Not So Smart Contracts
Vulnerabilities and Verification

Blockchain Technologies and Applications

Akos Hajdu, hajdua@mit.bme.hu
Imre Kocsis, ikocsis@mit.bme.hu

Budapest University of Technology and Economics
Department of Measurement and Information Systems

mailto:hajdua@mit.bme.hu
mailto:ikocsis@mit.bme.hu

Motivating example

Attack scenario example

= Simplified version of the DAO hack

contract Bank { Data: balance of each user
mapping(address=>uint) balances; Operation: deposit money
function deposit() payable { Receive money Ul U2
balances[msg.sender] += msg.value; 100 50+50
} Increase balance
function withdraw(uint amount) { Operation: withdraw money
require (balances[msg.sender] >= amount)s Check balance 50 50+50
if (!msg.sender.call.value(amount)("")) {
revert(); Transfer money
} Reduce balance
balances[msg.sender] -= amount;
}
} 0 50+50
0 50+0
0

Vikram Dhillon, David Metcalf, and Max Hooper. The DAO hacked.
In: Blockchain Enabled Applications, pp. 67—78. Springer, 2017.

50+(-50)] . IReduce 50

Balances . L

Withdraw 50

) Check ok

Transfer 50

Withdraw 50

' _) Check ok

Transfer 50

More motivating examples

0N Mowr 7 207, 11:242m

A Hacking of More Than $50
Million Dashes Hopes in the
World of Virtual Currency

By Nathaniel Popper

June 17, 2016

A hacker on Friday siphoned

Deposits

Someone ‘Accidentally’ Locked
Away $150M Worth of Other
People's Ethereum Funds

And a hard fork is on the table.

Parity Multisig Hacked. Again

- National Vulnerability Database (NVD)
R 400+ vulnerability records for blockchain
SOEETGREIEY 95%+ are programming errors in contracts

f the [ANY Parity] multi-

nies/ICOs are using Parity-generated multisig wallets.

https://nvd.nist.gov/vuln/

About $300M is frozen and (probably) lost forever.

Where do the problems come from?

"= New paradigm for developers
o Cf. sequential vs. parallel programming
o Accounts, blockchain, transactions, mining, ...
o Semantic misalignments
o Easy to make errors

" Problems at different levels

o Programming language / contracts
o Execution engine

o Blockchain and cross-peer protocols

Atzei, Bartoletti, Cimoli - A survey of attacks on Ethereum smart contracts (2017)

Luu, Chu, Olickel, Saxena, Hobor - Making Smart Contracts Smarter (2016)

Nikolic, Kolluri, Sergey, Saxena, Hobor - Finding The Greedy, Prodigal, and Suicidal Contracts at Scale (2018)
https.//consensys.github.io/smart-contract-best-practices/known_attacks/
https.//solidity.readthedocs.io/en/latest/security-considerations.html

TR

What can possibly go wrong?

= Programming language / contracts
o Call to the unknown
o Gasless send
o Mishandled exceptions
o Type casts
O Reentrancy
o Keeping secrets
o Unchecked caller

o Input validation

function withdraw(uint amount) {
require(balances[msg.sender] >= amount);

msg.sender.transfer(amount);

balances[msg.sender] -= amount; ¢
function withdraw(uint amount) {

require(balances[msg.sender] >= amount);

}
msg.sender.send(amount) ;
balances[msg.sender] -= amount;
}

function withdraw(uint amount) {
require(balances[msg.sender] >= amount);

1f (!msg.sender.send(amount)) revert();
balances[msg.sender] -= amount;
}

What can possibly go wrong?

= Execution engine
o Under/overflows
o Immutable bugs
o Ether lost in transfer

o Stack size limit

uint8 x
uint8 vy

uint8 z

int8 x
int8 y

int8 z

X +y; // z

-128

The BECToken

contract BecTokenSimplified {
using SafeMath for uint256;

Total tokens
uint256 public totalSupply; Balance of each user

mapping(address => uint256) balances;

constructor() { Initialization

totalSupply = 7000000000 * (10**18); Creator gets 7x10%7
balances[msg.sender] = totalSupply;

}

Batch transfer value to N receivers

uint256 amount = receivers.length * value; Total amount = value x N
require(value > @ && balances[msg.sender] >= amount);

function batchTransfer(address[] receivers, uint256 value) returns (bool) { /’;

balances[msg.sender] = balances[msg.sender].sub(amount); Reduce sender balance by total

for (uint i = @; i < receivers.length; i++) {

balances[receivers[i]] = balances[receivers[i]].add(value); Increase receiver balances
} by value N times

return true;

The BECToken

mmm S 751027
0 X

7x10%7

= Let’s ,print” money

value = 28948022309329048855892746252171976963317496166410141009864396001978282409984 ;
attackerl: bectoken.batchTransfer([attacker2, attacker3, attacker4, attacker5], value)

N =4
amount = value * N = 0 }

ot s ke | irs s

77
7x1077 2.9x107 2.9x1076 2.9x107¢ 2.9x1076 2 1.16x10

= Really happened (with different parameters)

TxHash Age From To Quantity

OxadB9ff16fd1abed... 14 hrs 7 mins ago Ox09a34a01fbaaddt... n OxDe823te0187275... 57,896,044,618,658,100,000,000,000...

https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

What can possibly go wrong?

contract Market {

= Blockchain and cross-peer protocols ;¢ puiic price:

uint public stock;

o Unpredictable state

function setPrice(uint _price) {

o Transaction ordering dependency

if (msg.sender == owner)
o Generating randomness o TP
O Tlme COnStraintS function buy(uint quantity) {
if (msg.value < quantity * price ||
. stock < quantity) revert();
o Timestamp dependency Stock o quantity;
}
) []
1
) |
[]

Why is this important?

= Real consequences = Public platforms: open world
o Contracts manage real-life assets o Available to everyone
* Ethereum: 22B USD market cap o Everyone sees the code
o Not only financial aspects o Everyone can send transactions

* E.g., smart lock

" Permanent ’
o Once deployed, no patching! Let’s do

o No transaction reverting? ve rification |

o Compile time verification needed

1There are patterns to kill a contract or redirect calls, but that brings up new vulnerabilities
2Apart from solutions involving a central authority

VERIFICATION APPROACHES

= Contract state + input = expected state + output N

o Traditional testing strategies and techniques y=3

Z

= Frameworks help (e.g., Truffle)
o Setup test network with initial state

e

f(y) |
o Execute steps, check state and output X0 = X;
X +=Y;

= Advantages and drawbacks return X0

}

o Efficient in finding bugs, understanding the code \Q
o Test high-level business logic

P

o Manual process
o Cannot test every state and input

N
v

https.//truffleframework.com/docs/truffle/testing/testing-your-contracts
https.//www.istgb.org/downloads/syllabi/foundation-level-syllabus.html|

o Complex scenarios: other users, contracts, miners

* DAO requires an attacker contract

Audit / Review

" Experts review and analyze the contracts
o Contact, get a quote
o Perform audit
o Report
o Fix issues

= Advantages and drawbacks
o Detailed, high/low-level analysis \
o Expensive
o Time consuming, non-interactive

o Experts are human too, can make mistakes

https.//zeppelin.solutions/security
https.//solidity.readthedocs.io/en/v0.5.4/security-considerations.html

Vulnerability patterns

= Pattern matching function O A

o Abstract syntax tree (AST)

a.send(value);

function g() {

if (a.send(value)) ...;

o Violation/compliance patters

FuncﬁonBody

= Advantages and drawbacks

X

FunctionBody

FunctionCall

o Fully automated

IfStatement

o Scalable to large contracts
o False alarms

o Missed bugs

o No high-level properties

amm

FunctionCall

BN 1 o

Luu, Chu, Olickel, Saxena, Hobor - Making Smart Contracts Smarter (2016)
Tsankov, Dan, Drachsler-Cohen, Gervais, Bunzli, Vechev - Securify Practical Security Analysis of Smart Contracts (2018)

Symbolic execution

. ret = a.send(value);
= Reason about paths symbolically PN (vatue)
if (ret) { ... }
o Control flow patterns
} else {
o Data flow patterns
if (ret) { ... }
= Advantages and drawbacks ;

o Similar to pattern-based
ret = a.send(value)

o Higher-level patterns
o Less false alarms
o Less scalable

https://mythx.io/
https://qgithub.com/melonproject/oyente

Formal verification techniques

= Translate code to formal representation function abs(int x) returns (int) {

o Apply mathematical reasoning ;rgt(i;}_ 8) y = x:

o Formal requirement needed too else y = -X;w

* E.g., assert, require, annotations assert(y >= 0);
= Advantages and drawbacks } return v
o Automated
o High-level properties (x=>0AYy=x) ?
o Fully formal, real errors, bugs not missed V = y=>0
* Depending on assumptions and abstractions (xE20AYy =—x)

o Might suffer from scalability issues
o Extra developer effort for requirements

https.//github.com/SRI-CSL/solidity
D’Silva, Kroening, Weissenbacher — A Survey of Automated Techniques for Formal Software Verification (2008)

Reentrancy revisited

Invariant: must hold before and

after every public function call

/** @notice invariant this.balance == sum(balances) */
contract Bank {

mapping(address=>uint) balances;

function withdraw(uint amount) {
require (balances[msg.sender] >= amount);
if (!msg.sender.call.value(amount)("")) {

revert();

}
balances[msg.sender] -= amount;

}

}

https://github.com/SRI-CSL/solidity

Attack scenario example

Balances . L

Ul U2

Withdraw 50

100 50+50
) Check ok
50 50450 Transfer 50

Withdraw 50

X

Invariant
violated

Reentrancy revisited

Attack scenario example
Invariant: must hold before and

after every public function call !
Balances

- = : o hic bal — — » ui UZ Withdraw 50
/** @notice invarian is.balance == sum(balances) */ 100 50+50
contract Bank {
) Check ok
mapping(address=>uint) balances;
100 50+0
function withdraw(uint amount) { Transfer 50
require (balances[msg.sender] >= amount); 50 50+0
?alances[msg.sender] -= amount; Withdraw 50
if (!msg.sender.call.value(amount)("")) {

Check FAIL

revert();
)) First reduce “
then transfer

Specification
holds

}

https://github.com/SRI-CSL/solidity

Tools

= Truffle Suite

o Development environment and testing framework

= Securify, MythX, Slither
o Pattern-based, symbolic execution

= Solc-verity, VerX SEEUR'FY]

o Automated formal verification
= \/eriSolid

o Model-based design and code generation

TRUFFLE

MythX

https://truffleframework.com/ https://github.com/crytic/slither
https://securify.chainsecurity.com/ https://qgithub.com/SRI-CSL/solidity
https://mythx.io/ https://verx.ch/

https://qgithub.com/VeriSolid/smart-contracts

CONCLUSIONS

Conclusions
= Smart contracts are not so smart
o Importance of verification : l !

o Infamous hacks: DAO, BECToken
= \erification approaches \
o Audit, testing, pattern-based, @ »

o Vulnerabilities on different levels
symbolic execution, formal methods

= Tools

" For more information, check the links on the slides

