
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Hazard Analysis

Ákos Horváth and István Majzik
Budapest University of Technology and Economics
Dept. of Measurement and Information Systems



Hazard analysis

 Goal: Analysis of the fault effects and the 
evolution of hazards through dangerous states
oWhat are the causes for a hazard?

o What are the consequences of a component fault?

 Results:
o Categorization of hazards

• Frequency of occurrence

• Severity of consequences

o Hazard catalogue

o Risk matrix

 These results form the basis for risk reduction

trigger

Cause Hazard Consequence

frequency severity



Categorization of the techniques

 On the basis of the development phase (tasks):
o Design phase: Identification and analysis of hazards

o Delivery phase: Demonstration of safety

o Operation phase: Checking the modifications

 On the basis of the analysis approach:
o Cause-consequence view:

• Forward (inductive): Analysis of the effects of fault/events

• Backward (deductive): Analysis of the causes of hazards

o System hierarchy view:
• Bottom-up: From the components (subsystems) to system level

• Top-down: From the system level towards the components

 Systematic techniques are needed



Hazard analysis techniques (overview)

1. Checklists

2. Fault Tree

3. Event Tree

4. Cause-Consequence Analysis

5. Failure Modes and Effects Analysis (FMEA)



1. Checklists

 Basic approach
o Collection of experiences about typical faults and hazards

o Used as guidelines and as „rule of thumb”

 Advantages
o Known sources of hazards are included

o Well-proven ideas and solutions can be applied

 Disadvantages
o Completeness is hard to achieve (checklist is incomplete)

o False confidence about safety

o Applicability in different domains than the original domain 
of the checklist is questionable



Example: Checklist to examine a specification

 Completeness
o Complete list of functions, references, tools

 Consistency
o Internal and external consistency

o Traceability of requirements

 Realizability
o Resources are available

o Usability is considered

o Maintainability is considered

o Risks: cost, technical, environmental

 Testability
o Specific requirements

o Unambiguous requirements

o Quantitative requirements (if possible)



Motivations to check the specification

 Experience: Hazards are often caused by
incomplete or inconsistent specification
o Example: Statistics of failures detected during the 

software testing of the Voyager and Galileo spacecraft
78% (149/192) specification related failures, from which

• 23% stuck in dangerous state (without exit)

• 16% lack of timing constraints

• 12% lack of reaction to input event

• 10% lack of checking input values

 Potential solutions to avoid problems
o Using a strong specification language

o Applying correct design patterns

o Checking the specification



Example: Checklist for state machine specifications

Completeness and consistency:

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

Operator
Controller

Controlled

system



Example: Checklist for state machine specifications

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

- Safe initial state

- Actualization of the internal model: timeout and

transition to “invalid” state if input events are 

missing; output is not allowed in this state

Operator
Controller

Controlled

system



Example: Checklist for state machine specifications

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

- Reaction to each potential input event

- Deterministic reactions

- Input checking (value, timing)

- Handling of invalid inputs

- Limited rate of interrupts

Operator
Controller

Controlled

system



Example: Checklist for state machine specifications

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

- Acceptance checking on the output

- There are no unused outputs

- Compliance with the limitations of the environment

Operator
Controller

Controlled

system



Example: Checklist for state machine specifications

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

- The effects of outputs are checked through 

processing the inputs

- Stability of the control loop is preserved

Operator
Controller

Controlled

system



Example: Checklist for state machine specifications

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

- Each state is reachable (static reachability)

- Transitions are reversible (reverse path exists)

- Multiple transitions from dangerous to safe states

- Confirmed transitions from safe to dangerous states

Operator
Controller

Controlled

system



Example: Checklist for state machine specifications

 State definition

 Inputs (trigger events)

 Outputs

 Relation of inputs (triggers) and outputs

 State transitions

 Human-machine interface

Well-specified outputs towards the operator:

- Ordering (with priorities)

- Update frequency

- Timeliness

Operator
Controller

Controlled

system



Example: Static checking of the source code

 Goal: Finding dangerous constructs
o Basis: Language subset (allowed constructs)

 Tool support
o Finding typical faults (e.g., Lint for C)

• Data related faults: Lack of initialization, …

• Control related faults: Unreachable statements, …

• Interface related faults: Improper type, lack of return value, …

• Memory related faults: Lack of releasing unused memory, …

o Semantic analysis (e.g., PolySpace tool)
• Analysis of the function call hierarchy

• Checking data flow (relations among variables)

• Checking the ranges of variables

• Checking coding rules (e.g., code complexity metrics)



Example: Output of the analysis in PolySpace

 Static analysis and code colouring: Identification of dangerous 
constructs



2. Fault tree analysis

Analysis of the causes of system level hazards

o Top-down analysis

o Identifying the component level combinations of 
faults/events that may lead to hazard

Construction of the fault tree

1. Identification of the foreseen system level hazard: 
on the basis of environment risks, standards etc.

2. Identification of intermediate events (pseudo-events):
Boolean (AND, OR) combinations of lower level events 
that may cause upper level events

3. Identification of primary (basic) events: 
no further refinement is needed/possible



Set of elements in a fault tree

Top level or intermediate event

Primary (basic) event

Event without further analysis

Condition for a composite event

AND combination of events

OR combination of events

Normal event (i.e., not a fault)



Fault tree example: Elevator

Elevator

stuck
Top level event

(hazard)



Fault tree example: Elevator

Elevator

stuck

Power

outage
Control

fault

Top level event

(hazard)

Boolean

relation

Intermediate

event
Button

stuck



Fault tree example: Elevator

Elevator

stuck

Power

outage
Control

fault

Controller

hardware fault
UPS

outage

380V

outage

Primary

proc. fault

Control

software

fault

Top level event

(hazard)

Primary

evens

Boolean

relation

Intermediate

event
Button

stuck

Secondary

proc. fault

Event without

further analysis



Fault tree example: Software analysis

IF-THEN-ELSE

related hazard

Condition TRUE,

THEN branch fault
Condition FALSE,

ELSE branch fault

ELSE

branch fault
THEN

branch fault

Condition

TRUE

fault

Condition

evaluation

fault

Condition

FALSE

fault

Operation1

fault

Operation2

fault



Qualitative analysis of the fault tree

 Fault tree reduction: Resolving intermediate 
events/pseudo-events using primary events
 disjunctive normal form (OR on the top of the tree)

 Cut of the fault tree: 
AND combination of primary events

 Minimal cut set: No further reduction is possible
o Minimal cut: There is no other cut that forms its 

subset

 Outputs of the analysis of the reduced fault tree:
o Single point of failure (SPOF)

o Critical events that appear in several cuts



Original fault tree of the elevator example

Elevator

stuck

Power

outage
Control

fault

Controller

hardware fault
UPS

outage

380V

outage

Primary

proc. fault

Control

software

fault

Button

stuck

Secondary

proc. fault



Reduced fault tree of the elevator example

Elevator

stuck

UPS

outage

380V

outage

Primary

proc. fault

Control

software

fault

Button

stuck

Secondary

proc. fault
SPOFPotential

SPOF



Quantitative analysis of the fault tree

 Basis: Probabilities of the primary events
o Component level data, experience, or estimation

 Result: Probability of the system level hazard
o Computing probability on the basis of the probabilities 

of the primary events, depending on their combinations

o AND gate: product (if the events are independent)
• Exact calculation: P{A and B} = P{A} · P{B|A} <= P{A} · P{B}

o OR gate:   sum (worst case estimation)
• Exactly: P{A or B} = P{A}+P{B}-P{A and B} <= P{A}+P{B}

 Typical problems:
o Correlated faults (not independent)

o Handling of fault sequences



Fault tree of the elevator with probabilities

Elevator

stuck

Power

outage
Control

fault

Controller

hardware fault
UPS

outage

380V

outage

Primary

proc. fault

Control

software

fault

Button

stuck

Secondary

proc. fault

p2 p3

p1 p2p3

p4 p5

p4p5 p6

p4p5+p6

p1+p2p3+(p4p5+p6)



3. Event tree analysis

 Forward (inductive) analysis:
Investigates the effects of an initial event
o Initial event: component level fault/event

o Related events: faults/events of other components

o Ordering: causality, timing

o Branches: depend on the occurrence of events

 Investigation of hazard occurrence „scenarios”
o Path probabilities (on the basis of branch probabilities)

 Advantages: Investigation of event sequences
• Example: Checking protection systems (protection levels)

 Limits: Complexity, multiplicity of events



Event tree example: Reactor cooling

Cooling1

leakage

Power

failure

Cooling2

failure

Reagent

removal failure

Process

shutdown

initial

event



Event tree example: Reactor cooling

Cooling1

leakage

Power

failure

Cooling2

failure

Reagent

removal failure

Process

shutdown

initial

event

no

yes



Event tree example: Reactor cooling

no

Cooling1

leakage

Power

failure

Cooling2

failure

Reagent

removal failure

Process

shutdown

initial

event

no

yes

yes

no

no

yes
yes

yes

no















Event tree example: Reactor cooling

no

Cooling1

leakage

Power

failure

Cooling2

failure

Reagent

removal failure

Process

shutdown

initial

event

no

yes

yes

no

no

yes
yes

yes

no

P1•P3•P4

P1

1-P2

P2

P3

1-P3

P4

1-P4

P5

P5

P1•P3•P4•P5

P1•P3

P1

P1•P5

P1•P2



Event tree example: Recovery blocks (RB)

Variant 1

exception

Checking

fails

Variant 2

exception

Checking

fails

no

no

yes

no
no

yes

yes

no

yes

no

yes

yes

Service is not available

Service is not available

Service is not available

Service is not available

1-p1

p1

1-p2

p2

1-p3

p3

1-p3

p3

1-p4

p4

1-p4

p4



4. Cause-consequence analysis

 Integration of an event tree with fault trees

o Event tree: event sequences (scenarios)

o Attached fault trees: analysis of the causes of events

 Advantages:

o Event sequences (forward analysis) and analysis of
causal relations (backward analysis) together

 Limitations:

o Separate diagram for each initial event

o Complexity



Cause-consequence analysis example

Overheat

Opening

of valve 1

yes no

Opening

of valve 2

yes no

P1

P0•P1 P0•P1•P2

P0

P0

P2



Cause-consequence analysis example

P1

Valve 1

fault

Control

fault

Valve 2

fault

Operator

fault

P2

Overheat

Opening

of valve 1

yes no

Opening

of valve 2

yes no

P0•P1

P0

P0 P0•P1•P2



Cause-consequence analysis example

Valve 1

fault

Control

fault

Valve 2

fault

Operator

fault

Overheat

Opening

of valve 1

yes no

Opening

of valve 2

yes no

P1 = pa + pb

P0•P1 P0•P1•P2

P0

P0

pa pb

P2 = pc + pd

pc pd



5. Failure modes and effects analysis (FMEA)

 Systematic investigation of component failure 
modes and their effects

 Advantages:
o Known faults of components are included
o Criticalities of effects can also be estimated (FMECA)

Component Failure mode Probability Effect 

D1 diode open circuit 
 
short circuit 

65% 
 
35% 

- over- 
heating 

- damaged 
product 

... ... ... ... 

 

 



Example: Analysis of a computer system

Failure

mode
Effect

Failure mode 

probability

Computed

failure rate



Analysis of operator faults

 Qualitative techniques:
o Operation – hazards – effects – causes – mitigations

o Analysis of physical and mental demands

o Fault causes human-machine interface problems

Open Close

Close Open
100

200

300

200

250

300

Cooler1 Cooler2



Catalogue of hazards

 Categorization of hazards on the basis 
of hazard analysis (e.g., MIL-STD-822b, NASA):
o Severity level of hazard consequences:

Catastrophic, critical, marginal, insignificant

o Frequency of occurrence of hazards:
Frequent, probable, occasional, remote, improbable, 
incredible

 Identification of risks

 Output of the severity/frequency analysis:
o Risk matrix

o Protection level: Identifies the risks to be handled



Example: Risk matrix (railway control systems)

 Frequency of 
Occurrence of a 
Hazardous Event 

RISK LEVELS 

Daily to 
monthly 

FREQUENT  

(FRE) 

Undesirable 

(UND) 

Intolerable 

(INT) 

Intolerable 

(INT) 

Intolerable 

(INT) 

Monthly to 
yearly 

PROBABLE 

 (PRO) 

Tolerable 

(TOL) 

Undesirable 

(UND) 

Intolerable 

(INT) 

Intolerable 

(INT) 

Between 
once a year 

and once per 
10 years 

OCCASIONAL 

 (OCC) 

Tolerable 

(TOL) 

Undesirable 

(UND) 

Undesirable 

(UND) 

Intolerable 

(INT) 

Between 
once per 10 
years and 

once per 100 
years 

REMOTE  

(REM) 

Negligible 

(NEG) 

Tolerable 

(TOL) 

Undesirable 

(UND) 

Undesirable 

(UND) 

Less than 
once per 100 

years 

IMPROBABLE 

(IMP) 

Negligible 

(NEG) 

Negligible 

(NEG) 

Tolerable 

(TOL) 

Tolerable 

(TOL) 

 INCREDIBLE 

(INC) 

Negligible 

(NEG) 

Negligible 

(NEG) 

Negligible 

(NEG) 

Negligible 

(NEG) 

 
 

INSIGNIFICANT  

(INS) 

MARGINAL  

(MAR) 

CRITICAL 

(CRI) 

CATASTROPHIC 

(CAT) 

  Severity Levels of Hazard Consequence 

 



Examples of risk reduction requirements

 In case of catastrophic consequence: 

o Improbable or lower frequency of occurrence is 
needed

 In case of critical consequence: 

o Improbable or lower frequency of occurrence is 
needed

 In case of marginal consequence: 

o Remote or lower frequency of occurrence is needed

 In case of insignificant consequence: 

o Occasional or lower frequency of occurrence is needed



Risk reduction Techniques 



Basic idea for risk reduction 

 Mitigation (or prevention) of causes

 Containment (or protection) of consequences



Risk reduction principles (overview)

1. Hazard elimination: Assuring safety by eliminating hazards
o Substitution

o Simplification

o Decoupling

o Eliminating human errors

2. Hazard reduction: Reducing the occurrence rate of hazards
o Design for controllability

o Barriers: Lockouts, lockins, interlocks

o Failure minimization: Safety margins, redundancy

3. Hazard control: Reducing the likelihood of an accident
o Reducing exposure

o Isolation and containment

o Protection systems and fail-safe design 

4. Damage minimization: Reducing the consequences
o Planning alarming and escape routes

o Determining “point of no return”



1. Hazard elimination

Generic method Hardware solution Software solution

a. Substitution  Using safer material,
component,
technology,
…

E.g., substitution of 
flammable or toxic 
materials

 More safe 
programming 
language
(e.g., SPARK Ada
instead of C)

 Using well-tried 
modules 
(proven in use)



1. Hazard elimination

Generic method Hardware solution Software solution

b. Simplification  Reducing the 
number of 
components

 Reducing the 
number of 
operating modes

Flexibility 
simplification

Fault tolerance 
simplification

Simple program 
structure (testable, 
analyzable):

 Deterministic, 
static control

 Structured 
programming

 Simple
interfaces

 Robust 
data structures



1. Hazard elimination

Generic method Hardware solution Software solution

c. Decoupling Elimination of 
dependences and 
unnecessary 
interactions (error 
propagation paths)

E.g., firebreaks, 
overpasses and 
underpasses

“Loosely coupled” 
software:

 Modularization
(safety kernel)

 Information hiding
(well-defined 
interfaces)

 Separation of 
safety-critical and 
non-safety-critical 
functions



1. Hazard elimination

Generic method Hardware solution Software solution

d. Eliminating 
human errors

Masterability, 
understandability, 
maintainability, 
checkability

 Ergonomic 
interfaces

 No interchangeable   
connectors

 Color codes

 …

Limiting fault prone 
features in language 
subsets

 Pointers,

 Implicit conversion,

 Overloading, …

Simple human-
machine interfaces:

 Clear operation 
modes

 Tolerable timing



2. Hazard reduction

Generic method Hardware solution Software solution

a. Design for 
controllability
(active hazard 
reduction)

 Allowing actions to 
provide protection 
in case of hazards

 Detection, diagnosis 
and controlled 
response

 E.g., mechanical
control systems
(backup), multiple 
control modes, …

 Incremental control: 
Feedback and 
corrections

 Monitoring hazards 
and conditions:

- Sanity check

- Monitor-actuator

- Watchdog

- Safety executive 

architecture patterns



2. Hazard reduction

Generic method Hardware solution Software solution

b. Barriers
(passive hazard 
reduction)

 Lockout: 
Making access to 
dangerous state
difficult (wall, fence)

 Lockin: 
Make leaving a safe
state difficult (safe 
area)

 Interlock:
Enforce a safe 
sequence of actions

 Lockout: 
Access control,
authorization,
acknowledgements

 Lockin:
Checking inputs,
requests,
accesses

 Interlock:
Checking call sequences,
synchronization (baton)



2. Hazard reduction

Generic method Hardware solution Software solution

c. Failure 
minimization

 Robust components

 Safety factors, 
safety margins
(e.g., higher load 
does not cause 
failure)

Safety factor: Ratio 
expected strength and 
expected (nominal) stress

Safety margin: Difference 
of minimum probable 
strength and maximum 
probable stress

 Robustness

 Redundancy 
(diverse instances)

 Fault tolerance: 
Forward recovery is 
preferred
(guarantees for 
execution)



3. Hazard control

Generic method Hardware solution Software solution

a. Reducing 
exposure

 Staying in higher 
risk state as short as 
possible

 Timely return to 
safe state

 Safe initial state

 Keeping 
synchronization with 
the environment to
return to safe state 

b. Isolation and 
containment

 Isolation in time 
and space

 Partitioning 
of safety functions

c. Protection 
systems

 Moving the system 
to safe state

 Control to safe state

 Challenge protocol for 
protection systems



4. Damage minimization

Generic method Hardware solution Software solution

a. Planning 
alarming and 
escape routes

 Alarm devices with 
periodic testing

 Fire escape, 
lifeboat, 
abandonment of 
products

 Software controlled 
alarm

 Complex devices with 
software support 
(e.g., airbag control)

2. Determining 
„point of no 
return”

 Turn to damage 
minimization 
instead of hazard 
control



Summary

 Hazard analysis
o Checklists

o Fault tree analysis

o Event tree analysis

o Cause-consequence analysis

o Failure modes and effects analysis (FMEA)

 Risk matrix
o Severity level of hazard consequences

o Frequency of hazard occurrence

 Risk reduction techniques
o Hazard elimination, hazard reduction, hazard control, 

damage minimization


