Build Automation,
Continous Integration

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem
Meéréstechnika és Informacids Rendszerek Tanszék

Recap: Testing Systems

= Preparing tests
o Multiple metodologies
o Goal: increase quality, find issues

= Problem
o Good testing requires time

o Developer is prone not to execute it locally

Mozilla Firefox

= 17 platform
= 12 source branch

= 1200 build and test machine

o Compile time: 12.40 hours

o Testing time: 54.48 hours

o CPU time: 2.79 days (!)

o Release testing earlier: 10 days

[EOrasHEES / /relengofthenerds.blogspot.com/2010/11/mozilla-versus-eclipse-build.ht@l ® © &

Eclipse Release Train

= Synchronized release of projects

o Since 2006
o Yearly

* 1 main release (new features)

2 service releases (mostly patches)

Eclipse Release Train in Numbers

Callisto Europa Ganymede Galileo Helios Indigo Juno (4.2) Kepler
(3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (4.2)

® Number of Projects ¥ Size (MLOC)

Eclipse Release Train in Numbers

Callisto Europa Ganymede Galileo Helios Indigo Juno (4.2) Kepler
(3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (4.2)

® Number of Projects ¥ Size (MLOC)

Eclipse Release Train in Numbers

Callisto Europa Ganymede Galileo Helios Indigo Juno (4.2) Kepler
(3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (4.2)

® Number of Projects ¥ Size (MLOC)

Multiple versions

= Different platforms

o Windows
* Win32 32/64 bit

* There was an early access WPF port

o Linux
 GTK 32/64 bit

o Mac OSX
e Cocoa 64 bit

Multiple packages

= Package
o Different set of plug-ins installed together
o All other plug-ins available for downloads

= Examples
o Java EE

o Plug-in developer
o C/C++

o Modeling

o PHP

Eclipse Platform Build (2009.11.)

Downloading source 20 minutes

Build signing 1 hour 14 minutes
Using p2 Director 20 minutes
Creating p2 repositories 4 minutes

Zipping SDK and platform zips 30 minutes
Running tests 6 hour 40 minutes

Forrds: https://bugs.eclipse.org/bugs/show_bug.cgi?id=293830#c11® ©@ © &

Motivation for Release Train

= - Short review of "pre-Callisto" days, to avoid
repeating past mistakes; (Names and examples are a
fictional melding of several cases). Platform released
in June. TPTP and CDT a month or two later, WTP a
month or two later. Only at that time, was a bug
discovered in the Platform (by WTP nearing release)
such that they could not release until SR1. Platform
releases SR1 in September, WTP can now release.
Only then was it observed that some regression was
introduced that prevented CDT from working with
the Platform SR1. So, CDT might hurry up with their
SR1, or adopters would all have to patch a mix and
match of components to make their product
schedule

Eclipse Release Train

" Many project, complex process
o Only a single, one-week delay in 8 years

" Frequent release is problematic

= Motto:

o “Shipping is hard, that’s why we do it 7 times a
release.”

Continuous Integration

Continuous integration

= “Continuous Integration is a software
development practice where members of a team
integrate their work frequently, usually each
person integrates at least daily - leading to
multiple integrations per day. Each integration is
verified by an automated build (including test) to
detect integration errors as quickly as possible.”

Martin Fowler

http://www.martinfowler.com/articles/
continuousintegration.htm|

Tasks in Continuous Integration

Source code
repository

Tasks in Continuous Integration

Source code
repository

e Stores all source code
* Frequent commits

Tasks in Continuous Integration

Source code
repository

Tasks in Continuous Integration

Source code Build Process
repository

Tasks in Continuous Integration

Source code Build Process
repository

e Fast and automatic!
Executes unit tests
Can report failures

Tasks in Continuous Integration

Source code Build Process
repository

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

Copy of the live
environment
Executes integration
tests

* Manual

* Automatic

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

Build Test
report report

e Possible
automatic
deployment

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

* Reports and
built source
code available

Tasks in Continuous Integration

Staging/Testing

Source code Build Process .
Environment

repository

= Builds reproducible
o Even a year-old build should be repeatable

" |ntegration phase is short
o Starts earlier
o Integration problems become visible soon

= Not a magic bullet

o Extensive planning required

o Some changes in development workflow required

Build types

= C| build

o Executes on every commit
o Must be fast -> minimal sanity check

= Nightly
o Executes every night

o Packaging
o Should finish in a few hours

= Release build
o Full testing

o Might be very long

Most important steps

Pre-build

- Building

Other
Validations

Packaging/
publishing

Notifications Reporting

Most important steps

Pre-build

— Building

" Finding source code
o SVN, Git, file system

= Environment initialization Other

Validations

o Optionally creation

Packaging/

suulsilel e Notifications Reporting

Most important steps

Pre-build Sl

steps

= Static analysis

= Dependency management

o Other
= Compilation Validations

Packaging/

oulsilel e Notifications Reporting

Most important steps

Pre-build

- Building

= Build Verification Test (BVT)

o Quick verification
Other

= Detailed testing Validations

Packaging/

oulsilel e Notifications Reporting

Most important steps

Pre-build

- Building

= Code style checking

= Javadoc comments

Other
= Code coverage Validations

Packaging/

oulsilel e Notifications Reporting

Most important steps

Pre-build
steps

Building

= Test results

= Code coverage i
Other

Validations

Packaging/

oulsilel e Notifications Reporting

Most important steps

Pre-build

S Building

" |n case of problems, notify

o Developers
Other

o Administrator (for env) N
Validations

Packaging/ Notifications Reporting

publishing

Most important steps

Pre-build
steps

Building

= |nstaller kit
o p2, MSI, ...

= Archiving Sl

Validations

Packaging/

aulsilel e Notifications Reporting

Build Executor Engines

Build Tools

= Make
o C/C++

= Apache Ant
o Make files for Java
o XML dialect

= Apache Maven
o Uniform source and dependency management
o Declarative build descriptors

* Functionally similar to Ant

Ant

= Java library and command line tool
= Versatily, extensible

= Main application: Java application compilation

= Project

, 9= outiine [ant 83 . [B] TaskList =0
o Represented by a single PITEL
. . o 9 IS A
build descriptor e —
=-d&liext ;
[Ta rget . f*'*) build-ext-dir [from import build-parent. xml]
- @ ® dean [From import build-parent.xml]
o A set of executable tasks . ® compile [from import build-common. xml [fron
- Q deploy [default] [From import build-parent.x
O May dePend on other . & ® deploy-impl-jar [from import build-common. x
targets ;- 1® deploy-properties [from import build-parent.

®)
+ ‘l@) deploy-war [from import build-common.xml [
O Eg; compile, deploy =-1® javazhtml [From import build-parent.xml]
- Task ‘ l%l E*‘*) javadoc [from import build-parent. xml]
~ ®-1®) print-current-time [from import build-commoi
)

=-1@ setproxy [Ffrom import build-common. xml [Fre
0 upgrade-ext [from import build-parent. xml]

o E.g., javac, copy, junit, exec, | ® %d ext- |mp|
L] L L L_J
signjar, mail...

o Executable code

Additional Options

= Properties (key-value pairs)
<property name="build" location="build"/>

<target name="init">
<mkdir dir="${build}"/>
</target>

= Paths, classpath
<classpath>
<pathelement path="S${classpath}"/>

<pathelement location="1lib/helper.jar"/>
</classpath>

= Every element can have an optional ID
o Everything can be referenced

Example: Testing with Ant

= Required:
O junit.jar
o ant-junit.jar
* Default location: ANT HOME/lib
" junit.jar location:
oIn ANT HOME/1lib directory, or

o Setvia-1ib argumentum, or

o Set viathe classpath element of the junit task

Example: Testing with Ant

<project default="test" >
<path 1d="classpath.test">
<pathelement location="x/y/junit.jar" />
<pathelement location="${build}" />
</path>

<target name="compile-test">

<javac srcdir tst-dir}t" >
<classpath refid="classpath.test"/>
</javac>

</target>

Example: Testing with Ant

<target name="test" depends="compile-test" >
<junit printsummary="yes"
haltonfailure="yes">
<classpath refid="classpath.test" />
<formatter type="plain" />

<test name="hu.bme.mit.junit.
bookstore.book.test.BMListTest"
haltonfailure="no"
outfile="result" >

<formattertype="xml"/>
</test>
</junit>
</target>

Maven

= More complex build tool

= Build process predefined

o Usually less configuration required
* Convention over configuration

 BUT: If conventions need to be
— Understood
— Followed (or the differences described)

= Dependency management!

Maven

= Descriptor
o pom.xml: project model
o Archetype: a description of a project type

* |t is enough to list the differences wrt an archetype
e Default archetype is Java project

= Build process
o Name a goal (e.g., test, package)

o Manages all phases until that point

Mavaen Lifecycle Phases and Goals

Phases

Source: Maven by Example,

Goals

-~

process-resources resources:resources

-

compile compiler:compile

process-classes

process-lest-resources | resources:testResources

-

test-compile compiler:testCompile

surefire:test

prepare-package

' package ! jar:jar '

Note: There are more phases than shown above, this is a partial list
http://books.sonatype.com/mvnex-book/reference/simple-project-sect-simple-core.html

Example: Testing with Maven

= Project structure:

" my-app
o pom.xml
O Src
°* main
— java
» com |
* mycompany
* app |
* App.java
O test
* java
— com
» mycompany
* app

* AppTest.java

Example: Testing with Maven — pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0org/2001/XMLSchema-instance™

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.mycompany.app</groupId>
<artifactId>my-app</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>Maven Quick Start Archetype</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>4.8.0</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

= Real “crusade”
o See also .Net or Java, etc.

= Ant
o Everything can be (is) hand-managed
o Useful for unique projects

= Maven
o “Convention over configuration”
o Every Maven plug-in is similar...

o Dependency management
* “Maven downloads the entire Internet”

Build Scheduling

Jenkins (a.k.a. Hudson)

Cl Servers

= Apache Continuum (Java)
o XML-based configuration + web Ul

= CruiseControl (Java, .NET, Ruby)
o XML-based configuration

= Jenkins/Hudson (Java, extensible)
o Web Ul

= TeamCity (Java, .NET, Ruby)

o Commercial

Hudson/Jenkins

= Java servlet based
o Every application server is useable

= Plug-in based, extensible
o Plug-ins can be updated

= Easy to learn

= Does not determine build tool, only
o Scheduling and
o Management

= Multiple build jobs with dependencies between
them

https://hudson.eclipse.org/hudson/

Hudson

Hudson

g People

; Epitések Torténete

O‘ Projekt Kapcsolat

& Fajl Ujjlenyomat Ellendrzése _ _ .
N All armalgam Athena CBI | Athena CBI (SVN) Buckminster | Eclipse and Equinox JWT Jetty-RT Mode

w Job 1 Utolso Sikeres

Epétési Sor
MWE-Lanquage-nightly-HEAD

©-
|
J

{ bpel-0.5 4 days 5 hr {(#29)
Epités Futtaté Allapota
#* Master ; @ buckrninster-eaf-trunk-nightly 1 hr 49 min (#20)
1 Idle o
2 Building Xtext-nightly- o - B B - -
HEAD #4017 @ buckminster-emft-ecoretools-0.10-nightly N/&
hudson-slavel :g buckrninster-head N/&
1 Idle
2 Idle 0 &l o5 buckminster-maintenance 3 days 9 hr (#60)
3 Building emf-cdo-
integration #3825 B) .
-f] 0 _ buckminster-mdt-ocl-core-3.1-nightly 21 days (#57)

4 | Idle

EGCYETEM 1782

Hudson Workflow

Hudson Workflow

= Manual

" Timed
= Change in version control
= Dependencies built in another job

= Custom (extensible)

Hudson Workflow

= Optional

= Collect sources

= Set up environment

Hudson Workflow
m

= Build steps

= Build tools supported by default
o Ant
o Maven
o Command line

= Additional tools

o Buckminster
o .Net compiler

Hudson Workflow

= Optional step
o Archiving

o Publishing
o Start follow-up builds

o Notifications

NEINCEEEN

| OO | Build failed in Jenkins: VIATRA2-Core #154 — Inbox O |

From: Jenkins Build <ujhelyiz@mit.bme.hu>
Subject: Build failed in Jenkins: VIATRA2-Core #154
Date: 2011. marcius 23.21:34:40 CET
To: Zoltan Ujhelyi

?’1&%&!

See <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-Core/154/> w

Started by user ujhelyiz

i Cleaning up <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-Core/ws/releng>
Updating https://viatra.inf.mit.bme.hu/svn/releng/trunk

At revision 4892

Cleaning up <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-Core/ws/core>
Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-
Core/ws/core/org.eclipse.viatra2.gtasm.interpreter.term/bin>

} Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-
Coref/ws/core/org.eclipse.viatra2.gtasm.patternmatcher.incremental.rete/bin>

{ Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-

i Core/ws/core/org.eclipse.viatra2.gtasm.patternmatcher/bin>

Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-
Coref/ws/core/org.eclipse.viatra2.gtasm.model/bin>

Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-
Core/ws/core/org.eclipse.viatra2.gtasm.model/src/org>

Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-
Core/ws/core/org.eclipse.viatra2.visualisation/bin>

I Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-
Core/ws/core/org.eclipse.viatra2.gtasm.patternmatcher.impl/bin>

Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2- A
Core/ws/core/org.eclipse.viatra2.editor.text/bin>

| Deleting <https://build.inf.mit.bme.hu/jenkins/job/VIATRA2-

frarafuclfrarafnrn arlinca viatra? atacm cunnnrt/hins

Trends, Metrics

we build
" [==workspace

disk usage (MB)

count
N
un
o

Coverage trends

EEEEEREEEE

* # # *
{just show failures) enlarge
Code Coverage Trend

00

#141
#142
#143
#144
#145
#146
#147
#148

wee block

we Class

e line
‘method

Other Metrics (using Sonar)

Lines of code Classes Violations A\ Blocker 0
144,398 4 2,199 4 29,206 2 2 Critical 43
i Maj 9,487 &
280,278 lines & 236 packages & Rules compliance a _?M X | —
63,450 statements & 15,226 methods # 69.1% ¥ Minor 15,929 2 NN
2077 files & +677 accessors -1 /e ¥ Info 3747 A M
L Package tangle index Dependencies to cut

Comm;ents Dupllcztlo:s 22.90/0 186 between packages
26.7% ~ 10.3% 2 570 between files

> 1,216 cycles
52,600 lines & 28,898 lines &
34.8% docu. API 12,322 blocks #

A

8.554 undocu. APl = 673 files 2 LCOM4 RFC
3,340 commented LOCs

3.0 /class 18 iclass

41.0% files having LCOM4>1
Complexity 4
2.4 /method 10000 400 4 1000 |

300
S000
16.5 /class 200 con
17.5 rile 0 -
1 2 4 6 8 10 12

TOtaI: 36371 ‘ @Methods OCIasses ¢ 2 3 4 S 10 ¢ 0 S5 10 20 30 50 %0 ...
Code coverage Test success
16.6% 94.3% =
19.1% line coverage 14 failures &
10.0% branch coverage 2 errors
282tests ¥

46.7sec ¥

= What is required?
o Automatic compilation
o Automatic integration
o Automatic testing

= What is provided?
o Source code collection
o Scheduling

o Publishing
* Reports

e Results

Cl Builds of Eclipse Plug-ins

Problem

org.eclipse.viatra2.releng
org.eclipse.viatra2.feature.core hu.bme.mit.feature.incquery org.eclipse.viatra2.feature.visualisation
2.imports.uml2.galileo @) hu.bme.mit.incquery.gui org.eclipse.viatra2.editor.text @y org.eclipse.viatra2.visualisation @) org.eclipse.viatra2.help @) org.
.eclipse.uml|2 @ hu.bme.mit.incquery.model.editor @) org.eclipse.zest.core @y org.eclipse.um|2.uml @y org.eclipse.ui.cheatsheets @) hu.bme.mit.incquery
ore oy org.eclipse.emf.mapping.ecore2xml oy org.eclipse.viatra2.compiled.emf.patternmatcher @y org.eclipse.jdt.ui @) hu.optxware.emf2viatra.core @y ori
ox.simpleconfigurator.manipulator @y org.eclipse.viatra2.gtasm.model.edit @) org.eclipse.emf oy org.eclipse.equinox.frameworkadmin @y org.eclipse.equinox
core oy org.eclipse.viatra2.gtasm.patternmatcher.incremental.rete @y org.eclipse.emf.codegen.ecore @) org.eclipse.ui.console @) org.eclipse.core.databinding
ctoring @ org.eclipse.jdt.launching oy org.eclipse.emf.validation oy org.eclipse.emf.ecore.xmi @y org.eclipse.team.ui oy org.eclipse.emf.ecore.change
@y org.eclipse.team.core oy org.eclipse.jdt.debug @y org.eclipse.viatra2.gtasm.interpreter.term @) org.eclipse.ui.navigator org.eclipse.compare
@y org.eclipse.ui.views @y org.eclipse.ui.editors @) org.eclipse.viatra2.gtasm.patternmatcher f@y org.eclipse.ui.forms @y org.eclipse.debug.core o |
@) org.eclipse.viatra2.gtasm.interpreter @y org.eclipse.core.filebuffers @y org.eclipse.ui.workbench.texteditor @y org.eclipse.ui.ide @) org
oy org.eclipse.viatra2.gtasm.model @) org.eclipse.ui @) org.eclipse.compare.core @) org.eclipse.equinox.p2.engine @ org.eclipse.viatra2.core2 o
eclipse.ui.workbench @y org.eclipse.swt @y org.eclipse.equinox.p2.metadata @ org.eclipse.jface @ org.eclipse.emf.ecore @y org.eclipse.core.resources

lipse.jface.databinding o) org.eclipse.core.contenttype @ org.eclipse.ecf.provider.filetransfer @) org.eclipse.equinox.p2.core @) org.eclipse.emf.common

‘o nra_eclinse acf ‘o ora eclinse core datahindina ahservahle ‘o ora eclinse snuinax commaon ‘o ora eclinse core datahindina ‘o ara_ecl

What do | start with?

Download A, B and C plug-
ins from the repo XY!

Done. They do not
compile...

Done. They do not
compile... Oh, yeah, you also need

from the YX repo the
plug-ins D and E.

Something is still
missing...

Oh, of course, from plug-
Something is still in D only version 1.2
missing... works. Also copy F to the
plug-ins folder...

Automatic Compilation of Eclipse Plug-ins

= Headless execution required
o E.g. from command line
o Without manual steps

= Target platform
o Handcrafted, or

o Created during the build

Dependency Management

Ant4Eclipse
o Avoids using PDE/Build

Pax, Tycho

o Extends Maven with OSGi dependencies
PDE headless build

o Generates Ant scripts
- Basically non-understandable by humans

Buckminster

= Eclipse Tools Project

= High-level tool

o Re-uses Eclipse builders
 Buildable in Eclipse -> Buildable with Buckminster

o Defines descriptors
XML documents
 Partially generated
e Editing support for other

o Dependency management

Usage Profiles

= |DE support
o Editing descriptors
o Build execution
o Collects dependencies

= Headless mode

o Requires providing an Eclipse instance

= Hudson/Jenkins plug-in
o Uses headless mode

o Provides easier configuration

Capabilities

" Collecting source files

" Building
o PDE/Build, Ant, Maven

= Packaging
o P2 update site

o Target platform

Basics: Component

= A component is a buildable element
o Feature, plug-in...
o Has name, type, version

= Can execute operations
o Some predefined (pl. site.p2, bundle.jar)

o Custom operations

CQUERY MSPEC
E—— \ RMAP BOM —
/4 — — /4
/4 /4 {Materialize}
{Resolve}
(Remote) Component
Locations
CSPEC Target Host
| CSPEC
Componentl 11 csPEC Materialized
B Component
Component2 — Assembly
Component3 |74

= Component Query

= Describes what to collect/build
o Only top-level element listed

o Dependencies are resolved by Buckminster

% debugvisualisation.r

CQuery Editor

“ & debugvisualisation.m

Main

Component name: [hu.cubussapiens.debugvisualisation.build

Component Type: L eclipse.feature

Version

Designator:

? == Version

Version:

|
\

Type:

OSGi

Properties

@ Use Properties

Resource Map

@ Use Resource Map

Properties: http://debugvisualisation.googlecode.com/svn/trunk /hu.cubussapiens.debugvisualisation.build/buck: (, Browse...)

RMap URL: http://debugvisualisation.googlecode.com/svn/trunk /hu.cubussapiens.debugvisualisation.build/debu (, Browse... \,

("] Continue on error

Main | Advisor Nodes | Properties Documentation{XML Content‘

(Resolve to Wizard

) (Resolve and Materialize) (

External Save As

)

Component Query

= Query descriptor
o What to collect?
o |dentifier + Resource map

= Optional paramters
o Source or binary?
o Branches/tags, etc..

o Release/Nightly build repository

= Resource Map

= Where to collect stuff?
o P2 repository
o Local folder
o SVN, CVS, Git...
o Maven

o Target platform

o Workspace
o URL

4 bookstore.rmap £ =7

= ‘{’P platform:/resource/hu. optxware, junitcourse,bookstore.releng/bookstore.rmap
=l 4 Resource Map
<> bookstorePlugins = file:///homefuser fworkspaces/build_se...
<> targetPlatformPlugins = file: /) fhomejuser/eclipse/plugins
<> Locator bookstore [“hu\.optxwarel. . *]
<> Locator dependencies [orgl. . *|~com). . *|~javax). . *]
<4 Search Path bookstore
4 Search Path dependencies
=l 4 Provider local
= Format {1}/4{0}
Property Ref buckminster.component
Property Ref targetPlatformPlugins
4 Provider local
4 Provider p2

Format http://download.eclipse.org/releases)qalilec?import Type=binary

RN

1B

= Component Specification
" Generated
= Contains executable operations

= Custom extensions:
o CSpeX (CSpec eXtension)

= Bill Of Materials
" Generated
= List of elements to download and steps to execute

" Materialization Specification

= Where to put found stuftf?
o Workspace
o Target platform
o Selected folder

= Defaults:

o Source into workspace

o Binary to target platform
o Good default

Buckminster - Summary

= Collects the components
= Defined operations

= From here
o Execute build

o Run tests

Further Reading: BuckyBook

" Eclipse Buckminster, The Definitive Guide

o http://www.eclipse.org/downloads/download.php?
file=/tools/buckminster/doc/BuckyBook.pdf

o 271 page long ,draft”

Maven/Tycho

Maven Tycho

= Maven POM is simple

o “Manifest-first” approach
* Develop in Eclipse normally
* Add minimal descriptors for builds

o Minor settings duplication ®

Tycho Packaging Types

= eclipse-plugin
o Plug-in projects
= eclipse-test-plugin
o Plug-in tests
= eclipse-feature
o Feature projects
= eclipse-repository
o RCP applications and p2 repositories projects

= eclipse-target-definition

o Target platform definition projects

Tycho Sample: Minerva project

= Minerva project
o Target platform
o Building
o Tests

" Links

o http://wiki.eclipse.org/Minerva

o https://github.com/caniszczyk/minerva

Tycho: Try it out

= Three steps:
o Install Maven
o git clone git://github.com/caniszczyk/minerva.git

o mvn -Dskip-ui-tests=true clean install

Summary

= Test automatization
o Complex process
o Many steps
o Automatization can happen one-by-one

= Build process
o Required
o Goal: reproducibility

o Good tool support
o BUT: It has to be created at first

GEEK & POKE’S LIST OF
BEST PRACTICES

TODAY: CONTINUOLS INTEGRATION
GIVES YOU THE COMFORTING
FEELING TO KNOW THAT
EVERYTHING IS NORMAL

ALL THE
AUTOMATED
TESTS HAVE
CRASHED

geek & poke

THAT'S
NORMAL

]

T MRETT http://geekandpoke.typepad.com/geekandpoke/2010/10/geekpokes-list-Gi-lesEprac

