Example: Design tool with formal background
SCADE Suite

Safety Critical Applications
Development Environment

Esterel Technologies
(part of ANSYS)

Development of
embedded, real time,
safety-critical software
with formal methods

and integrated verification

PROTOTYPE
& DESIGN

Overview

Control
Software Design

@ &

Model Formal
Checking Verification
Debug & Rapid Prototyping

Simulation

& Executable Spec

Model Coverage
Analysis

Time & Stack
Analysis

VERIFY

SCADE Suite
KCG

C & Ada

I Object C_ode &
. Compiler
Adaptors Verification

DO-178B

DO-178C

IEC 61508

EN 50128

ISO 26262
Certification Kits

GENERATE

Applications of SCADE

Includes source code
developed in SCADE:

o Airbus A380, Airbus A340
e Boeing 787

e Dassault’s Falcon 7X

e Ariane 5

e M51

e Eurocopter

o /8 Helicopter

e Audi A6, A8

e PSA 407, PSA 607

e BMW, Honda Motocycles
e ... and many more

Application domain: Embedded controllers

e Controlling/affecting physical processes
— Sensors, actuators, control loop
— Human-machine interface

e Behvior of controllers: Cyclic

— Read sensor data —> Process —>
Instruct actuators —> Read sensor data...

— Time-driven, event-driven or polling

e Design approaches:
— Control-oriented design
e Discrete control: Binary signals (e.g. change operation mode)
e Finite-state automata (states, events, actions)
— Data-oriented design
e Continuous control: Signal processing (diff. equations)
o Data-flow network (processor components, data paths)

Application domain: Embedded controllers

/ OpenButton/OpenD oor

TimerOut/CloseDoor

DoorCloged/StartM otor

N

OpenButton/0penD oor

Stopped/0penDoor

/

e Finite-state automata (states, events, actions)
— Data-oriented design

e Continuous control: Signal processing (diff. equations)
o Data-flow network (processor components, data paths)

Application domain: Embedded controllers

e Controlling/affecting physical processes
— Sensors, actuators, control loop

— Human-machine interf

U » 0.

e Behvior of controlle PR

— Read sensor data —> CAB0SC

Instruct actuators —> l

— Time-driven, event-dr 9
e Design approaches -

— Control-oriented d '@__}6}3'

e Discrete control;

e Finite-state au

\

/

— Data-oriented
o Continuous/ontrol: Signal processing (diff. equations)
o Data-flow network (processor components, data paths)

Formalism: Safe state machine

e States, restricted state hierarchy
— No concurrent regions, transitions between hierarchy levels

o Restricted set of modeling elements
— E.g. no history state

e Deterministic behavior (with proper restrictions)

Formalism: Data-flow diagrams

Function blocks are elements of computation
Directed arcs denote the direction of data flow
Inputs are sampled periodically

Outputs are computed and validated cyclically

autarmod
—

| Fio
Il11_"']3? L
—'| FiB
P ointR es etb— -
.

- Extem alC onditio re T
'ind "'__[I

. "
Filaot I;

~F ILE ¥ M S peed
PointRes off |_

null_spesd—— FreqQrder

Putut Ty pr

Development of the SCADE language

e Formal language

— Basis: the synchronous Lustre language
(Univ. Grenoble, 1983)

— More that 20 years of preliminary research
o Parallel definition of the SCADE language and its
mathematically precise semantics

— Interpretation of a SCADE model is independent of the tools

e Safety in the main focus since the beginning

— The language was defined in cooperation with industrial
partners (later users) and approval authorities

Support of the design process

[Informal requirements] [Matlab / Simulink model J
.) Formal verification
Sln_wulat.mn SCADE SAT + computation
Animation St. Machine (Prover plug-in)
Data-flow n. P9

DO 178-B certified
code generator

[Embedded C [ADA code}

Preserving semantics + certified code generator and compiler
— modul/unit testing is not necessary (Airbus: 50%)

The SCADE Suite tool

o Pilot.vsw - SCADE - GetMiddle:

|| Bl Edt vew tiode Insert Layout Broject ook Erowse Window telp ‘

Ll Ll
r hl I I r DSE@| i mmxooma@|ew || =|r = e | VAN I
pppppppp [Ortmiadstd =1 Smator =l @ \HM 2 Aletock =[Workepace =% & |

mwmmﬂt@ﬂb\fbuy»awnm|-u.-l+l\
—ln | | .
Lill

— Data-flow diagrams i = -
— Safe state machines N | =
Static analysis

Simulation
— Interactive and batch mode | ..:

aaaaaaaaaaaa

Consumers

Callers

- TeSt| n g / d e b u g fu n Ctl O n S _% ﬁ_ Code Generator - Sinulatar I Controler D01 78E Generation j ”
Y o . Build | Simulation I W rapper
FO r m a I Ve r I fl Ca tl O n ——— Generated Code | Check I E xpanzion I Configuration _i
— Checki ng Of pro pe rties Root node: IFIight_E-:untrDI j
. Code Generatar; [ualifiable C [+4.2] j
COd e g e n e ra tl O n Output directory: gfﬂiﬁ-ﬁrdﬂg.ada Configuration] _I
_ Ad & C [Split ta multiple files I"I
a O ptirnizations standard C Boolean az bits
— Qualified C: DO-178B Level A ¥ e I oh-Generaton,
v Intemnal vanables [Inferfaces s 4
Or MISRA COnfO rma nce v User wariables [T Constants i

SCADE model: different views on demand

1
2
3

T

1]

I ,HE
z
//
l[: @]
@] [ve i B Losl | Hvs)
— 1
, I}
7 1
4 I}
P U
7’ 1

B3

v

Hierarchical

view B2

SCADE model: different views on demand

Textual
view

~ —

B1 node counter (init, incr : int;
reset : bool)
returns (count : int);

let
1 count=init -> if reset then init
2 else pre(count) + incr;
3 tel;

2
/

1]

I
- I H
@i HHH

0

B3

Hierarchical
|—>—

view B2

v

SCADE model: different views on demand

1
2
3

I
—> I I
@i HHH

—

Textual
view

~ —

B1 node counter (init, incr :

reset :

bool)

returns (count : int);

let

int;

count=init -> if reset then inig/
else pre(count) + incr;

tel;

4

Hierarchical
view

v

B3

2:cond2

view

SCADE model: different views on demand

Textual
view
B]1 node counter (init, incr : int; ‘| B3
-A reset : bool) 2 .
returns (count : int); ,/ Hoonds
let 2:cond2
count=init -> if reset then init//'
else pre(count) + incr;
tel;)
~ -7
II] s - /’, 1:condl
SS Bl S e ——— =
: : B3 ——=|----—"" _
Hierarchical - L - State machine
view B2 b — === — view
B2
Op3 Op3 —
Net view
\
- i)p op2 |—

Example: Textual component

init

counter count

incr

reset

Textual description of behavior:

node counter (init, incr : int; reset : bool)
returns (count : int);

let equa eq counter [,]

count = init -> if reset then init
else pre(count) + incr;

tel;

Example: Graphical component (block diagram)

7 |

> Atk .

count

=
0
=y

++

PRE

init

Equivalent textual description:

count = init -> i1f reset then init
else pre(count) + incr;

Example: State machine component

4 N
floor —— up
requested_floor elevator —— down
alarm \ j_ stop

State machine of the behavior (Moore):

requested_floor > floor

T
(requested_floor =
floor) or alarm

> floor
2:

S <o 7
requested_floor < floor -,

SCADE block library

du I+ Ik-17
count_down [- dt - - 2
T R |
K1 Ik + Ike-17 4+ Ik-20
jr | Jd 1+KZ7E™-11 | _ 3 |
Bl K2 | = |
hdermory
R |

1K i - | | | 5 d IntegrTrapez |

E T L H
B — IntegrFwd True on b
[] R T L H Falze off |

=1 -] A

Analysis techniques: Simulation

+
/EH? i Yanable Walue
= World/GUI _logic 1/5peedSetPaint 7403
l = WwWorld/GUI_logic 1 A4S etPaint 1097.3
p—— = World/Flight_Control 1/Control/elevatorCrmd 1.566
2 =] ' - World/Flight_Control 1/Contral/throtteCrid 1.0
Integrirapez r word/Flight_Contral 1/Contol/speedSensor - B16.27
234 RoT LA r World/Flight_Control 1/Contol/altSensor 165.45
1000 .0
i i i warld!DisplaySpeed: 395.47
Ki
|Feset JEEItaT JLFwUm'rt HighLirmit
- I Fhght_Lontrol WorldiDizplayAltitude: 3635.9
+--1 F GUI_logic
- e 4l
+-1 Proof %
+-J } Prop1 Implernentation Yiew
-} speedContib wWorld!altLight: true
+-[[] speedvSangle =.{TL’| Remove Breakpoint
#- UritCorert ﬁ{T_r,’l Enable Breakpoint Before
-} Watchariable B pizable Breakpoint After
o WWhorld world!speedlight: true
+-|_] lbPhysicalPlane Add to Favarites, ..
+-_] libraath o Add ko SCC..,
+-|_] libmathadvanced
A libverification E& Properties. .

40000 ROOa

Analysis techniques: Formal theorem prover engine

o Definition of properties: Property component (property
node); output is either true or false

— Describes correct behavior, e.g.
Aircraft_Altitude < 200 and not Landing_Configuration implies Alarm

= Property/eq_Property_1 ;]E' E]

| ™,
— <
A lrcrat_ & drtecke
w |
D mplks - }
RN I}{] / PIopery
I

Analysis techniques: Formal theorem prover engine

e Integration of property nodes into the design:
Inserted as observer components (observer nodes)

® Observer/eq_Observerl 1 = |I:I|£|
£
Hx’
™
AN —X |
I - Bevator Y
Input i % AN
—
< >
htgxFloor | hfax FloorMot Excedesd
N N
= -~
inFloor | |- hfin Floor Mot Bxcadead
Ad
< | i

Analysis techniques: Formal theorem prover engine

To be proven: Output of observer component is always true
— Proof: Exhaustive search, counterexample-generation (SAT)

JLCruiseControl.Regul DN

War 1

ER=] CuiccConiol
== Inputs
. » On true
. » O true
v Resume false
L e accel 1.0000000
. » brake 0.0000000
. v speed 31.000000
L Qutputs
[Locals

-4 PPI Analysis Report

Proof Objectives

CruiseControl.Fegul OM

0

(o x|

Proof Objectives

CruiseControl.Requl_ON

Mode CruiseControl
Output Regul ON
Strategy Default Prove
Mapping

Group None

Resy Falsifiable
l scenanos/CruiseControl.Regul ON 50,555

| [Load Scenario]

Translation

time s

Proof time 0.150207 =
Total time 0.150207 s
Assertions none
Messages none

L]

Analysis techniques: Model-based testing

-

High-Level
Requirements
POORSH Simulink®
e \
i o \
_;’P Requirement-based tests
oL~ Model Test Coverage

Assess how thoroughly the
model has been explored

[SW Requirements |

&

7 SCADE) Editor Quick Check
L Test semantics and
. : ’_‘_' consistency across the model
SCADE
KCG KCG
DO-1788&Qua|ified
IEC 61508 Certified
Code Generator
: H No low-level testing required
on generated code
C Code
Compiler
Compiler Verification Kit
Verify the compilation chain and
the target environment
for SCADE-generated code
Object

Code

" SW Verification |

Model Test Coverage

Requirement-based test cases
Model-based test coverage:
— Has every element of the model been
activated dynamically?
— Untested functions can be discovered
System & SW Developmant Flow
| System
System
“ﬂ“:_::;:““) SW Verification Flow
. | sw
4LP High Level)
Requirements - Requirements-based
Tast Creation
SCADE L ‘_|
Editor Test Suite
SCADE Models "

(LLR & Architectura)

g,} (Qualified MTC)

Code generation: Based on the verified model

High-Level
Requirements
POORS® Simulink®
A5 PN
!i;, Requirement-based tests
oML~ Model Test Coverage

Assess how thoroughly the
model has been explored

[SW Requirements |

~N

7 SCA DE Editor Quick Check
:_):]“ =T | Test semantics and
' 'T L___Jj' consistency across the model
SCADE
KCG KCG

DO-17SB&Qualified
IEC 61508 Certified
Code Generator

No low-level testing required
on generated code

% Code

J

Compiler
Compiler Verification Kit
Verify the compilation chain and
the target environment
for SCADE-generated code
Object

Code

KCG: certified code generator

— DO-178B, IEC 61508, MISRA

— No need for unit/model tests in case of
generated code

External or manually written code:

— E.g. 3rd party software libraries
— Testing is still mandatory!

System Requirements
Based Testing focus

SW Requirements Bab

Low-Level Testing

saved with KCG M

Application

Wi
e = l

| Unit testing

L{/"

~

User written C libraries

Code generation: Based on the verified model

High-Level
Requirements

DOORS® Simwlin

. n
- A
i AR

4
/(”

oML

o Compiler Verification Kit:
— Source code patterns

Requirement-based tests

Model Test Coverage
Assess how thoroughly the
model has been explored

[SW Requirements |

e
_SCADE ~
o

SCADE
KCG

% Code

Editor Quick Check

Test semantics and

— Test cases for compiled code patterns
(all must pass)

e To be verified:

consistency across the model —_ (OWn) CO m pl Ie r

KCG
DO-1788&Qualified
IEC 61508 Certified

Code Generator

No low-level testing required
on generated code

— Execution platform

Manual Coding DO-178B Processes SCADE
Verification| Verfication o Verification| Verification of
Verfication Verification
System Requirements

Allocated to Software

Compiler

Object
Code

Compiler Verification Kit

Verify the compilation chain and
the target environment
for SCADE-generated code

N = EE S A N

Software Requirements

s 1

Source Code

Compare manual and SCADE verification

J

SCADE Suite: The “certified software factory”

System Requirements

Textual Requirements Management
Architecture Algorithm
Design Design
Capture Capture

%OORSN __N__

Link
SCADE Simulink

Gateway for Gateway
R ! apsod 'lfl'l-'

-) Debugging &
Configuration SCADE) Simulator simulation Verification
. Management SCCI) &
PI‘O]eCt Gateway ppe— -
Certified o == S
Management Verifier . Validation
SOftware FaCtOI'y Formal Verification
Model
Re[;)orier Editor lvlcoo(ieelr;rgzt
Automatic
Design

Documentation
Model Coverage

Analysis

Pre-qualified for COde Gen er a ti On

Green Hills® Green Hills®

"REBFTWARLD. IS,
"R EFTWARL. INK. -

compilers
IEC 61508 Certified E INTEGRITY

Wrapper

@@

Object Code Integration
Verification On Target

Compiler
Verification Kit

for all SIL levels

