
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Concrete Syntax Design
for Domain-specific Languages

Model Driven Software Development

Lecture 5



Structure of DSMs
Graphical syntax

Code generation

View

Well-formedness
constraints

Behavioural semantics, 
simulation

Abstract syntax

Textual syntax

Mapping

Code
(documentation, 

configuration)

2



DSM aspects

DSM

Abstract
syntax

Concrete
syntax

Well-
formedness
constraints

Behavioural
(dynamic) 
semantics

Views, 
translations, 

mappings

3



Concrete Syntax Design

 User-facing parts of a modeling language

o Performance

o Robustness

o Usability issues

 Creating model editors

o Similar problems as programming languages

o IDE extensions needed

 Viewers are also important!

o ~read-only editors

4



Concrete Syntax Approaches

 Graphical

o Focus of latter half of today’s lecture

o Typically graph-based modeling (Edges, Nodes)

 Textual

oMore details to come in next lecture

 Form-based

o Tree views

o Property sheets, combo / radio /etc.

o Table/matrix approaches

5



Example: Petri net editor

6

Tree-based 
outline view



Example: Social Network editor

7

Graphical 
outline view

Form-based
property editor

Project 
Explorer 

extensions



Advanced features

Viewer features

• Outlining / folding / abstraction

• Details / documentation overlay
(e.g. Javadoc, „code mining”)

• Validation / task / etc. overlay

• Search, navigability

• Auto layout/formatting/sorting

Editor features

• Templates/snippets/examples

• Guidance (content assist / snap)

• Composite
operations/tools/refactorings

• Automatic fixes

• Undo&Redo, Transactionality

8



Technology

 Eclipse Modeling Tools

o Several related subprojects

o Each supports a single aspect

o Examples of today

 Microsoft Visual Studio 2010 Visualization & 
Modeling SDK

o DSL modeling framework from Microsoft

o Own metamodeling core

o Focuses on graphical modeling

 JetBrains MPS

9



Human Aspects

Textual vs. Graphical
Visual Design

Layouting



Question: textual or graphical?

 No clear choice, just rules of thumb

o Simple languages: consider form-based as well

• Like graphical, but cross-references poorly supported

 …why not both?

11

Textual Languages (raw editing) Graphical Languages

Quick and simple editing More cumbersome editing

References as string identifiers References displayed visually

Inconsistent during editing Always syntactically correct

Trivial diff&patch, copy&paste, 
search&replace

Editing services require tool 
development effort

Typically better for behavior Typically better for structure



Textual + Graphical

 Same model, two syntaxes

o Text editor + graphical view

• Xtext Generic Viewer

o Textual + graphical editors
• Xtext + GMF side-by-side

 Different aspects of model

o Diagram with text fields
• Embedded Xtext support

12

Does not make much sense, 
don’t do this in the 

homework!



Visual Design 101

 What belongs together?
„Gestalt
principles of grouping”

o E.g. which label belongs to
which node?

 What is similar?
„Bertin’s visual variables”

o Size, shape

o Color hue, value, intensity

o Line style / orientation / texture

13

Sources: http://wiki.gis.com/wiki/index.php/Visual_variable
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/

http://wiki.gis.com/wiki/index.php/Visual_variable
https://www.fusioncharts.com/blog/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/


Scaling issues

 Cumbersome editing

o E.g., automatically reorganize diagram when
inserting a node to the middle

 Handling large models

o 20+ nodes on a diagram: 

• Logical structure, readability possible

• But needs human support

o 100-1000+ nodes on a diagram

• Technological limitations

• Usability limitations

14



Example: Layouting

15



Example: Layouting

16



Layouting Support for Graphical Editors

 Computation of the position of nodes

o Possible to do automatically

o For a given metamodel

• No unified visual requirements possible

• We have to decide what is important to show

17

Minimum 
amount of 

edge crossings

Minimum edge 
length



Layouting Support for Graphical Editors

 GraphViz - http://graphviz.org

o Layouting project with high quality layout algorithm

o Hard to integrate into Eclipse applications

 Zest - http://wiki.eclipse.org/index.php/Zest

o Easily Eclipse integration (SWT-based graph widget)

o So-so layout algorithms

 ELK (née KIELER) - https://www.eclipse.org/elk/ (relatively new)

o Eclipse Layout Kernel

o Some built-in support: GMF, Graphiti

o Highly extensible

18

http://graphviz.org
http://wiki.eclipse.org/index.php/Zest
https://www.eclipse.org/elk/


Editor Engineering

Editing Workflows
Transactionality
Notation Models



Projectional vs Raw

 Workflow 1: projectional editing

o AKA syntax-driven editing, structural editing

20

Model
Derive / project
concrete representation
• Pretty print (textual)
• Visualize / layout (graphical)

2

Edit abstract representation
• Insert model element
• Remove model element
• Insert reference
• Remove reference
• Modify attribute

1

Concrete
Syntax



Projectional vs Raw

 Workflow 2: raw editing (w. textual syntax)

o AKA source editing

21

ModelConcrete
Syntax

Edit concrete representation
• Insert character(s)
• Delete character(s)
• Replace character(s)

Derive
abstract representation
• Parse textual format

1 2



Projectional vs Raw

 Workflow 2: raw editing (w. graphical syntax)

22

ModelConcrete
Syntax

Edit concrete representation
• Paint diagram (e.g. PNG)

Derive
abstract representation
• Image processing with

convolutional neural nets
• OCR, etc.

Highly impractical

1 2



Projectional vs Raw

 „Feature matrix” + examples

23

Graphical
syntax

Textual
syntax

Raw
editing

Typical

Projectional
editing

Typical Rare



Mixed workflow

24

ModelConcrete
Syntax

1 2

2 1

Complex manipulation of
abstract representation
• Quick fix
• Refactor
• M2M

Derive / project
concrete representation

Normal raw
editing workflow



Transactions in projectional editing

 Complex manipulation sequence as single action

o „Extract subprocess”, „Drag&drop attribute” etc.

25

START
• Begin Transaction

DO

• Manipulation step 1

• Manipulation step 2… 

FINISH

• Precommit

• Postcommit

W
ri

te
Tr

an
sa

ct
io

n

Transaction finalized
• Issue change notifications

(if not earlier)
• Refresh projections

Optional: check validity
• Reject & roll back if violated

Transaction initialized
• Check for concurrent read

or write transactions

Revertibility
• Rollback
• Manual undo

How to ensure?
• Declarative

commands
• Record change

notifications



Superfluous notational parameters

 Workflow 1: projectional editing

26

Model
Derive / project
concrete representation
• Pretty print (textual)
• Visualize / layout (graphical)

2 1

Concrete
Syntax

Must include notational parameters:
• Whitespace and comments, etc. (textual)
• Layout, edge routing, size, shape, etc. (graphical)

…even though not domain information



Deriving notational parameters

 Notational parameters can be…

o…”baked into” projection code

• e.g. all lines are black, all fonts are 10pt (graphical)

• e.g. apply this code formatting template (textual)

o …derived from domain information

• e.g. shape determined by type, color by visibility

o…stored in the model

27

Problem 1:
Editable parameters cannot
be a function of the domain

model, must be stored

Problem 2:
Providing sane values is

difficult for some parameters
e.g. position in diagram



Notation/view models

 Decompose model: 

o Domain / Semantic model (abstract syntax)

o Notation model (view model): presentation state

• may be editable by user

• but still needs derivable defaults see layouting

 Generic implementation in GMF and Graphiti

o Based on EMF, in fact

 Often stored in external files

o Separation of concerns

o E.g. code generator not interested in view information

28

M.Fowler’s 
„Presentation Model” 
architectural pattern



Editing workflow with notation models

 Workflow 1: projectional editing

o Scenario A: co-modifying domain&notation models

29

Domain 
Model

1

View

2

Notation
Model

Concrete syntax Abstract syntax

1

Render

Coordinated edit of 
both models

• „Create state here” etc.

Coordinated edit of 
both models

• „Create state here” etc.



Editing workflow with notation models

 Workflow 1: projectional editing

o Scenario B: modifying domain model only

30

Domain 
Model

1

View

3

Notation
Model

Concrete syntax Abstract syntax

Edit domain model only
• M2M
• Refactor, quick fix, etc.

Change
notification

2

Render
Derive missing parameters
• Sane defaults for size etc.
• Layout position



Eclipse Sirius



Sirius Viewpoints

 Base concept:

o Viewpoints for different roles

o Every editor/viewer is a view of the model

oWith a defined syntax

• Graphical

• Table/Tree syntax

• Xtext-based textual syntax

 Viewpoint definition

o Viewpoint specification model



Viewpoint Specification Model

Viewpoint

Feature Provider 
registration

Mappings

Creation tools



Node & Edge Mapping

Domain class

Filter settings

Edge class

Source features

Target features



Feature Selection

 Interpreted model query expressions
o Special interpreters

• var: accessing specification model variables

• feature: accessing EMF model features

• service: accessing service methods

o Acceleo
• Acceleo expressions

– Basic operations

– Comparison with single ‘=‘ symbols

• Syntax: [theExpression/]

o Raw OCL
• Not recommended, Acceleo provides superset features

o Custom interpreter



Node & Edge Tool

Tool parameter 
variables

Model creation
sequence

Different 
variables

More complex 
creation steps



Interpreted Modeler Development
Viewpoint 

specification

View model using 
the interpreted 

specification



„Hot topic”: Language Servers

Language Server Protocol (LSP)

Graphical Language Server Protocol (GLSP)



Language Server Protocol (LSP)

 Delegate some editor services to language server

o Protocol originally by Microsoft, for VS Code 

• (standardized since 2016) 

39

Servers available in…
• Many languages
• Several technologies

VS Code, Atom, Eclipse, Theia, 
Che, Sublime Text, Monaco JS, …



What is delegated?

 Language services for textual languages
o Semantic services: on language server only

• Information overlay: hover, diagnostics…

• Navigation: jump to, find, …

• Editing: completion, refactor, …

o Syntactic services: mixed
• On language server: outline, folding

• In IDE: syntax highlight NOT delegated

 (GLSP for graphical languages)
• Language-specific editor plugin still required!

Still needs a language-specific IDE plugin!

Still limited, but 
rapidly evolving



Why is it delegated?

 Why is this better than just extensible IDEs?

o To quote LSP docs:

o So to reuse language-specific semantic services as well

 Also: RPC  cross-platform integration

 Also: Cloud IDEs (see Eclipse Theia, Che, gitpod.io)

o Easier provisioning per developer seat

o “Thin clients”, resource-intensive services on the cloud

41



LSP (+ GLSP*) demo in Eclipse Theia

42

Language Server: 
o CLI Eclipse bundled up in a .jar
o Xtext for textual DSL  EMF model
o ELK for auto-layouting diagram viewer



Graphical Editor
Technologies in Eclipse

(supplementary material)



Graphical Editor Technologies

GEF
• Draw2D

EMF
• EMF.Edit

GMF Graphiti

SiriusEuGENia

GEF3DZest

Spray



Implementation

 Presentation

o Based on a Canvas

o Using vector-graphic libraries (GEF/Draw2d)

 Model manipulation

o EMF Edit model manipulation commands

• Atomic operations: create/modify/remove node/edge

o Transactional modifications with EMF Transactions

• Undo/redo support

 Notation/view model

o Domain-independent implementation in GMF, Graphiti

45



Technologies 1. - GEF

 Graphical Editing Framework (GEF)

o “Low level” editor framework

o Not EMF-specific

 Model-View-Controller approach

 Generic graph-based editor framework

o Including undo/redo support

o Graphical outlines

 Manual coding for every possible element

 GEF4 FX – JavaFX-based
replacement of the core

46



Technologies 2. – GMF

 Graphical Modeling Framework

 Based on GEF and EMF

 Well-separated view and domain models

o Generic view model

o Synchronization provided by GMF framework

 Relatively old technology

oWidely used

o Very complex to start

47



Technologies 2. – GMF

 Model-driven development environment
o Common model for graphical editors, using

• Figure definition model
– Basic symbol definition of the graphical language

• Tooling model
– Defining model manipulation commands

• Mapping model
– Mapping figures and tools to domain model

o Fully functional editor can be generated
• Problematic manual modifications

 Or a high-level editor framework
o Manual coding

48



Technologies 3. - Graphiti

 Newer high level graphical editor framework

o Based on EMF and GEF

o But: different approach then GMF

• Simplified programmatic API

• Manual coding

o Idea

• All Graphiti based editors should
– Look similar

– Behave similar

49



Technologies 3. - Graphiti

 Development methodology

o Coding over a high-level Java framework

• Much simpler then GMF

• Repetitive code needed

 Spray project

o Textual modeling environment for graphical editors

o Generates code over the Graphiti framework

50



Technologies 4. - Sirius

51

 (Relatively) new modeling project 

o Since 2013 on eclipse.org 

o Previously Obeo Designer – commercial tool

 How stable is it? 

o Old projects are to be migrated

o Version history 

• 0.9: 2013-12

• 1.0: 2014-06 (Kepler release train)

• …

• 6.3: 2019-06

• …



Technology Comparison
GEF GMF Graphiti Sirius

Model Arbitrary EMF EMF EMF

Non 
graph-based 
presentation

Manageable Large amount of 
customization 
needed

Not supported Tree, Table

Code size Large, 
repetitive code

Mostly 
modeling, 
some coding

Smaller amount, 
but repetitive 
code

Negligible

Development 
workflow

Only coding Modeling and 
coding

Coding Modeling

52



Concrete Syntax Design

Conclusion



Concrete Syntax Design

 Multiple approaches

o Textual and/or graphical syntaxes

o Combinable

 Large amount of development work needed

o Directly used by users

o Usability issues

 Not everything is coded in an editor

o Editor + corresponding views form the interface

o Model(ing language)s can have multiple viewpoints

 Emerging standards for language servers

54



Summary

55


