
Budapest University of Technology and Economics
Department of Measurement and Information Systems

ftsrg Research Group

Graph Abstraction &
Model Generation Techniques
Oszkár Semeráth, Rebeka Farkas

Model-based Systems Design
(VIMIMA00)

2

Graph Abstraction Techniques

• Partial Modeling (MAVO)

• Shaping (Neighbourhood, TVLA)

Model generation

• Motivation & Use-Cases

• Requirements & Objectives: the COREDISC criteria

• Related approaches
– Graph Solver
– Solver-Based Approaches
– Design-Space Exploration

Summary & Learning Outcomes

Main topics of the course

Software and Systems Verification (VIMIMA01)

Graph Abstraction
Techniques

Software and Systems Verification (VIMIMA01) 3

Software and Systems Verification (VIMIMA01) 4

• Previously: concrete graph-based models

• Motivation: capture a range of potential models
– Uniform handling of a range of graphs

– Verification of graph-based systems

• Terminology:
– 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛: 𝑔𝑟𝑎𝑝ℎ → 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑔𝑟𝑎𝑝ℎ

– Refinement between abstract graphs: 𝐴1 ⊑ 𝐴2
– Concretization of an abstract graph 𝐴 is 𝐺 if 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐺 ⊑ 𝐴

• Goal: illustrate useful graph abstraction techniques

Graph Abstraction

Partial
Modeling

Software and Systems Verification (VIMIMA01) 5

Software and Systems Verification (VIMIMA01) 6

Example: Unfinished models

Multiple
select

options?
• SelectA,
• SelectB…

Unfinished
parts

Initial state
placeholder

Need TakeDrink
at all?

Software and Systems Verification (VIMIMA01) 7

• Early phase of development  high uncertainty in the models

• Editor forces the developer to work with complete models

Missing  Undecided / Uncertain / Unknown

Model refinement  Model rewriting

• Issues:
– Forces the developer to make premature decisions

– No way to list / document design alternatives

– Editor mixes: invalid  unfinished

• Clarify the semantics of missing elements

Motivation

Software and Systems Verification (VIMIMA01) 8

• Generic technique to explicitly represent uncertainty in models
– Generic: works for every metamodel

– Explicitly represent: uncertainty = model element

– In Models: The uncertainty is attached to the models

• MAVO: practical way to annotate model with uncertainty
– May: elements can be omitted

– Abstract (Set): representing sets of elements

– Var: elements that can be merged

– Open: new elements can be added

• Automation: generate alternatives, check all alternatives
Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: towards modeling and reasoning with uncertainty. In:
Proceedings of the 34th International Conference on Software Engineering, pp. 573–583. IEEE Press, 2012.

Partial Modeling

Software and Systems Verification (VIMIMA01) 9

Example: Unfinished models with MAVO

Multiple
select

options?
• SelectA,
• SelectB…

Unfinished
parts

Initial state
placeholder

Need TakeDrink
at all?

Software and Systems Verification (VIMIMA01) 10

Example: Unfinished models with MAVO

Unfinished
parts

Initial state
placeholder

Need TakeDrink
at all?

Software and Systems Verification (VIMIMA01) 11

Example: Unfinished models with MAVO

Initial state
placeholder

Need TakeDrink
at all?

[OPEN]

Software and Systems Verification (VIMIMA01) 12

Example: Unfinished models with MAVO

Need TakeDrink
at all?

[OPEN]

Software and Systems Verification (VIMIMA01) 13

Example: Unfinished models with MAVO

[OPEN]

Software and Systems Verification (VIMIMA01) 14

Example: Example concretization

[Error]

Software and Systems Verification (VIMIMA01) 15

• Partial modeling captures the uncertainty of models

• 1 partial model = set of complete model

• MAVO: framework for uncertainty annotation + tooling

• Semantics of missing vs unfinished

Partial Modeling Summary

Shaping
Approaches

Software and Systems Verification (VIMIMA01) 16

Software and Systems Verification (VIMIMA01) 17

Motivation: Checking graph-based systems

G0

Infinite State Space

Software and Systems Verification (VIMIMA01) 18

Motivation: Checking graph-based systems

G0
G
0

?

Software and Systems Verification (VIMIMA01) 19

• Goal: Collect similar graphs together

• Similar graphs behave similarly

Shaping

l1:List

c1:Cell c2:Cell

f1:first

n1:next
c3:Cell c4:Cell

n3:nextn2:next

o1:Object

v1:value

o2:Object o3:Object o4:Object

v2:value v3:value v4:value

First cell Middle cell Last cell

Neighborhood
Equivalence:

u~v
↔

u and v has similar
neighborhood

Software and Systems Verification (VIMIMA01) 20

Finite number of equivalence classes

(List,{…

n1
1

(Cell,{…

n2
1

(Cell,{…

n3
ω

e1:first

e2:next
(Cell,{…

n4
1

e4:next

e5:value
(Object,{…

n5
ω

e6:value

e7:value

e5:next

Size = 4,5,6,…
Same shape

Software and Systems Verification (VIMIMA01) 21

• Similar graphs collected together

• Uniform analysis of on the representation of similar graphs

• One of the few method to analyze infinite GT systems

• Model ⊑ Shape ⊑ Metamodel

Shaping summary

Model
Generation

Software and Systems Verification (VIMIMA01) 22

Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools?

• Safety standards (DO-178C) require systematic
testing with guaranteed coverage

23

Source: https://www.mentor.com/embedded-
software/automotive/autosar

Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools?

• Safety standards (DO-178C) require systematic
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

24

https://medium.com/self-driving-cars/beginners-guide-to-self-driving-vehicles-
9e9003e790b8

Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools?

• Safety standards (DO-178C) require systematic
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

Graph Database Benchmarks

• How to check that algorithms for graph DBs will
behave well for real data?

• Real data has IP restrictions and never shown

• Real data is well-formed – random data is not

25

Source: https://neo4j.com/blog/other-graph-database-
technologies/

Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools?

• Safety standards (DO-178C) require systematic
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

Graph Database Benchmarks

• How to check that algorithms for graph DBs will
behave well for real data?

• Real data has IP restrictions and never shown

• Real data is well-formed – random data is not

Empirical Evaluation of Modeling
Papers

• Real models are either confidential or too small

• Is your case study relevant & scalable?

• Existing generators are ad hoc and domain-
specific

26

https://modeling-languages.com/presence-of-modelig-papers-at-icse-is-purely-anecdotal-
once-again/

Motivation: Why to Generate Graph Models?
Tool Qualification

• Design of avionics / automotive systems

• Can you trust the tools?

• Safety standards (DO-178C) require systematic
testing with guaranteed coverage

Validating Intelligent CPS Components

• AI Safety: How to check components driven by
AI?

• Treat AI component as black box

• Generate test contexts

• E.g. ICSE’18 paper from L. Briand’s groups

Graph Database Benchmarks

• How to check that algorithms for graph DBs will
behave well for real data?

• Real data has IP restrictions and never shown

• Real data is well-formed – random data is not

Empirical Evaluation of Modeling
Papers

• Real models are either confidential or too small

• Is your case study relevant & scalable?

• Existing generators are ad hoc and domain-
specific

Graph Model
Generator

27

Requirements &
Objectives
the COREDISC model

Software and Systems Verification (VIMIMA01) 28

Software and Systems Verification (VIMIMA01) 29

Setup of an ideal model generator

Instance Models

𝑴𝒏+𝟏 

SAT

UNSAT

𝑴𝟏

𝑴𝟐

𝑴𝟑

Model
Generat

or

Language Specification

Additional

Requirements

Software and Systems Verification (VIMIMA01) 30

– All (well-formedness)
constraints are satisfied

– All (and only) consistent
models are derived

Properties of Model Generators: Consistent

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable

Software and Systems Verification (VIMIMA01) 31

– Cannot be distinguished
from a real model
(By removing
text+values and
evaluating graph
metrics)

– Set of generated models
is close to real ones

Properties of Model Generators: Realistic

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable

Software and Systems Verification (VIMIMA01) 32

– Models are not
symmetric

– The distance between
any pairs of models is
large

E.g. all equivalence
classes are covered

Properties of Model Generators: Diverse

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable

Software and Systems Verification (VIMIMA01) 33

• Test case diversity
– Test selection: similar test cases find similar errors

– Test coverage: similar test cases cover the same code

• Methodologies
– Equivalence partitioning, boundary-value analysis, etc.

- Rely on similarity, difference, distance

Straightforward for simple structures, eg. Numbers

• What about models?

Diversity as a requirement for testing

How to measure model diversity?

Software and Systems Verification (VIMIMA01) 34

• Test case diversity
– Test selection: similar test cases find similar errors

– Test coverage: similar test cases cover the same code

• Methodologies
– Equivalence partitioning, boundary-value analysis, etc.

- Rely on similarity, difference, distance

Straightforward for simple structures, eg. Numbers

• What about models?

Diversity as a requirement for testing

How to measure model diversity?

Software and Systems Verification (VIMIMA01) 35

– In size: ability to
generate huge graphs

– In quantity: generation
time of next model does
not grow

Properties of Model Generators: Scalable

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable

Software and Systems Verification (VIMIMA01) 36

Which of these graphs…

• …are similar?

• …are equivalent?

• …should be selected as test cases?

How to automate the process?

Model similarity and diversity

Solution:
neighbourhood

shapes

𝑀1 𝑀2 𝑀3 𝑀4 = 𝑀1

Software and Systems Verification (VIMIMA01) 37

Shapes in M1

Software and Systems Verification (VIMIMA01) 38

Shapes in M2

Software and Systems Verification (VIMIMA01) 39

Shapes in M3

Software and Systems Verification (VIMIMA01) 40

Similarity basis: Shape vectors

vector

1 1 1 1 1 1 1 0 11111110

1 1 0 0 2 1 1 0 11002110

1 0 0 1 0 0 1 1 10010011

Software and Systems Verification (VIMIMA01) 41

• Well known similarity measure between vectors

• The cosine of the enclosed angle
– Nonnegative vectors  ϴ < 90°

– Smaller the angle larger the cosine similarity

• Computed from euclidean product

• Advantages:
– Not affected by model size (as opposed to vector difference)

– Sensitive to neighbourhood distribution

Cosine similarity

Software and Systems Verification (VIMIMA01) 43

• Applying cosine similarity to shape vectors
– M1 vs M2: 0.567 – different

– M1 vs M3: 0.802 – similar

– M2 vs M3: 0.353 – very different

First two models are similar

If M1 is real, M2 is realistic, M3 is not.

Cosine similarity of models

v(M1)=(1,1,1,1,1,1,1,0) v(M3)=(1,1,0,0,2,1,1,0)v(M2)=(1,0,0,1,0,0,1,1)

Software and Systems Verification (VIMIMA01) 44

• Idea: Similar neighbourhoods cover similar parts of code

Goal: differentiate between models by neighbourhoods

Advantage: not affected by shape distribution, model size

• External diversity: How big is the difference between two models?
– Selection of diverse test cases

– Symmetric difference of model neighbourhood sets

• Internal diversity: How effective is a model?
– Test coverage vs input size

– #neighbourhoods/#objects

Model diversity basis: neighbourhood sets

Software and Systems Verification (VIMIMA01)
45

Shape difference: M1 vs M2

Similar:
5 neighbourhoods

in common

Software and Systems Verification (VIMIMA01)
46

Shape difference: M1 vs M3

Different:
3 neighbourhoods

in common

Software and Systems Verification (VIMIMA01) 47

• Internal diversity:
– M1: 7/7=1

– M2: 4/4=1

– M3: 5/6=0.8333

• External diversity:
– M1 vs M2: 5 neighbourhoods only in one model – different

– M1 vs M3: 2 neighbourhoods only in one model – similar

– M2 vs M3: 5 neighbourhoods only in one model – different

 M1 and M2 should be the selected test cases

Internal and external model diversity
𝑀1

𝑀2

𝑀3

48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

D
iv

e
rs

it
y

Of Mutants Killed

Alloy;s=0

Alloy;s=20 (def)

GS;r=1

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

D
iv

e
rs

it
y

Of Mutants Killed

Alloy;s=0

Alloy;s=20 (def)

GS;r=1

Human

Alloy (def) < Alloy (s=0) < Human < GS
Correlation between Diversity and Mutation Score in Alloy+GS+Human

Software and Systems Verification (VIMIMA01) 50

– In size: ability to
generate huge graphs

– In quantity: generation
time of next model does
not grow

Properties of Model Generators: Scalable

CO
Consistent

RE
Realistic

DI
Diverse

SC
Scalable

Partial Modeling for
Model Generation

3-Valued Models

Software and Systems Verification (VIMIMA01) 51

SAT Solver Overview: DPLL Algorithm

 DPLL: Well-known SAT-algorithm,
basis of most modern solvers
(Davis–Putnam–Logemann–Loveland)

 Refines partial variable binding

 Decision rules +
Unit propagation

 Search Strategy:
Backtracking +
Backjumping +
Random restarts

52

[1,_,_,_]

[1,1,0,_] [1,0,0,_] [1,0,1,1]

(A ∨ B ∨ C) (¬C ∨ B ∨ D) (¬A ∨ B ∨ C) (¬A ∨ ¬B ∨ ¬C)

[1,_,1,_][1,_,0,_] [1,_,1,1]

Our approach: Boolean variables Graphs

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: 3-Valued Partial Models as States

53

Entry Transition
src

«new»
trg

src
trg

~

trg

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: 3-Valued Partial Models as States

54

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

 Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

½ edge/
reference

½ equivalence
½ node existence

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: Partial Model Refinement

55

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Entry Transition
src

«new»
trg

src
trg

~

trg
Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

 Uncertain properties are
explicitly represented:
1 | 0 | ½: Unknown

 Generation as monotonous
partial model refinement:
½  1|0

 Decision +
Unit prop. 
Graph Transformation

Entry Transition
src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

Uncertain edge refinement:
trg(Entry, Transition)  1

trg(Entry, new)  0

newnew+State
Uncertain equivalence
refinement: Splitting
new  new + State

State«new»

http://mta.hu/english
http://mta.hu/english

Graph Solver: Approximated Constraint Evaluation

56

Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by
incremental
graph query engine

 Constraint evaluated on
partial solutions

 Monotonous
reasoning

 Incremental
constraint
reevaluation

Entry Transition
src

«new»

src
trg

~

trg

WF1: TrgToEntry

e: Entry

t:Transition

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg




Constraint evaluation respects refinement:

WF1 is violated in P ⇒
WF1 will be violated in all refinements of P

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: Equivalence Partitioning

57

Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by
incremental
graph query engine

4) Equivalence
detection
by graph
isomorphism

 State encoding


http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: Equivalence Partitioning

58

Entry Transition
src

«new»
trg

src
trg

~

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

trg
Entry Transition

src

«new»

src
trg

~

trg

State

src,trg

~

Entry Transition
src

«new»
src
trg

trg

State

src,trg

~

Entry Transition
src

trg

«new»
src
trg

Graph Solver:

1) Based on classic SAT-algorithm

2) Refinement of
3-valued partial graph models

3) Constraint evaluation by
incremental
graph query engine

4) Equivalence
detection
by graph
isomorphism

 State encoding

 Partial order reduction Different Solutions

http://mta.hu/english
http://mta.hu/english

VIATRA Solver: An Open Source Implementation

 Standard EMF as input and output| Configuration language | Visualization

 Incremental Query Engine:

 Constraint language: VIATRA Query

 Internally uses: Incremental constraint reevaluation, DPLL as VIATRA DSE

 Open source: github.com/viatra/VIATRA-Generator

59

http://mta.hu/english
http://mta.hu/english
https://github.com/viatra/VIATRA-Generator

Scalability Measurements
Maximal model size

60

FAM: Industrial, Avionics

FS: File System example of Alloy

5 min timeout

Example comparison (FAM)

Yakindu: Industrial, Statemachine

Ecore: Metamodelling language

Our solver generates two orders of magnitude larger models

http://mta.hu/english
http://mta.hu/english

Additional Findings

Constraint evaluation on complete graphs:
Query Engine vs Alloy

61

0

50

100

150

200

250

300

350

0 50 100 150 200

Ti
m

e
(s

)

Model Size (#Objects)

Validation by Alloy

Validation by Graph Query Engine

Diversity of graph models:
Alloy vs Human vs Graph Solver

http://mta.hu/english
http://mta.hu/english

Related
Approaches

Software and Systems Verification (VIMIMA01) 62

Software and Systems Verification (VIMIMA01) 63

• Examples:
Alloy – SAT
FORMULA - SMT

Solver-based model generators

Instance Models

𝑴𝒏+𝟏 

SAT

UNSAT

𝑴𝟏

𝑴𝟐

𝑴𝟑

Model
Generat

or

Language Specification

Additional

Requirements

Logic Solver

Rule-based Design Space exploration

Rule-based Design Space Exploration

Design
Candidate 1

Design
Candidate 2

Design
Candidate 3

Design
Candidate 4

Goals

Constraints

Operations

Initial Model

Modified model

Operation

Initial model

Solution model

Constraints
violated

Goals
satisfied

Heuristics
• Approximate distance from a solution
• Guided or multi-objective optimization
• Backtracking / backjumping

ASE 11
ASE 14

Summary &
Learning outcomes

Software and Systems Verification (VIMIMA01) 65

Software and Systems Verification (VIMIMA01) 66

• Model abstraction technique

• Model generation challenges

• Model generation  abstraction refinement

Learning summary

