Model-based Systems Design

(VIMIMAOQOQ)

Graph Abstraction &
Model Generation Techniques

Oszkar Semerath, Rebeka Farkas

Budapest University of Technology and Economics ft
Department of Measurement and Information Systems srg

MUEGYETEM 1782 ftsrg Research Group 00

Main topics of the course

Graph Abstraction Techniques

 Partial Modeling (MAVO)

 Shaping (Neighbourhood, TVLA)

Model generation

» Motivation & Use-Cases

« Requirements & Objectives: the COREDISC criteria

 Related approaches
- Graph Solver
- Solver-Based Approaches
- Design-Space Exploration

Summary & Learning Outcomes

Graph Abstraction
Techniques

Software and Systems Verification (VIMIMAO1) 3

Graph Abstraction

* Previously: concrete graph-based models

« Motivation: capture a range of potential models
- Uniform handling of a range of graphs
- Verification of graph-based systems

* Terminology:

- abstraction: graph — abstractgraph
- Refinement between abstract graphs: A; E 4,
- Concretization of an abstract graph A is G if abstraction(G) E A

« Goal: illustrate useful graph abstraction techniques

Software and Systems Verification (VIMIMAO1) 4

Partial
Modeling

Software and Systems Verification (VIMIMAO1) 5

Example: Unfinished models

t rlﬂi Service |
Initial state
3 \ 0
Ready money, | Select select change <la LG placeholder
S A
. N Multiple Filling o
select TODO
options? 1 l
: « SelectA, " filled
drinkTake . . Unfinished)
Need;':;(”e?Drmk SelectB... Finish\ Init
TakeDrink | - b
! - |

Software and Systems Verification (VIMIMAO1) 6

Motivation

* Early phase of development - high uncertainty in the models
» Editor forces the developer to work with complete models
Missing & Undecided / Uncertain / Unknown
Model refinement & Model rewriting

* Issues:
- Forces the developer to make premature decisions

- No way to list / document design alternatives
- Editor mixes: invalid < unfinished

* Clarify the semantics of missing elements

Software and Systems Verification (VIMIMAO1)

Partial Modeling

« Generic technique to explicitly represent uncertainty in models
- Generic: works for every metamodel
- Explicitly represent: uncertainty = model element
- In Models: The uncertainty is attached to the models

* MAVO: practical way to annotate model with uncertainty
- May: elements can be omitted
- Abstract (Set): representing sets of elements
- Var: elements that can be merged
- Open: new elements can be added

« Automation: generate alternatives, check all alternatives

Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: towards modeling and reasoning with uncertainty. In:
Proceedings of the 34th International Conference on Software Engineering, pp. 573-583. IEEE Press, 2012.

Software and Systems Verification (VIMIMAO1) 8

Example: Unfinished models with MAVO

® money Service |
* 1 | l\ _ Initial state
Ready mgney | Select select change <la LG placeholder
i - !
- N Multiple Filling o
select TODO
options? 1 l
_ « SelectA, Iy filled
drinkTake . . Unfinished)
Need ;‘:;T-:?Drmk SelectB... parts Finish | = Init

TakeDrink\ ~
! - |

Software and Systems Verification (VIMIMAO1) 9

Example: Unfinished models with MAVO

® money Service |
* \ | l\ _ Initial state
Ready mgney | Select select change <la LG placeholder
3 > \
SET Filling
h \ [SET] ®

TODO

Unfinished *filled l \

drinkTake 5 -
Need TakeDrink parts Finish\ Init
at all?
TakeDrink | S)
) - |

Software and Systems Verification (VIMIMAO1) 10

Example: Unfinished models with MAVO

® money Service |
* \ | l\ _ Initial state
Ready mgney | Select select change <la LG placeholder
. > \
[SET] Filling ®
‘ ‘ TODO
[OPEN] 1. l
drinkTake . *f'”ed\)
Need TakeDrink Finish Init
at all?
TakeDrink | ~ b
! ~ |

Software and Systems Verification (VIMIMAO1) 11

Example: Unfinished models with MAVO

money

t |_¢ Service
Ready money Select| . gjact change drink
. > \
[SET] Filling
)) TODO
MNSET
drinkTak LOPEN] Filed
rinkiake Need TakeDrink Finish\
at all?
TakeDrink | ~
‘ —

l

Init
[VAR]

e

L}

Software and Systems Verification (VIMIMAO1)

12

Example: Unfinished models with MAVO

money

? |_¢ Service
\) .
Ready money, Select select change drink
>
[SET] Filling
TODO ®
[OPEN] LA l
drinkTaken [MAY] Finish | Init |
[MAY] inis [VAR]
TakeDrink' ~ ‘
[MAY] =
N [MAY]

Software and Systems Verification (VIMIMAO1) 13

Example: Example concretization

® money :
¢ | | Service
Ready moneyh Select selectA » change Al
> hasChange
GiveBack Filling
selectB <«—@
-
*noChangYe> ¥ filled
Finish o Finish
/

Software and Systems Verification (VIMIMAO1) 14

Partial Modeling Summary

« Partial modeling captures the uncertainty of models
* 1 partial model = set of complete model
« MAVO: framework for uncertainty annotation + tooling

« Semantics of missing vs unfinished

Software and Systems Verification (VIMIMAO1) 15

Shaping
Approaches

Software and Systems Verification (VIMIMAO1) 16

Motivation: Checking graph-based systems

Motivation: Checking graph-based systems
4 | o\

Y
A\ 4
A\ 4
A\ 4

‘
S
ya
Y
va
A
<
Y
va
Y
ya
Y
ya

Y
Y
Y

Y
Y
Y

Software and Systems Verification (VIMIMAO1) 18

Shaping Neighborhood

o Equivalence:
» Goal: Collect similar graphs together U~V
 Similar graphs behave similarly —
u and v has similar
[I:List } neighborhood
f1:first

c1:Cell c2:Cell LZM c3:Cell 3:ne c4:Cell

v1:value v2:value v3:value v4:value

% Y
ct 02:0bject 03:0bject 04:0
]
‘ First cell ‘ Middle cell ‘ Last cell

Software and Systems Verification (VIMIMAO1) 19

Finite number of equivalence classes

(Cell {...
ed:nex
edinext) 1y
1
e5:value e7:value

Shaping summary

 Similar graphs collected together
« Uniform analysis of on the representation of similar graphs
* One of the few method to analyze infinite GT systems

* Model C Shape & Metamodel

Software and Systems Verification (VIMIMAO1) 21

Model
Generation

Software and Systems Verification (VIMIMAO1) 22

Tool Qualification

» Design of avionics / automotive systems
« Can you trust the tools?

« Safety standards (DO-178C) require systematic

testing with guaranteed coverage

[&
€ system - SysTopology Diagram: /SYS/SYSTEM_VSXDemo_VarB_BodyComfort - Vehicle Systems Architect

=)@]
File Edit Diagram Mavigate Search Project Run Tools Window Help
8|8 6 A o9 iE N s o
W —|
goe U e “[Bl7|A-a-.s B | & [[s0% -
£ *SYSTEM_VSKDemo_VarA_Body &3 1 *SYSTEM_VSXDemo_VarB_BodyComfort &3 =08
TR o ey s T e S S &
Palette 3] 200 00 00 00 ‘200 0. ! 014
5 13
e R o
- 2 ECU_HMI 2 ECU_HMI)
(= Clusters =]
sl 4
— Communic... § - § .
— LIN Cluster]
Cluster MediaCAN_HS 1 | |
= CAN Cluster |- : -) ‘ Cluster MediaCAN_HS ‘
8 | C |
=& Flexray b4
Cluster 2 iz -
= S
— PhysicaiCh...
= Controllers < || 5 ECU_GATEWAY - ™ ECU_GATEWAY
@ Communic...
B LN Master |8} . i .
] il
Controller n
© l i i Cluster_BodyCAN_HS I | ‘ Cluster_BodyCAN_HS | ‘
Controller - 3 i - = L J b J .

23

Source: https://www.mentor.com/embedded-
software/automotive/autosar

Motivation: Why to Generate Graph Models?

Motivation: Why to Generate Graph Models?

Tool Qualification

» Design of avionics / automotive systems

« Can you trust the tools?

» Safety standards (DO-178C) require systematic

testing with guaranteed coverage

https://medium.com/self-driving-cars/beginners-guide-to-self-driving-vehicles-

9e9003e790b8

24

Validating Intelligent CPS Components

« Al Safety: How to check components driven by
Al?

» Treat Al component as black box
« Generate test contexts
 E.g. ICSE'18 paper from L. Briand's groups

Motivation: Why to Generate Graph Models?

Tool Qualification

» Design of avionics / automotive systems
« Can you trust the tools?

» Safety standards (DO-178C) require systematic
testing with guaranteed coverage

Graph Database Benchmarks

» How to check that algorithms for graph DBs will
behave well for real data? *

* Real data has IP restrictions and never shown
» Real data is well-formed - random data is not

Source: https://neodj.com/blog/other-graph-database-

technologies/
25

Motivation: Why to Generate Graph Models?

Tool Qualification Validating Intelligent CPS Components

 Design of avionics / automotive systems « Al Safety: How to check components driven by
 Can you trust the tools? Al?

- Safety standards (DO-178C) require systematic » Treat Al component as black box
testing with guaranteed coverage Generate test contexts

 E.g. ICSE'18 paper from L. Briand's groups

deling LAnguages

TOP CONTENT » BROWSE » BOOKS » COMMUNITY » PRO SERVICES » NEWSLETTER ABOUT »

e —_——_—————TTTTE Empirical Evaluation of Modeling
| | = B RCIES

Dezyne by Verum « Real models are either confidential or too small
o B * Is your case study relevant & scalable?
- Existing generators are ad hoc and domain-

. 7 ‘ —DOWD 13
https://modeling-languages.com/presence-of-modelig-papers-at-icse-is-purely-anecdotal- SP ECIfI C
once-again/
26

No modeling papers at ICSE (once again)

By Jordi Cabot 24/05/2016 | 4:06 Posted in (meta)modeling, event, software engineering b

Motivation: Why to Generate Graph Models?

Tool Qualification Validating Intelligent CPS Components

 Design of avionics / automotive systems « Al Safety: How to check components driven by
 Can you trust the tools? Al?

- Safety standards (DO-178C) require systematic » Treat Al component as black box
testing with guaranteed coverage Generate test contexts

* E.g. ICSE'18 paper from L. Briand's groups

Graph Model
Generator

Graph Database Benchmarks Empirical Evaluation of Modeling

- How to check that algorithms for graph DBs will Papers

behave well for real data? « Real models are either confidential or too small
* Real data has IP restrictions and never shown + |s your case study relevant & scalable?

* Real data is well-formed - random data is not + Existing generators are ad hoc and domain-
specific

Requirements &
Objectives

the CoREDISC model

Software and Systems Verification (VIMIMAO1) 28

Setup of an ideal model generator

Additional
Requirements

Jl SAT

4 ™\
Model
Generat

or
- J

UNSAT

Language Specification ——p»

Properties of Model Generators: Consistent

- All (well-formedness)
constraints are satisfied co

Consistent

- All (and only) consistent
models are derived

Properties of Model Generators: Realistic

- Cannot be distinguished

from a real model

(By removing co RE
text+values and | ..
evaluating graph Consistent Realistic

metrics)

- Set of generated models
Is close to real ones

Software and Systems Verification (VIMIMAO1) 31

Properties of Model Generators: Diverse

CO

- Models are not
symmetric

- The distance between

any pairs of models is
large

E.g. all equivalence
classes are covered

Software and Systems Verification (VIMIMAO1)

32

Consistent

Diverse

RE

Realistic

Diversity as a requirement for testing

 Test case diversity
- Test selection: similar test cases find similar errors
- Test coverage: similar test cases cover the same code

« Methodologies
- Equivalence partitioning, boundary-value analysis, etc.
- Rely on similarity, difference, distance
—>Straightforward for simple structures, eg. Numbers

 What about models?

How to measure model diversity?

Software and Systems Verification (VIMIMAO1) 33 m

Diversity as a requirement for testing

 Test case diversity
- Test selection: similar test cases find similar errors
- Test coverage: similar test cases cover the same code

« Methodologies
- Equivalence partitioning, boundary-value analysis, etc.
- Rely on similarity, difference, distance
—>Straightforward for simple structures, eg. Numbers

 What about models?

How to measure model diversity?

Software and Systems Verification (VIMIMAO1) 34 m

Properties of Model Generators: Scalable

- In size: ability to

generate huge graphs
CO | RE

- Inquantity: generation Consistent Realistic
time of next model does

not grow

DI SC

Diverse Scalable

Software and Systems Verification (VIMIMAO1)

Model similarity and diversity

oot fa peet B

Which of these graphs...
e ..aresimilar?

e ..are equivalent?
 ...should be selected as test cases? -
How to automate the process?

Shapes in M,

4)
- /

Shapes in M,

4)
- /

Shapes in M;

-le=
|

me/mo

Similarity basis: Shape vectors

goed
3ot
L,

=r%:§J¢9W

1

1

1

1

1

11111110

11002110

10010011

Cosine similarity

» Well known similarity measure between vectors

* The cosine of the enclosed angle

- Nonnegative vectors - 6 < 90°
- Smaller the angle larger the cosine similarity

« Computed from euclidean product

|9 = arccos(x=Yy /11 1y1)

Y

- Advantages:
- Not affected by model size (as opposed to vector difference)
- Sensitive to neighbourhood distribution

Software and Systems Verification (VIMIMAO1) 41

Cosine similarity of models

i

=(1,1,1,1,1,1,1,0) v(M,)=(1,0,0,1,0,0,1,1) v(M3)=(1,1,0,0,2,1,1,0)

» Applying cosine similarity to shape vectors
- M, vs M,: 0.567 - different
- M, vs M3: 0.802 - similar
- M, vs M. 0.353 - very different

- First two models are similar

It M, is real, M, is realistic, M5is not.

Software and Systems Verification (VIMIMAO1) 43

Model diversity basis: neighbourhood sets

* Idea: Similar neighbourhoods cover similar parts of code
—>Goal: differentiate between models by neighbourhoods
Advantage: not affected by shape distribution, model size

* External diversity: How big is the difference between two models?
- Selection of diverse test cases
- Symmetric difference of model neighbourhood sets

* Internal diversity. How effective is a model?

— Test coverage vs input size
- #neighbourhoods/#objects

Software and Systems Verification (VIMIMAO1) 44

Shape difference: M, vs M,

Similar:
5 neighbourhoods

in common

g,

Shape difference: M,vs M;

poed

¥

Different;
3 neighbourhoods
in common

Internal and external model diversity

* Internal diversity:

- M,: 7/7=1
- M., 4/4=1
- M, 5/6=0.8333

 External diversity:

- M, vs M,: 5 neig
- M, vs M;: 2 neig
- M, vs M;: 5 neig

nbour
nbour

nbour

noods on
noods on

noods on

y in one mode
y in one mode
y in one mode

- different
- similar
- different

- M, and M, should be the selected test cases

Software and Systems Verification (VIMIMAO1)

47

it
b
d

[EEY

© o © o o
Ul OO N 00 O

A Alloy;s=0
¢ Alloy;s=20 (def)
X GS;r=1

Diversity

o
~

© o ©
= N W

o

0 10 20 30 40 50
Of Mutants Killed

=

0.9

0.8

0.7
>
£ 0-6 A Alloy;s=0
g " o Alloy;s=20 (def)
3 o4 RS s

0.3 ma LA A X GS;r=1

A A A A
o)
0.2 :g‘& o Human
0.1 N
0

Properties of Model Generators: Scalable

- In size: ability to

generate huge graphs
CO | RE

- Inquantity: generation Consistent Realistic
time of next model does

not grow

DI SC

Diverse Scalable

Software and Systems Verification (VIMIMAO1)

Partial Modeling for
Model Generation

3-Valued Models

Software and Systems Verification (VIMIMAO1) 51

SAT Solver Overview: DPLL Algorithm

DPLL: Well-known SAT-algorithm, (AV BV C) (=CVvBVvVD) (mAVBVC) (=AV =BV =)
basis of most modern solvers (1)
(Davis—Putnam—-Logemann—Loveland) L ['—'—'—] l

Refines partial variable binding

Decision rules +
Unit propagation \ 4

Search Strategy: <[[1,_; O;_]

Backtracking +
Backjumping +
Random restarts

Our approach: Boolean variables = Graphs

+ HUNGARIAN

P ACADEMY

L OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: 3-Valued Partial Models as States

] (- Src)
Graph Solver: Entry <t_ Transition
. . r .
1) Based on classic SAT-algorithm >re A J— s . L trg
. trg :-...i ((new)) l("
2) Refinement of g
3-valued partial graph models - /
(ESrC = \ (Src — \
Entry s Transition Entry ¢ Transition
src,trg’; e ST
: «new» l::;:«’ State '8 «new»l
v v v
- N\ (- N (- N
Entry [€— Transition Entry ‘trg Transition Entry ‘trg Transition
src,trg l, trg src,trg src,trg
PO sre G R src RS - sre
: «new» trg> State : «new» trg> State : «new» trg> State
e) _ e Y, _ e Y,

acaoeny & McGill

L OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: 3-Valued Partial Models as States

. /- SIC
Graph Solver: Entry - Transition
. . r T 1
1) Based on classic SAT-algorithm ST e g /2 edge/
2) Refinement of e ““e""”l‘ reference

3-valued partial graph models

~

= Uncertain properties are -
licit] ted: i Transition Transition
expliCitly represented:. src,trg? étrg src A trg
e b s S o T —
t10 7% Unknown ! enewn > THiatd E o newy
\ RN) \ R VR)
v v v
() (" src) (src)
Src o < o < o
Entry [€— Transition Entry ¢ Transition Entry ¢ Transition
tr tr
src,trg l trg src,trg g src,trg g
e e B B
! «hew» trg> State ! «new» trg> State ! «new» trg> State
\ rna) \UELE A N Y,

t4 CDEY @l MCG—ill

L OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: Partial Model Refinement

. (- src)
Graph Solver: Entry zt_ Transition
c . r -
1) Based on classic SAT-algorithm :rc T © trg
: rg i «new> :
2) Refinement of ‘<
. ‘c,“,"
3-valued partial graph models - S
= Uncertain properties are (¢ PLILS ——\ ([Sre)
. . Entry Je...... Transition Entry e Transition
explicitly represented: " trg e A Trg
1 | O | »yz: Unknown . A4 : gresennnsaseanees
4 State -------------------
= Generation as monotonous

partial model refinement:

% 2>1|0 . - : Uncertain edge refinement:
> | Entry Uncertain equivalence st T > 1

= Decision + " refinement: Splitting - & Y, 5
Unit prop. =2 «new» _____ new -2 new + State 5 trg(Entew) 0

Lacnoenr @ McGill

= OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Graph Solver: Approximated Constraint Evaluation

: (~ src)
Graph Solver: Entry |s......] Transition
. . tr :
1) Based on classic SAT-algorithm irc T S F trg
, 8 il «new» i
2) Reﬂnement Of 'v....,".’ ‘ ryeee?
3-valued partial graph models —
) i WF1: TrgToEntry
3) Constraint evaluationby /- src N . ore ~\
. src,trg P trg S g SIC4
graph query engine PR src StVt . g : «new»l
: i «new» foen ate Transiti ...
= Constraint evaluated on s 11G | I | . X
. : "~ J Y,
partial solutions v
A 4
= Monotonous [/ sre
. Src " < .
reasoning : Constraint evaluation respects refinement: trg
src,trg . :
" |ncremental proseeensd WF1 is violated in P = SrC>T]
. E : llllllll a e
constraint g WF1 will be violated in all refinements of P T tr y

reevaluation

Lacoene @ McGill

L OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: Equivalence Partitioning

. (- src)
Graph Solver: Entry :t_ Transition
. . r .
1) Based on classic SAT-algorithm src 4 J— s . L trg
. tl"g «new» l< H

2) Refinementof | | e e
3-valued partial graph models \. /

3) Constraint evaluationby /7~ SIC) 4 src)
' Entry Je....... Transition Entry |<__| Transition
incremental —%ig : e

: : Ftr SIC
graph query engine SIGUEL o —v S g
4) Equival i «new» l"*'c'r'é'> state J1 | | il f‘.[‘.‘.’:‘.’f’..”..l
qu|va ence '._':. .~¢':
. \ "~ y, g y,
detection v
by graph . ~
. . Src .
isomorphism Entry [€— Transition
src,trg? l, trg
grre H—— src
. I «new» g » State
= State encodlng eareeeeenzas tr
__ "~ y,

HUNGARIAN

® McGill

¥ ACADEMY
L OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Graph Solver Overview: Equivalence Partitioning

. ~ src)
Graph Solver: Entry (t_ Transition
. . r .
1) Based on classic SAT-algorithm >re A J— s . L trg
. trg «new» l< :

2) Refinement of g
3-valued partial graph models \- /

3) Constraint evaluationby /7 SIC) 4 -)
i Entry Je....... Transition Entry |c_ | Transition
incremental —%ig : e

. : : tr Src 4
graph query engine SICUE: e v''® g g l
4) Equival i «new» l"i}}'g'" state J{ (| T TTh. L e
qUIva ence ------ 3 :-------Z:.--- ~“’.
. "~ y, g y,
detection v v v
by graph s ~ r — ~
. . Src r: D Jm— . rs
|somorph|sm Entry [¢— Transition Entry ‘t Transition
r
src,trg'? ltrg » src,trg'? &
grre H— src grre H— src
I «new» g » State I «new» ----r----> State

= State encodlng \.’. e rg ———J| | e g
= Partial order reduction Different Solutions

T - HUNGARIAN gmy
e @ McGill

= OF SCIENCES

http://mta.hu/english
http://mta.hu/english

VIATRA Solver: An Open Source Implementation

= Standard EMF as input and output| Configuration language | Visualization

#node = 5,
#{Functinnalarchitecture::h = 0..3
} | FAMTerminator
H Function

[/ solver = AlloySolver
solver = ViatraSeolver _
H FunctionalData

config = {

‘ntime = 10000,
g-level = normal

' 2 FunctionType

H Functionallinput

_1\ (LeaffyncionType \ (ntermecl atefm."’"”'ﬂ

1
FunctionalArchitectureModely,
unctionaIArchitectureModeI“,‘;g ““““““ =l

\FunctionTypenum= 1} [FunctionTypemum=1)

H Functional&rchitectureModel

Functio

e
g 1 (o \
NCtion gese =1 Function,,
unctionalElementyygs= | nctionalElemen lcm

H FunctionalElement

H Functionallnterface
H FunctionalQutput

Qedacemfer:nce }Ieme lf:f‘ér:r{ce
[n,]

datafgeienaineroce /interfacefyiona®ee
(n,)

FunctionalDatagses = |
FunctionalOutputy,es= 1

FunctionalData e~
unctionallnputyes= 1

= [ncremental Query Engine: \“‘1“"V|ATRA

= Constraint language: VIATRA Query

" |nternally uses: Incremental constraint reevaluation, DPLL as VIATRA DSE

= Open source: github.com/viatra/VIATRA-Generator

Y d
L

EF Trcwoen @ McGill

=G
g . OF SCIENCES

&

R
RN

http://mta.hu/english
http://mta.hu/english
https://github.com/viatra/VIATRA-Generator

Scalability Measurements

Maximal model size Example comparison (FAM)
Largest model (#Objects) . 40
Graph Solver | Sat4] | MiniSat “‘5"
FAM+WF 6250 58 61 € 20
FAM-WF 7000 87 92 < ,
Yak+WF 1000 - — o
Vak-WE 7950 26 90 5 10 15 20 25 30 35 40 45 50
FS 4750 87 89 Model Size (#Objects)
Ecore 2000 38 41 —@— Graph Solver —#— Alloy+Sat4;
FAM: Industrial, Avionics Yakindu: Industrial, Statemachine +A“OV+Mimsat

FS: File System example of Alloy Ecore: Metamodelling language

5 min timeout .
Our solver generates ~two orders of magnitude larger models

Lacoene @ McGill

“ OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Additional Findings

Constraint evaluation on complete graphs: Diversity of graph models:

Query Engine vs Alloy Alloy vs Human vs Graph Solver
350 1 b4 e
300 0.9 S o

250 > 08 § E
=200 g 0.7 8 8
.§ 150 E 0.6 5 §

100 — 05 g 8 8

50 c 04 5 :[:8:

0 % ..g 0.3 E > o

0 50 100 150 200 97 ouem 1 —%—
Model Size (#Objects) 0'; o 3

X Validation by Allo
Y Y B Alloy;s=0 [Alloy;s=10 [Alloy;s=20 (def) Il Human B GS;r=1 O GS;r=2 [GS;r=3

+ Validation by Graph Query Engine

Lacoene @ McGill

. OF SCIENCES

http://mta.hu/english
http://mta.hu/english

Related
Approaches

Software and Systems Verification (VIMIMAO1) 62

Solver-based model generators

» Examples: Additional
A”Oy _ S AT Requirements
FORMULA - SMT

SAT
~)
Model
Language Specification ——p Generat
L or y
ﬂ UNSAT
Logic Solver

Rule-based Design Space exploration

Initial model

ﬂ

3 \“" Operation >
Modified model

- | Constraints

violated

p—
y

“/.

—>

Solution model

—_
Goals Design
satisfied Candidate 3
—_

> Rule-based Design Space Exploration

Heuristics
« Approximate distance from a solution

 Guided or multi-objective optimization
 Backtracking / backjumping

summary &
Learning outcomes

Software and Systems Verification (VIMIMAO1) 65

Learning summary

 MoO
* MOC

 MoO

abstraction technique
generation challenges
generation < abstraction refinement

