, .NET, CORBA are considered as platforms

[www.omg.org/mda/]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Levels
CIM, PIM, PSM

Computation independent (CIM): describe requirements

and needs at a very abstract level, without any reference to

implementation aspects (e.g., description of user

requirements or business objectives);

 Platform independent (PIM): define the behavior of the

systems in terms of stored data and performed algorithms,

without any technical or technological details;

 Platform-specific (PSM): define all the technological

aspects in detail.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Computation Independent Model (CIM)

 E.g., business process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Independent Model (PIM)

 specification of
structure and behaviour
of a system, abstracted
from technologicical
details

 Using the UML(optional)

 Abstraction of structure and behaviour of a system with the PIM
simplifies the following:

 Validation for correctness of the model

 Create implementations on different platforms

 Tool support during implementation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling levels
MDA Platform Specific Model (PSM)

 Specifies how the functionality described

in the PIM is realized on a certain platform

Using a UML-Profile for the

selected platform, e.g., EJB

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Base Level: UML

Platform-Independent

Model of Business

Functionality & Behavior

Automated

Transformation

Intermediate Level UML

Platform-Specific

Model|s| on

selected platforms

generated from PIM

Implementation

generated from PSMs

Modeling in a technology-

independent UML profile allows

a precise representation

of business process/rules

Executed by MDA tool which

follows OMG standard mappings.

Resulting PSM may need some

hand adjustments based

on infrastructure decisions

Modeled in a technology-

specific UML profile.

Represents every aspect of a

coded application, but still as a model

Executed by MDA tool.

Many tools on the market

execute this step very well today

Generated code and auxiliary files

ready for compilation, linking

with legacy or other code, and deployment

Automated

Transformation

The MDA Approach
MDA development cycle

?

?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA Reverse Engineering / Roundtrip Engineering

 Re-integration onto

new platforms via

Reverse Engineering

of an existing

application into a

PIM und subsequent

code generation

 MDA tools for

Reverse Engineering

automate the model

construction from

existing code

Legacy

App

COTS

App

Other

Other

Model

Reverse-engineer

existing application

into a model and

redeploy
PIM (UML)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Excursus: OMG Standards

 CORBA - Common Object Request Broker Architecture

 Language- and platform-neutral interoperability standard (similar to
WSDL, SOAP and UDDI)

 UML - Unified Modeling Language

 Standardized modeling language, industry standard

 CWM - Common Warehouse Metamodel

 Integrated modeling language for Data Warehouses

 MOF – Meta Object Facility

 A standard for metamodels and model repositories

 XMI - XML Metadata Interchange

 XML-based exchange of models

 QVT – Queries/Views/Transformations

 Standard language for Model-to-Model transformations

Summary

 MDSE = Models + Languages + Transformations
o ~SLE, but not just for program models

 Industrial motivation

o Early validation of design

o Automated generation of design artifacts

o + Interoperability, Productivity, Abstraction, Reuse

 MDA = Model Driven Architecture

o 3 modeling levels: CIM + PlM + PSM

o Automated transformations: PIM  PSM  Code (?)

History of MD*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Overview

Considered Approaches
 Computer Aided Software Engineering (CASE)

 Executable UML

 Model Driven Architecture (MDA)

 Architecture Centric Model Driven Software Development (AC-MDSD)

 MetaCASE

 Software Factories

Distinguishing features
 Special objectives and fields of application

 Restrictions or extensions of the basic architecture

 Concrete procedures

 Specific technologies, languages, tools

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Executable UML

 “CASE with UML”
 UML-Subset: Class Diagram, State Machine, Package/Component

Diagram, as well as

 UML Action Semantic Language (ASL) as programming language

 Niche product
 Several specialized vendors like Kennedy/Carter

 Mainly used for the development of Embedded Systems

 One part of the basic architecture implemented
 Modeling language is predetermined (xUML)

 Transformation definitions can be adapted or can be established by the
user (via ASL)

 Advantages compared to trad. CASE tools
 Standardized modeling language based on the UML

 Disadvantages compared to trad. CASE tools
 Limited extent of the modeling language

[S.J. Mellor, M.J. Balcer: Executable UML: a foundation for model-driven architecture. Addison-Wesley, 2002]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA with UML

 Problems when using UML as PIM/PSM
 Method bodies?

 Incomplete diagrams, e.g. missing attributes

 Inconsistent diagrams

 For the usage of the UML in Model Engineering special guidelines have
to be defined and adhered to

 Different requirements to code generation
 get/set methods

 Serialization or persistence of an object

 Security features, e.g. Java Security Policy

 Using adaptable code generators or PIM-to-PSM transformations

 Expressiveness of the UML
 UML is mainly suitable for “generic” software platforms like Java, EJB,

.NET

 Lack of support for user interfaces, code, etc.

 MDA tools often use proprietary extensions

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA

Many UML tools are expanded to MDA tools
 UML profiles and code generators

 Stage of development partly still similar to CASE: proprietary UML
profiles and transformations, limited adaptability

Advantages of MDA
 Standardization of the Meta-Level

 Separation of platform independent and platform specific models
(reuse)

Disadvantages of MDA
 No special support for the development of the execution platform and

the modeling language

 Modeling language practically limited to UML with profiles

 Therefore limited code generation (typically no method bodies, user
interface)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
AC-MDSD

 Efficient reuse of architectures

 Special attention to the efficient reuse of infrastructures/frameworks (= architectures) for a

series of applications

 Specific procedure model

 Development of a reference application

 Analysis in individual code, schematically recurring code and generic code (equal for all applications)

 Extraction of the required modeling concepts and definition of the modeling language, transformations and

platform

 Software support (www.openarchitectureware.org)

 Basic architecture almost completely covered

 When using UML profiles there is the problem of the method bodies

 The recommended procedure is to rework these method bodies not in the model but in the

generated code

 Advantages compared to MDA

 Support for platform- and modeling language development

 Disadvantages compared to MDA

 Platform independence and/or portability not considered

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MetaCASE/MetaEdit+

 Free configurable CASE
 Meta modeling for the development of domain-specific modeling

languages (DSLs)

 The focus is on the ideal support of the application area, e.g. mobile-
phone application, traffic light pre-emption, digital clock – Intentional
Programming

 Procedural method driven by the DSL development

 Support in particular for the modeling level
 Strong Support for meta modeling, e.g. graphical editors

 Platform development not assisted specifically, the usage of components
and frameworks is recommended

 Advantages
 Domain-specific languages

 Disadvantages
 Tool support only focuses on graphical modeling

[www.metacase.com]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Software Factories

 Series production of software products
 Combines the ideas of different approaches (MDA, AC-MDSD,

MetaCASE/DSLs) as well as popular SWD-technologies (patterns,
components, frameworks)

 Objective is the automatically processed development of software
product series, i.e., a series of applications with the same application
area and the same infrastructure

 The SW-Factory as a marketable product

 Support of the complete basic architecture
 Refinements in particular on the realization level, e.g. deployment

 Advantages
 Comprehensive approach

 Disadvantages
 Approach not clearly delimited (similar MDA)

 Only little tool support

[J. Greenfield, K. Short: Software Factories. Wiley, 2004]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Eclipse and EMF

 Eclipse Modeling Framework

 Full support for metamodeling and language design

 Fully MD (vs. programming-based tools)

Used in this course!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the last century

Critical Statements of Software Developers

 »When it comes down to it, the real point of software
development is cutting code«

 »Diagrams are, after all, just pretty pictures«

 »No user is going to thank you for pretty pictures;
what a user wants is software that executes«

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the new millennium – Much has changed!

 »When it comes down to it, the real point of software development is cutting
code«
 To model or to program, that is not the question!

 Instead: Talk about the right abstraction level

 »Diagrams are, after all, just pretty pictures«
 Models are not just notation!

 Instead: Models have a well-defined syntax in terms of metamodels

 »No user is going to thank you for pretty pictures;
what a user wants is software that executes«
 Models and code are not competitors!

 Instead: Bridge the gap between design and implementation by model transformations

 What about the managers?

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
(revisited in 2009)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MDSE PRINCIPLES

Chapter #2

