CASE STUDY: COST CALCULATOR

FOR CLOUD APPLICATIONS

Background:
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based capacity planning of VCL clouds. International Journal of Cloud
Computing, 6(4), pp.370-383.




Enterprise cloud
Purchased CPU time Y¥i{3

amazon
webservices™




Our VCL cloud

= Maintained by our research group

= 5 semesters
o 2 courses/semester

= 9 hosts

= ~20 000 reservations
o Only 22 rejected




Reservation Workflow in VCL

= Request
o VM type
o Length
o Immediately or later

= Hard reservation limit

Load time
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Capacity Planning
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Capacity Planning
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The Available Dataset
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Data Analysis Steps
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Workload prediction

Lab 1
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Workload prediction

Ll

= Daily workload follows a ,
Gaussian-like distribution
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Model fitting

Lab 1 fitted
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Workload prediction

= Daily workload followsa | )
Gaussian-like distribution 5 AVJ
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Workload prediction

Students work even in
the night
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Workload prediction
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Resource Utilization Prediction

System workload
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Challenges

= |tisacloud
o Statistical multiplexing ©
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Challenges

= |t is a cloud

= Hosts show different behavior
o Warm spare

o Different user behavior
o 7?7

Hostl Host?2




Resource utilization analysis: memory

" Linear model
oMem(VM;) + Mem(VM,) + ... + Mem(mgmt)
o Weighted by the workload

Very good at following drastic
changes

Within 5% by the
97% of time
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Resource utilization analysis: memory

" Linear model
oMem(VM;) + Mem(VM,) + ... + Mem(mgmt)
o Weighted by the workload




Resource utilization analysis: CPU

= |inear model
o CPU(VM,) + CPU(VM,) + ... + CPU(mgmt)

o Weighted by the workload CPU is much more

sensitive than memory
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Resource utilization analysis: CPU
The students use

the CPU more
intensively before
the deadlme

cpu.usage -

iy
o

o
1

CPU usage per ViV

Bk ou

Reservation count

— Tl

1 334000000 1 334500006

Timestamp

System workload

1384000000 1384500000



Resource utilization analysis: CPU

* |inear model
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= Data-driven static capacity planning
o ,user behavior” analysis
o resource fingerprint estimation

= Conclusions:
o student behavior can be modelled
o resource allocation were sometimes (too) strict

= Dynamic capacity planning?
o Long loading time - failed reservations soon

o When to burst out to a public cloud?




