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Graph Abstraction Techniques

• Partial Modeling (MAVO)

• Shaping (Neighbourhood, TVLA)

Model generation

• Motivation & Use-Cases

• Requirements & Objectives: the COREDISC criteria

• Related approaches
– Graph Solver
– Solver-Based Approaches
– Design-Space Exploration

Summary & Learning Outcomes

Main topics of the course

Software and Systems Verification (VIMIMA01)
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• Previously: concrete graph-based models

• Motivation: capture a range of potential models
– Uniform handling of a range of graphs

– Verification of graph-based systems

• Terminology:
– 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛: 𝑔𝑟𝑎𝑝ℎ → 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑔𝑟𝑎𝑝ℎ

– Refinement between abstract graphs: 𝐴1 ⊑ 𝐴2
– Concretization of an abstract graph 𝐴 is 𝐺 if 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐺 ⊑ 𝐴

• Goal: illustrate useful graph abstraction techniques

Graph Abstraction
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Example: Unfinished models

Multiple 
select  

options?
• SelectA,
• SelectB…

Unfinished 
parts

Initial state
placeholder

Need TakeDrink
at all?
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• Early phase of development  high uncertainty in the models

• Editor forces the developer to work with complete models

Missing  Undecided / Uncertain / Unknown

Model refinement  Model rewriting

• Issues:
– Forces the developer to make premature decisions

– No way to list / document design alternatives

– Editor mixes: invalid  unfinished

• Clarify the semantics of missing elements

Motivation
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• Generic technique to explicitly represent uncertainty in models
– Generic: works for every metamodel

– Explicitly represent: uncertainty = model element

– In Models: The uncertainty is attached to the models

• MAVO: practical way to annotate model with uncertainty
– May: elements can be omitted

– Abstract (Set): representing sets of elements

– Var: elements that can be merged

– Open: new elements can be added

• Automation: generate alternatives, check all alternatives
Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: towards modeling and reasoning with uncertainty. In: 
Proceedings of the 34th International Conference on Software Engineering, pp. 573–583. IEEE Press, 2012.

Partial Modeling
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Example: Unfinished models with MAVO

Multiple 
select  

options?
• SelectA,
• SelectB…

Unfinished 
parts

Initial state
placeholder

Need TakeDrink
at all?
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Example: Unfinished models with MAVO

Unfinished 
parts

Initial state
placeholder

Need TakeDrink
at all?
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Example: Unfinished models with MAVO

Initial state
placeholder

Need TakeDrink
at all?

[OPEN]
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Example: Unfinished models with MAVO

Need TakeDrink
at all?

[OPEN]
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Example: Unfinished models with MAVO

[OPEN]
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Example: Example concretization

[Error]
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• Partial modeling captures the uncertainty of models

• 1 partial model = set of complete model

• MAVO: framework for uncertainty annotation + tooling

• Semantics of missing vs unfinished

Partial Modeling Summary
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Motivation: Checking graph-based systems 

G0

Infinite State Space
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Motivation: Checking graph-based systems 

G0
G
0

?



Software and Systems Verification (VIMIMA01) 19

• Goal: Collect similar graphs together

• Similar graphs behave similarly

Shaping

l1:List

c1:Cell c2:Cell

f1:first

n1:next
c3:Cell c4:Cell

n3:nextn2:next

o1:Object

v1:value

o2:Object o3:Object o4:Object

v2:value v3:value v4:value

First cell Middle cell Last cell

Neighborhood
Equivalence:

u~v
↔

u and v has similar 
neighborhood
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Finite number of equivalence classes

(List,{… 

n1
1

(Cell,{… 

n2
1 

(Cell,{…

n3
ω

e1:first

e2:next
(Cell,{…

n4
1

e4:next

e5:value
(Object,{… 

n5
ω

e6:value

e7:value

e5:next

Size = 4,5,6,…
Same shape
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• Similar graphs collected together

• Uniform analysis of on the representation of similar graphs

• One of the few method to analyze infinite GT systems

• Model ⊑ Shape ⊑ Metamodel

Shaping summary
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Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools? 

• Safety standards (DO-178C) require systematic 
testing with guaranteed coverage

23

Source: https://www.mentor.com/embedded-
software/automotive/autosar



Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools? 

• Safety standards (DO-178C) require systematic 
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by 
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

24

https://medium.com/self-driving-cars/beginners-guide-to-self-driving-vehicles-
9e9003e790b8



Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools? 

• Safety standards (DO-178C) require systematic 
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by 
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

Graph Database Benchmarks

• How to check that algorithms for graph DBs will 
behave well for real data?

• Real data has IP restrictions and never shown

• Real data is well-formed – random data is not

25

Source: https://neo4j.com/blog/other-graph-database-
technologies/



Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools? 

• Safety standards (DO-178C) require systematic 
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by 
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

Graph Database Benchmarks

• How to check that algorithms for graph DBs will 
behave well for real data?

• Real data has IP restrictions and never shown

• Real data is well-formed – random data is not

Empirical Evaluation of Modeling 
Papers

• Real models are either confidential or too small

• Is your case study relevant & scalable?

• Existing generators are ad hoc and domain-
specific

26

https://modeling-languages.com/presence-of-modelig-papers-at-icse-is-purely-anecdotal-
once-again/



Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools? 

• Safety standards (DO-178C) require systematic 
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by 
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

Graph Database Benchmarks

• How to check that algorithms for graph DBs will 
behave well for real data?

• Real data has IP restrictions and never shown

• Real data is well-formed – random data is not

Empirical Evaluation of Modeling 
Papers

• Real models are either confidential or too small

• Is your case study relevant & scalable?

• Existing generators are ad hoc and domain-
specific

Graph Model 
Generator

27
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Setup of an ideal model generator

Instance Models

𝑴𝒏+𝟏 

SAT

UNSAT

𝑴𝟏

𝑴𝟐

𝑴𝟑

Model
Generat

or

Language Specification

Additional

Requirements
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– All (well-formedness) 
constraints are satisfied

– All (and only) consistent
models are derived

Properties of Model Generators: Consistent

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable
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– Cannot be distinguished
from a real model
(By removing
text+values and 
evaluating graph 
metrics)

– Set of generated models 
is close to real ones

Properties of Model Generators: Realistic

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable
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– Models are not 
symmetric

– The distance between 
any pairs of models is 
large

E.g. all equivalence
classes are covered

Properties of Model Generators: Diverse

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable



Software and Systems Verification (VIMIMA01) 33

• Test case diversity
– Test selection: similar test cases find similar errors

– Test coverage: similar test cases cover the same code

• Methodologies
– Equivalence partitioning, boundary-value analysis, etc.

- Rely on similarity, difference, distance

Straightforward for simple structures, eg. Numbers

• What about models?

Diversity as a requirement for testing

How to measure model diversity?
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• Test case diversity
– Test selection: similar test cases find similar errors

– Test coverage: similar test cases cover the same code

• Methodologies
– Equivalence partitioning, boundary-value analysis, etc.

- Rely on similarity, difference, distance

Straightforward for simple structures, eg. Numbers

• What about models?

Diversity as a requirement for testing

How to measure model diversity?
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– In size: ability to 
generate huge graphs

– In quantity: generation 
time of next model does 
not grow

Properties of Model Generators: Scalable

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable



Software and Systems Verification (VIMIMA01) 36

Which of these graphs…

• …are similar?

• …are equivalent?

• …should be selected as test cases?

How to automate the process?

Model similarity and diversity

Solution: 
neighbourhood

shapes

𝑀1 𝑀2 𝑀3 𝑀4 = 𝑀1



Software and Systems Verification (VIMIMA01) 37

Shapes in M1
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Shapes in M2
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Shapes in M3
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Similarity basis: Shape vectors

vector

1 1 1 1 1 1 1 0 11111110

1 1 0 0 2 1 1 0 11002110

1 0 0 1 0 0 1 1 10010011
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• Well known similarity measure between vectors

• The cosine of the enclosed angle
– Nonnegative vectors  ϴ < 90°

– Smaller the angle larger the cosine similarity

• Computed from euclidean product

• Advantages:
– Not affected by model size (as opposed to vector difference)

– Sensitive to neighbourhood distribution

Cosine similarity
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• Applying cosine similarity to shape vectors
– M1 vs M2: 0.567 – different

– M1 vs M3: 0.802 – similar

– M2 vs M3: 0.353 – very different

First two models are similar

If M1 is real, M2 is realistic, M3 is not.

Cosine similarity of models

v(M1)=(1,1,1,1,1,1,1,0) v(M3)=(1,1,0,0,2,1,1,0)v(M2)=(1,0,0,1,0,0,1,1)
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• Idea: Similar neighbourhoods cover similar parts of code

Goal: differentiate between models by neighbourhoods

Advantage: not affected by shape distribution, model size

• External diversity: How big is the difference between two models?
– Selection of diverse test cases

– Symmetric difference of model neighbourhood sets

• Internal diversity: How effective is a model?
– Test coverage vs input size

– #neighbourhoods/#objects

Model diversity basis: neighbourhood sets
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Shape difference: M1 vs M2

Similar:
5 neighbourhoods

in common
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Shape difference: M1 vs M3

Different:
3 neighbourhoods

in common
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• Internal diversity:
– M1: 7/7=1

– M2: 4/4=1

– M3: 5/6=0.8333

• External diversity:
– M1 vs M2: 5 neighbourhoods only in one model – different

– M1 vs M3: 2 neighbourhoods only in one model – similar

– M2 vs M3: 5 neighbourhoods only in one model – different

 M1 and M2 should be the selected test cases

Internal and external model diversity
𝑀1

𝑀2

𝑀3
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– In size: ability to 
generate huge graphs

– In quantity: generation 
time of next model does 
not grow

Properties of Model Generators: Scalable

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable
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3-Valued Models
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SAT Solver Overview: DPLL Algorithm

 DPLL: Well-known SAT-algorithm, 
basis of most modern solvers
(Davis–Putnam–Logemann–Loveland)

 Refines partial variable binding

 Decision rules +
Unit propagation

 Search Strategy:
Backtracking +
Backjumping +
Random restarts

52

[1,_,_,_]

[1,1,0,_] [1,0,0,_] [1,0,1,1]

(A ∨ B ∨ C) (¬C ∨ B ∨ D) (¬A ∨ B ∨ C) (¬A ∨ ¬B ∨ ¬C)

[1,_,1,_][1,_,0,_] [1,_,1,1]

Our approach: Boolean variables Graphs

http://mta.hu/english
http://mta.hu/english


Graph Solver Overview: 3-Valued Partial Models as States
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Entry Transition
src

«new»
trg

src
trg

~

trg

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

http://mta.hu/english
http://mta.hu/english


Graph Solver Overview: 3-Valued Partial Models as States
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State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

 Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

½ edge/ 
reference

½ equivalence
½ node existence

http://mta.hu/english
http://mta.hu/english


Graph Solver Overview: Partial Model Refinement
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State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

 Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

 Generation as monotonous 
partial model refinement:
½  1|0

 Decision +
Unit prop. 
Graph Transformation

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Uncertain edge refinement:
trg(Entry, Transition)  1

trg(Entry, new)  0

newnew+State
Uncertain equivalence 
refinement: Splitting
new  new + State

State«new»

http://mta.hu/english
http://mta.hu/english


Graph Solver: Approximated Constraint Evaluation
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Entry Transition
src

«new»
trg
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~

trg
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~
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~
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~
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~
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«new»
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trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by 
incremental 
graph query engine

 Constraint evaluated on
partial solutions

 Monotonous
reasoning

 Incremental 
constraint
reevaluation

Entry Transition
src

«new»

src
trg

~

trg

WF1: TrgToEntry

e: Entry

t:Transition

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg




Constraint evaluation respects refinement:

WF1 is violated in P ⇒
WF1 will be violated in all refinements of P

http://mta.hu/english
http://mta.hu/english


Graph Solver Overview: Equivalence Partitioning
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Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by 
incremental 
graph query engine

4) Equivalence
detection
by graph
isomorphism

 State encoding


http://mta.hu/english
http://mta.hu/english


Graph Solver Overview: Equivalence Partitioning
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Entry Transition
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Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by 
incremental 
graph query engine

4) Equivalence
detection
by graph
isomorphism

 State encoding

 Partial order reduction Different Solutions

http://mta.hu/english
http://mta.hu/english


VIATRA Solver: An Open Source Implementation

 Standard EMF as input and output| Configuration language | Visualization

 Incremental Query Engine:

 Constraint language: VIATRA Query

 Internally uses: Incremental constraint reevaluation, DPLL as VIATRA DSE

 Open source: github.com/viatra/VIATRA-Generator

59

http://mta.hu/english
http://mta.hu/english
https://github.com/viatra/VIATRA-Generator


Scalability Measurements
Maximal model size

60

FAM: Industrial, Avionics

FS: File System example of Alloy

5 min timeout

Example comparison (FAM)

Yakindu: Industrial, Statemachine

Ecore: Metamodelling language

Our solver generates two orders of magnitude larger models

http://mta.hu/english
http://mta.hu/english


Additional Findings

Constraint evaluation on complete graphs: 
Query Engine vs Alloy

61
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http://mta.hu/english
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Related 
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• Examples:
Alloy – SAT
FORMULA - SMT

Solver-based model generators

Instance Models

𝑴𝒏+𝟏 

SAT

UNSAT

𝑴𝟏

𝑴𝟐

𝑴𝟑

Model
Generat

or

Language Specification

Additional

Requirements

Logic Solver



Rule-based Design Space exploration

Rule-based Design Space Exploration

Design 
Candidate 1

Design 
Candidate 2

Design 
Candidate 3

Design 
Candidate 4

Goals

Constraints

Operations

Initial Model

Modified model

Operation

Initial model

Solution model

Constraints 
violated

Goals 
satisfied

Heuristics
• Approximate distance from a solution
• Guided or multi-objective optimization
• Backtracking / backjumping

ASE 11 
ASE 14



Summary &
Learning outcomes

Software and Systems Verification (VIMIMA01) 65



Software and Systems Verification (VIMIMA01) 66

• Model abstraction technique

• Model generation challenges

• Model generation  abstraction refinement

Learning summary


