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Main topics of the course

Graph Abstraction Techniques

 Partial Modeling (MAVO)

 Shaping (Neighbourhood, TVLA)

Model generation

» Motivation & Use-Cases

« Requirements & Objectives: the COREDISC criteria

 Related approaches
- Graph Solver
- Solver-Based Approaches
- Design-Space Exploration

Summary & Learning Outcomes



Graph Abstraction
Techniques
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Graph Abstraction

* Previously: concrete graph-based models

« Motivation: capture a range of potential models
- Uniform handling of a range of graphs
- Verification of graph-based systems

* Terminology:

- abstraction: graph — abstractgraph
- Refinement between abstract graphs: A; E 4,
- Concretization of an abstract graph A is G if abstraction(G) E A

« Goal: illustrate useful graph abstraction techniques
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Partial
Modeling
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Example: Unfinished models

t rlﬂi Service |
Initial state
3 \ 0
Ready money, | Select select change <la LG placeholder
S A
. N Multiple Filling o
select TODO
options? 1 l
: « SelectA, " filled
drinkTake . . Unfinished )
Need;':;(”e?Drmk SelectB... Finish\ Init
TakeDrink | - b
! - |
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Motivation

* Early phase of development - high uncertainty in the models
» Editor forces the developer to work with complete models
Missing & Undecided / Uncertain / Unknown
Model refinement & Model rewriting

* Issues:
- Forces the developer to make premature decisions

- No way to list / document design alternatives
- Editor mixes: invalid < unfinished

* Clarify the semantics of missing elements
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Partial Modeling

« Generic technique to explicitly represent uncertainty in models
- Generic: works for every metamodel
- Explicitly represent: uncertainty = model element
- In Models: The uncertainty is attached to the models

* MAVO: practical way to annotate model with uncertainty
- May: elements can be omitted
- Abstract (Set): representing sets of elements
- Var: elements that can be merged
- Open: new elements can be added

« Automation: generate alternatives, check all alternatives

Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: towards modeling and reasoning with uncertainty. In:
Proceedings of the 34th International Conference on Software Engineering, pp. 573-583. IEEE Press, 2012.
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Example: Unfinished models with MAVO

® money Service |
* 1 | l\ _ Initial state
Ready mgney | Select select change <la LG placeholder
i - !
- N Multiple Filling o
select TODO
options? 1 l
_ « SelectA, Iy filled
drinkTake . . Unfinished )
Need ;‘:;T-:?Drmk SelectB... parts Finish | = Init

TakeDrink\ ~
! - |
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Example: Unfinished models with MAVO

® money Service |
* \ | l\ _ Initial state
Ready mgney | Select select change <la LG placeholder
3 > \
SET Filling
h \ [SET] ®

TODO

Unfinished *filled l \

drinkTake 5 -
Need TakeDrink parts Finish\ Init
at all?
TakeDrink | S )
) - |
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Example: Unfinished models with MAVO

® money Service |
* \ | l\ _ Initial state
Ready mgney | Select select change <la LG placeholder
. > \
[SET] Filling ®
‘ ‘ TODO
[OPEN] 1. l
drinkTake . *f'”ed\ )
Need TakeDrink Finish Init
at all?
TakeDrink | ~ b
! ~ |

Software and Systems Verification (VIMIMAO1) 11




Example: Unfinished models with MAVO

money

t |_¢ Service
Ready money Select| . gjact change drink
. > \
[SET] Filling
) ) TODO
MNSET
drinkTak LOPEN] Filed
rinkiake Need TakeDrink Finish\
at all?
TakeDrink | ~
‘ —

l

Init
[VAR]

e

L}
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Example: Unfinished models with MAVO

money

? |_¢ Service
\ ) .
Ready money, Select select change drink
>
[SET] Filling
TODO ®
[OPEN] LA l
drinkTaken [MAY] Finish | Init |
[MAY] inis [VAR]
TakeDrink' ~ ‘
[MAY] =
N [MAY]
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Example: Example concretization

® money :
¢ | | Service
Ready moneyh Select selectA » change Al
> hasChange
GiveBack Filling
selectB <«—@
-
*noChangYe> ¥ filled
Finish o Finish
/
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Partial Modeling Summary

« Partial modeling captures the uncertainty of models
* 1 partial model = set of complete model
« MAVO: framework for uncertainty annotation + tooling

« Semantics of missing vs unfinished
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Shaping
Approaches
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Motivation: Checking graph-based systems




Motivation: Checking graph-based systems
4 | o\
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Shaping Neighborhood

o Equivalence:
» Goal: Collect similar graphs together U~V
 Similar graphs behave similarly —
u and v has similar
[ I:List } neighborhood
f1:first

c1:Cell c2:Cell LZM c3:Cell 3:ne c4:Cell

v1:value v2:value v3:value v4:value

% Y
ct 02:0bject 03:0bject 04:0
]
‘ First cell ‘ Middle cell ‘ Last cell
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Finite number of equivalence classes

(Cell {...
ed:nex
edinext) 1y
1
e5:value e7:value




Shaping summary

 Similar graphs collected together
« Uniform analysis of on the representation of similar graphs
* One of the few method to analyze infinite GT systems

* Model C Shape & Metamodel
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Model
Generation
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Tool Qualification

» Design of avionics / automotive systems
« Can you trust the tools?

« Safety standards (DO-178C) require systematic

testing with guaranteed coverage

[&
€ system - SysTopology Diagram: /SYS/SYSTEM_VSXDemo_VarB_BodyComfort - Vehicle Systems Architect

=)@ ]
File Edit Diagram Mavigate Search Project Run Tools Window Help
8|8 6 A o9 iE N s o
W —|
goe U e “[Bl7|A-a-.s B | & [[s0% -
£ *SYSTEM_VSKDemo_VarA_Body &3 1 *SYSTEM_VSXDemo_VarB_BodyComfort &3 =08
TR o ey s T e S S &
Palette 3] 200 00 00 00 ‘200 0. ! 014
5 13
e R o
- 2 ECU_HMI 2 ECU_HMI )
(= Clusters =]
sl 4
— Communic... § - § .
— LIN Cluster ]
Cluster MediaCAN_HS 1 | |
= CAN Cluster |- : - ) ‘ Cluster MediaCAN_HS ‘
8 | C |
=& Flexray b4
Cluster 2 iz -
= S
— PhysicaiCh...
= Controllers < || 5 ECU_GATEWAY - ™ ECU_GATEWAY
@ Communic...
B LN Master |8} . i .
] il
Controller n
© l i i Cluster_BodyCAN_HS I | ‘ Cluster_BodyCAN_HS | ‘
Controller - 3 i - = L J b J .
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Motivation: Why to Generate Graph Models?

Tool Qualification

» Design of avionics / automotive systems

« Can you trust the tools?

» Safety standards (DO-178C) require systematic

testing with guaranteed coverage

https://medium.com/self-driving-cars/beginners-guide-to-self-driving-vehicles-

9e9003e790b8
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Validating Intelligent CPS Components

« Al Safety: How to check components driven by
Al?

» Treat Al component as black box
« Generate test contexts
 E.g. ICSE'18 paper from L. Briand's groups




Motivation: Why to Generate Graph Models?

Tool Qualification

» Design of avionics / automotive systems
« Can you trust the tools?

» Safety standards (DO-178C) require systematic
testing with guaranteed coverage

Graph Database Benchmarks

» How to check that algorithms for graph DBs will
behave well for real data? *

* Real data has IP restrictions and never shown
» Real data is well-formed - random data is not

Source: https://neodj.com/blog/other-graph-database-

technologies/
25




Motivation: Why to Generate Graph Models?

Tool Qualification Validating Intelligent CPS Components

 Design of avionics / automotive systems « Al Safety: How to check components driven by
 Can you trust the tools? Al?

- Safety standards (DO-178C) require systematic » Treat Al component as black box
testing with guaranteed coverage  Generate test contexts

 E.g. ICSE'18 paper from L. Briand's groups

deling LAnguages

TOP CONTENT » BROWSE » BOOKS » COMMUNITY » PRO SERVICES » NEWSLETTER ABOUT »

e —_——_—————TTTTE Empirical Evaluation of Modeling
| | = B RCIES

Dezyne by Verum « Real models are either confidential or too small
o B * Is your case study relevant & scalable?
- Existing generators are ad hoc and domain-

. 7 ‘ —DOWD 13
https://modeling-languages.com/presence-of-modelig-papers-at-icse-is-purely-anecdotal- SP ECIfI C
once-again/
26

No modeling papers at ICSE (once again)

By Jordi Cabot 24/05/2016 | 4:06 Posted in (meta)modeling, event, software engineering b




Motivation: Why to Generate Graph Models?

Tool Qualification Validating Intelligent CPS Components

 Design of avionics / automotive systems « Al Safety: How to check components driven by
 Can you trust the tools? Al?

- Safety standards (DO-178C) require systematic » Treat Al component as black box
testing with guaranteed coverage  Generate test contexts

* E.g. ICSE'18 paper from L. Briand's groups

Graph Model
Generator

Graph Database Benchmarks Empirical Evaluation of Modeling

- How to check that algorithms for graph DBs will Papers

behave well for real data? « Real models are either confidential or too small
* Real data has IP restrictions and never shown + |s your case study relevant & scalable?

* Real data is well-formed - random data is not + Existing generators are ad hoc and domain-
specific




Requirements &
Objectives

the CoREDISC model
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Setup of an ideal model generator

Additional
Requirements

Jl SAT

4 ™\
Model
Generat

or
- J

UNSAT

Language Specification ——p»




Properties of Model Generators: Consistent

- All (well-formedness)
constraints are satisfied co

Consistent

- All (and only) consistent
models are derived




Properties of Model Generators: Realistic

- Cannot be distinguished

from a real model

(By removing co RE
text+values and | ..
evaluating graph Consistent Realistic

metrics)

- Set of generated models
Is close to real ones

Software and Systems Verification (VIMIMAO1) 31




Properties of Model Generators: Diverse

CO

- Models are not
symmetric

- The distance between

any pairs of models is
large

E.g. all equivalence
classes are covered

Software and Systems Verification (VIMIMAO1)
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Diversity as a requirement for testing

 Test case diversity
- Test selection: similar test cases find similar errors
- Test coverage: similar test cases cover the same code

« Methodologies
- Equivalence partitioning, boundary-value analysis, etc.
- Rely on similarity, difference, distance
—>Straightforward for simple structures, eg. Numbers

 What about models?

How to measure model diversity?

Software and Systems Verification (VIMIMAO1) 33 m



Diversity as a requirement for testing

 Test case diversity
- Test selection: similar test cases find similar errors
- Test coverage: similar test cases cover the same code

« Methodologies
- Equivalence partitioning, boundary-value analysis, etc.
- Rely on similarity, difference, distance
—>Straightforward for simple structures, eg. Numbers

 What about models?

How to measure model diversity?
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Properties of Model Generators: Scalable

- In size: ability to

generate huge graphs
CO | RE

- Inquantity: generation Consistent Realistic
time of next model does

not grow

DI SC

Diverse Scalable

Software and Systems Verification (VIMIMAO1)



Model similarity and diversity

oot fa peet B

Which of these graphs...
e ..aresimilar?

e ..are equivalent?
 ...should be selected as test cases? -
How to automate the process?




Shapes in M,
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Similarity basis: Shape vectors
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Cosine similarity

» Well known similarity measure between vectors

* The cosine of the enclosed angle

- Nonnegative vectors - 6 < 90°
- Smaller the angle larger the cosine similarity

« Computed from euclidean product

|9 = arccos(x=Yy /11 1y1)

Y

- Advantages:
- Not affected by model size (as opposed to vector difference)
- Sensitive to neighbourhood distribution

Software and Systems Verification (VIMIMAO1) 41



Cosine similarity of models

i

=(1,1,1,1,1,1,1,0) v(M,)=(1,0,0,1,0,0,1,1) v(M3)=(1,1,0,0,2,1,1,0)

» Applying cosine similarity to shape vectors
- M, vs M,: 0.567 - different
- M, vs M3: 0.802 - similar
- M, vs M. 0.353 - very different

- First two models are similar

It M, is real, M, is realistic, M5is not.

Software and Systems Verification (VIMIMAO1) 43



Model diversity basis: neighbourhood sets

* Idea: Similar neighbourhoods cover similar parts of code
—>Goal: differentiate between models by neighbourhoods
Advantage: not affected by shape distribution, model size

* External diversity: How big is the difference between two models?
- Selection of diverse test cases
- Symmetric difference of model neighbourhood sets

* Internal diversity. How effective is a model?

— Test coverage vs input size
- #neighbourhoods/#objects

Software and Systems Verification (VIMIMAO1) 44



Shape difference: M, vs M,

Similar:
5 neighbourhoods

in common

g,




Shape difference: M,vs M;

poed

¥

Different;
3 neighbourhoods
in common




Internal and external model diversity

* Internal diversity:

- M,: 7/7=1
- M., 4/4=1
- M, 5/6=0.8333

 External diversity:

- M, vs M,: 5 neig
- M, vs M;: 2 neig
- M, vs M;: 5 neig

nbour
nbour

nbour

noods on
noods on

noods on

y in one mode
y in one mode
y in one mode

- different
- similar
- different

- M, and M, should be the selected test cases

Software and Systems Verification (VIMIMAO1)
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Properties of Model Generators: Scalable

- In size: ability to

generate huge graphs
CO | RE

- Inquantity: generation Consistent Realistic
time of next model does

not grow

DI SC

Diverse Scalable
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Partial Modeling for
Model Generation

3-Valued Models
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SAT Solver Overview: DPLL Algorithm

DPLL: Well-known SAT-algorithm, (AV BV C) (=CVvBVvVD) (mAVBVC) (=AV =BV =)
basis of most modern solvers ( 1 )
(Davis—Putnam—-Logemann—Loveland) L [ '—'—'—] l

Refines partial variable binding

Decision rules +
Unit propagation \ 4

Search Strategy: <[ [1,_; O;_]

Backtracking +
Backjumping +
Random restarts

Our approach: Boolean variables = Graphs

+ HUNGARIAN

P ACADEMY

L OF SCIENCES


http://mta.hu/english
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Graph Solver Overview: 3-Valued Partial Models as States

] (- Src )
Graph Solver: Entry <t_ Transition
. . r .
1) Based on classic SAT-algorithm >re A J— s . L trg
. trg :-...i ((new)) l( "
2) Refinement of g
3-valued partial graph models - /
( ESrC = \ ( Src — \
Entry s Transition Entry ¢ Transition
src,trg’; e ST
: «new» l::;:«’ State '8 «new»l
v v v
- N\ (- N (- N
Entry [€— Transition Entry ‘trg Transition Entry ‘trg Transition
src,trg l, trg src,trg src,trg
PO sre G R src RS - sre
: «new» trg> State : «new» trg> State : «new» trg> State
e ) \_ e Y, \_ e Y,

acaoeny & McGill

L OF SCIENCES
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Graph Solver Overview: 3-Valued Partial Models as States

. /- SIC
Graph Solver: Entry - Transition
. . r T 1
1) Based on classic SAT-algorithm ST e g /2 edge/
2) Refinement of e ““e""”l‘ reference

3-valued partial graph models

~

= Uncertain properties are -
licit] ted: i Transition Transition
expliCitly represented:. src,trg? étrg src A trg
e b s S o T —
t10 7% Unknown ! enewn > THiatd E o newy
\ RN ) \ R VR )
v v v
( ) (" src ) ( src )
Src o < o < o
Entry [€— Transition Entry ¢ Transition Entry ¢ Transition
tr tr
src,trg l trg src,trg g src,trg g
e e B B
! «hew» trg> State ! «new» trg> State ! «new» trg> State
\ rna ) \UELE A N Y,

t4 CDEY @l MCG—ill

L OF SCIENCES
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Graph Solver Overview: Partial Model Refinement

. (- src )
Graph Solver: Entry zt_ Transition
c . r -
1) Based on classic SAT-algorithm :rc T ©  trg
: rg i «new> :
2) Refinement of ‘<
. ‘c,“,"
3-valued partial graph models - S
= Uncertain properties are (¢ PLILS ——\ ([ Sre )
. . Entry  Je...... Transition Entry e Transition
explicitly represented: " trg e A Trg
1 | O | »yz: Unknown . A4 : gresennnsaseanees
4 State -------------------
= Generation as monotonous

partial model refinement:

% 2>1|0 . - : Uncertain edge refinement:
> | Entry Uncertain equivalence st T > 1

= Decision + " refinement: Splitting - & Y, 5
Unit prop. =2 «new» _____ new -2 new + State 5 trg(Entew) 0

Lacnoenr @ McGill

= OF SCIENCES
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Graph Solver: Approximated Constraint Evaluation

: (~ src )
Graph Solver: Entry |s......] Transition
. . tr :
1) Based on classic SAT-algorithm irc T S F trg
, 8 il «new» i
2) Reﬂnement Of 'v....,".’ ........ ‘ ryeee?
3-valued partial graph models —
) i WF1: TrgToEntry
3) Constraint evaluationby /- src N . ore ~\
. src,trg P trg S g SIC4
graph query engine PR src StVt . g : «new»l
: i «new» foen ate Transiti ...
= Constraint evaluated on s 11G | I | . X
. : "~ J Y,
partial solutions v
A 4
= Monotonous [/ sre
. Src " < .
reasoning : Constraint evaluation respects refinement: trg
src,trg . :
" |ncremental proseeensd WF1 is violated in P = SrC>T]
. E . . . . : llllllll a e
constraint g WF1 will be violated in all refinements of P T tr y

reevaluation

Lacoene @ McGill
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Graph Solver Overview: Equivalence Partitioning

. (- src )
Graph Solver: Entry :t_ Transition
. . r .
1) Based on classic SAT-algorithm src 4 J— s . L trg
. tl"g ..... «new» l< H

2) Refinementof | | e e
3-valued partial graph models \. /

3) Constraint evaluationby /7~ SIC ) 4 src )
' Entry  Je....... Transition Entry |<__| Transition
incremental —%ig : e

: : Ftr SIC
graph query engine SIGUEL o —v S g
4) Equival i «new» l"*'c'r'é'> state J1 | | il f‘.[‘.‘.’:‘.’f’..”..l
qu|va ence '._':. .~¢':
. \ "~ y, g y,
detection v
by graph . ~
. . Src .
isomorphism Entry [€— Transition
src,trg? l, trg
grre H—— src
. I «new» g »  State
= State encodlng ...... eareeeeenzas tr
\__ "~ y,

HUNGARIAN

® McGill

¥ ACADEMY
L OF SCIENCES
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Graph Solver Overview: Equivalence Partitioning

. ~ src )
Graph Solver: Entry (t_ Transition
. . r .
1) Based on classic SAT-algorithm >re A J— s . L trg
. trg «new» l< :

2) Refinement of g
3-valued partial graph models \- /

3) Constraint evaluationby /7 SIC ) 4 - )
i Entry  Je....... Transition Entry |c_ | Transition
incremental —%ig : e

. : : tr Src 4
graph query engine SICUE: e v''® g g l
4) Equival i «new» l"i}}'g'" state J{ (| T TTh. L e
qUIva ence ------ 3 :-------Z:.--- ~“’.
. "~ y, g y,
detection v v v
by graph s ~ r — ~
. . Src r: D Jm— . rs
|somorph|sm Entry [¢— Transition Entry ‘t Transition
r
src,trg'? ltrg » src,trg'? &
grre H— src grre H— src
I «new» g » State I «new» ----r----> State

= State encodlng \.’. ..... e rg ———J| | e g
= Partial order reduction Different Solutions

T - HUNGARIAN  gmy
e @ McGill
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VIATRA Solver: An Open Source Implementation

= Standard EMF as input and output| Configuration language | Visualization

#node = 5,
#{Functinnalarchitecture::h = 0..3
} | FAMTerminator
H Function

[/ solver = AlloySolver
solver = ViatraSeolver _
H FunctionalData

config = {

‘ntime = 10000,
g-level = normal

' 2 FunctionType

H Functionallinput

_1\ ( LeaffyncionType \ (ntermecl atefm."’"”'ﬂ

1
FunctionalArchitectureModely,
unctionaIArchitectureModeI“,‘;g ““““““ =l

\FunctionTypenum= 1} [FunctionTypemum=1)

H Functional&rchitectureModel

Functio

e
g 1 ( o \
NCtion gese =1 Function,,
unctionalElementyygs= | nctionalElemen lcm

H FunctionalElement

H Functionallnterface
H FunctionalQutput

Qedacemfer:nce }Ieme lf:f‘ér:r{ce
[ n, ]

datafgeienaineroce /interfacefyiona®ee
( n, )

FunctionalDatagses = |
FunctionalOutputy,es= 1

FunctionalData e~
unctionallnputyes= 1

= [ncremental Query Engine: \“‘1“"V|ATRA

= Constraint language: VIATRA Query

" |nternally uses: Incremental constraint reevaluation, DPLL as VIATRA DSE

= Open source: github.com/viatra/VIATRA-Generator

Y d
L

EF Trcwoen @ McGill

=G
g . OF SCIENCES

&

R
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Scalability Measurements

Maximal model size Example comparison (FAM)
Largest model (#Objects) . 40
Graph Solver | Sat4] | MiniSat “‘5"
FAM+WF 6250 58 61 € 20
FAM-WF 7000 87 92 < ,
Yak+WF 1000 - — o
Vak-WE 7950 26 90 5 10 15 20 25 30 35 40 45 50
FS 4750 87 89 Model Size (#Objects)
Ecore 2000 38 41 —@— Graph Solver —#— Alloy+Sat4;
FAM: Industrial, Avionics Yakindu: Industrial, Statemachine +A“OV+Mimsat

FS: File System example of Alloy Ecore: Metamodelling language

5 min timeout .
Our solver generates ~two orders of magnitude larger models

Lacoene @ McGill
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Additional Findings

Constraint evaluation on complete graphs: Diversity of graph models:

Query Engine vs Alloy Alloy vs Human vs Graph Solver
350 1 b4 e
300 0.9 S o

250 > 08 § E
=200 g 0.7 8 8
.§ 150 E 0.6 5 §

100 — 05 g 8 8

50 c 04 5 :[ :8:

0 % ..g 0.3 E > o

0 50 100 150 200 97 ouem 1 —%—
Model Size (#Objects) 0'; o 3

X Validation by Allo
Y Y B Alloy;s=0 [ Alloy;s=10 [ Alloy;s=20 (def) Il Human B GS;r=1 O GS;r=2 [ GS;r=3

+ Validation by Graph Query Engine

Lacoene @ McGill
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Related
Approaches
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Solver-based model generators

» Examples: Additional
A”Oy _ S AT Requirements
FORMULA - SMT

SAT
~ )
Model
Language Specification ——p Generat
L or y
ﬂ UNSAT
Logic Solver




Rule-based Design Space exploration

Initial model

ﬂ

3 \“" Operation >
Modified model

- | Constraints

violated

p—
y

“/.

—>

Solution model

—_
Goals Design
satisfied Candidate 3
—_

> Rule-based Design Space Exploration

Heuristics
« Approximate distance from a solution

 Guided or multi-objective optimization
 Backtracking / backjumping




summary &
Learning outcomes

Software and Systems Verification (VIMIMAO1) 65



Learning summary

 MoO
* MOC

 MoO

abstraction technique
generation challenges
generation < abstraction refinement




