
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Not So Smart Contracts
Vulnerabilities and Verification

Blockchain Technologies and Applications

Ákos Hajdu, hajdua@mit.bme.hu
Imre Kocsis, ikocsis@mit.bme.hu

1

mailto:hajdua@mit.bme.hu
mailto:ikocsis@mit.bme.hu

Motivating example

 Simplified version of the DAO hack

2

contract Bank {

mapping(address=>uint) balances;

function deposit() payable {
balances[msg.sender] += msg.value;

}

function withdraw(uint amount) {
require (balances[msg.sender] >= amount);
if (!msg.sender.call.value(amount)("")) {
revert();

}
balances[msg.sender] -= amount;

}
}

Data: balance of each user

Operation: deposit money

Operation: withdraw money

Check balance

Transfer money

Reduce balance

Receive money

Increase balance

Vikram Dhillon, David Metcalf, and Max Hooper. The DAO hacked.
In: Blockchain Enabled Applications, pp. 67–78. Springer, 2017.

Withdraw 50

Withdraw 50

Transfer 50

Check ok

Reduce 50

Transfer 50

Check ok

Reduce 50

Attack scenario example

Balances
C U1 U2

100 50+50

50 50+50

0 50+50

0 50+0

0 50+(-50)

U2

3

More motivating examples

National Vulnerability Database (NVD)
400+ vulnerability records for blockchain

95%+ are programming errors in contracts

https://nvd.nist.gov/vuln/

Where do the problems come from?

 New paradigm for developers

o Cf. sequential vs. parallel programming

o Accounts, blockchain, transactions, mining, …

o Semantic misalignments

o Easy to make errors

 Problems at different levels

o Programming language / contracts

o Execution engine

o Blockchain and cross-peer protocols

4

Atzei, Bartoletti, Cimoli - A survey of attacks on Ethereum smart contracts (2017)
Luu, Chu, Olickel, Saxena, Hobor - Making Smart Contracts Smarter (2016)

Nikolic, Kolluri, Sergey, Saxena, Hobor - Finding The Greedy, Prodigal, and Suicidal Contracts at Scale (2018)
https://consensys.github.io/smart-contract-best-practices/known_attacks/

https://solidity.readthedocs.io/en/latest/security-considerations.html

What can possibly go wrong?

 Programming language / contracts

o Call to the unknown

o Gasless send

o Mishandled exceptions

o Type casts

o Reentrancy

o Keeping secrets

o Unchecked caller

o Input validation

5

function withdraw(uint amount) {
require(balances[msg.sender] >= amount);
msg.sender.transfer(amount);
balances[msg.sender] -= amount;

}

function withdraw(uint amount) {
require(balances[msg.sender] >= amount);
msg.sender.send(amount);
balances[msg.sender] -= amount;

}

function withdraw(uint amount) {
require(balances[msg.sender] >= amount);
if (!msg.sender.send(amount)) revert();
balances[msg.sender] -= amount;

}

What can possibly go wrong?

 Execution engine

o Under/overflows

o Immutable bugs

o Ether lost in transfer

o Stack size limit

6

uint8 x = 255;
uint8 y = 1;

uint8 z = x + y; // z == 0

int8 x = 127;
int8 y = 1;

int8 z = x + y; // z == -128

The BECToken

7

contract BecTokenSimplified {
using SafeMath for uint256;

uint256 public totalSupply;
mapping(address => uint256) balances;

constructor() {
totalSupply = 7000000000 * (10**18);
balances[msg.sender] = totalSupply;

}

function batchTransfer(address[] receivers, uint256 value) returns (bool) {
uint256 amount = receivers.length * value;
require(value > 0 && balances[msg.sender] >= amount);
balances[msg.sender] = balances[msg.sender].sub(amount);
for (uint i = 0; i < receivers.length; i++) {
balances[receivers[i]] = balances[receivers[i]].add(value);

}
return true;

}
}

Total tokens

Creator gets 7x1027

Balance of each user

Initialization

Batch transfer value to N receivers

Total amount = value x N

Reduce sender balance by total

Increase receiver balances
by value N times

The BECToken

 Let’s „print” money

8

Creator Attacker1 Attacker2 Attacker3 Attacker4 Attacker5

7x1027 0 0 0 0 0

value = 28948022309329048855892746252171976963317496166410141009864396001978282409984;
attacker1: bectoken.batchTransfer([attacker2, attacker3, attacker4, attacker5], value)

N = 4
amount = value * N = 0

Creator Attacker1 Attacker2 Attacker3 Attacker4 Attacker5

7x1027 0 2.9x1076 2.9x1076 2.9x1076 2.9x1076 Σ 1.16x1077

Σ 7x1027

https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

 Really happened (with different parameters)

What can possibly go wrong?

 Blockchain and cross-peer protocols

o Unpredictable state

o Transaction ordering dependency

o Generating randomness

o Time constraints

o Timestamp dependency

9

contract Market {
uint public price;
uint public stock;
...

function setPrice(uint _price) {
if (msg.sender == owner)
price = _price;

}

function buy(uint quantity) {
if (msg.value < quantity * price ||

stock < quantity) revert();
stock -= quantity;
...

}
}

buy

setPrice buy

setPrice

Why is this important?

10

 Real consequences

o Contracts manage real-life assets

• Ethereum: 22B USD market cap

o Not only financial aspects

• E.g., smart lock

 Permanent

o Once deployed, no patching1

o No transaction reverting2

o Compile time verification needed

 Public platforms: open world

o Available to everyone

o Everyone sees the code

o Everyone can send transactions

Let’s do
verification!

1There are patterns to kill a contract or redirect calls, but that brings up new vulnerabilities
2Apart from solutions involving a central authority

VERIFICATION APPROACHES

11

Testing

 Contract state + input  expected state + output

o Traditional testing strategies and techniques

 Frameworks help (e.g., Truffle)

o Setup test network with initial state

o Execute steps, check state and output

 Advantages and drawbacks

o Efficient in finding bugs, understanding the code

o Test high-level business logic

o Manual process

o Cannot test every state and input

o Complex scenarios: other users, contracts, miners
• DAO requires an attacker contract

12

x = 2
y = 3

f(y) {
x0 = x;
x += y;
return x0;

}

2

x = 5

https://truffleframework.com/docs/truffle/testing/testing-your-contracts
https://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

Audit / Review

 Experts review and analyze the contracts

o Contact, get a quote

o Perform audit

o Report

o Fix issues

 Advantages and drawbacks

o Detailed, high/low-level analysis

o Expensive

o Time consuming, non-interactive

o Experts are human too, can make mistakes

13

https://zeppelin.solutions/security
https://solidity.readthedocs.io/en/v0.5.4/security-considerations.html

Vulnerability patterns

 Pattern matching

o Abstract syntax tree (AST)

o Violation/compliance patters

 Advantages and drawbacks

o Fully automated

o Scalable to large contracts

o False alarms

o Missed bugs

o No high-level properties

14

function g() {
...
if (a.send(value)) ...;
...

}

function f() {
...
a.send(value);
...

}

Luu, Chu, Olickel, Saxena, Hobor - Making Smart Contracts Smarter (2016)
Tsankov, Dan, Drachsler-Cohen, Gervais, Bunzli, Vechev - Securify Practical Security Analysis of Smart Contracts (2018)

FunctionBody

FunctionCall

a send value

… …

FunctionBody

FunctionCall

a send value

IfStatement… …

Symbolic execution

 Reason about paths symbolically

o Control flow patterns

o Data flow patterns

 Advantages and drawbacks

o Similar to pattern-based

o Higher-level patterns

o Less false alarms

o Less scalable

15

Return value of send is
checked on all paths

ret = a.send(value);
if (x) {
if (ret) { ... }
...

} else {
...
if (ret) { ... }

}
...

…

x

ret = a.send(value)

ret

ret
…

……

…
https://mythx.io/
https://github.com/melonproject/oyente

Formal verification techniques

 Translate code to formal representation

o Apply mathematical reasoning

o Formal requirement needed too
• E.g., assert, require, annotations

 Advantages and drawbacks

o Automated

o High-level properties

o Fully formal, real errors, bugs not missed
• Depending on assumptions and abstractions

o Might suffer from scalability issues

o Extra developer effort for requirements

16

function abs(int x) returns (int) {
int y;
if (x >= 0) y = x;
else y = -x;
assert(y >= 0);
return y;

}

𝑥 ≥ 0 ∧ 𝑦 = 𝑥 ?
∨ ⟹ 𝑦 ≥ 0

𝑥 ≱ 0 ∧ 𝑦 = −𝑥

https://github.com/SRI-CSL/solidity
D’Silva, Kroening, Weissenbacher – A Survey of Automated Techniques for Formal Software Verification (2008)

Overflow!

Reentrancy revisited

17

/** @notice invariant this.balance == sum(balances) */
contract Bank {

mapping(address=>uint) balances;

function withdraw(uint amount) {
require (balances[msg.sender] >= amount);
if (!msg.sender.call.value(amount)("")) {
revert();

}
balances[msg.sender] -= amount;

}
}

Invariant: must hold before and
after every public function call

Withdraw 50

Withdraw 50

Transfer 50

Check ok

Attack scenario example

Balances
C U1 U2

100 50+50

50 50+50

U2

Invariant
violated

https://github.com/SRI-CSL/solidity

Reentrancy revisited

18

/** @notice invariant this.balance == sum(balances) */
contract Bank {

mapping(address=>uint) balances;

function withdraw(uint amount) {
require (balances[msg.sender] >= amount);
balances[msg.sender] -= amount;
if (!msg.sender.call.value(amount)("")) {
revert();

}
}

}

Invariant: must hold before and
after every public function call

Withdraw 50

Withdraw 50

Transfer 50

Check ok

Attack scenario example

Balances
C U1 U2

100 50+50

50 50+0

U2

Reduce 50100 50+0

Check FAIL

Specification
holds

First reduce
then transfer

https://github.com/SRI-CSL/solidity

TOOLS

19

Tools

 Truffle Suite

o Development environment and testing framework

 Securify, MythX, Slither

o Pattern-based, symbolic execution

 Solc-verify, VerX

o Automated formal verification

 VeriSolid

oModel-based design and code generation

20

https://truffleframework.com/
https://securify.chainsecurity.com/
https://mythx.io/

https://github.com/crytic/slither
https://github.com/SRI-CSL/solidity
https://verx.ch/
https://github.com/VeriSolid/smart-contracts

CONCLUSIONS

21

Conclusions

 Smart contracts are not so smart

o Infamous hacks: DAO, BECToken

o Vulnerabilities on different levels

o Importance of verification

 Verification approaches

o Audit, testing, pattern-based,
symbolic execution, formal methods

 Tools

 For more information, check the links on the slides

22

