
Example: Design tool with formal background

SCADE Suite

Safety Critical Applications
Development Environment

Esterel Technologies
(part of ANSYS)

Development of

embedded, real time,

safety-critical software

with formal methods

and integrated verification

Overview

Applications of SCADE

Includes source code
developed in SCADE:

• Airbus A380, Airbus A340

• Boeing 787

• Dassault’s Falcon 7X

• Ariane 5

• M51

• Eurocopter

• Z8 Helicopter

• Audi A6, A8

• PSA 407, PSA 607

• BMW, Honda Motocycles

• … and many more

AIRBUS – A340-600 & A380

Application domain: Embedded controllers

• Controlling/affecting physical processes
– Sensors, actuators, control loop

– Human-machine interface

• Behvior of controllers: Cyclic
– Read sensor data –> Process –>

Instruct actuators –> Read sensor data…

– Time-driven, event-driven or polling

• Design approaches:
– Control-oriented design

• Discrete control: Binary signals (e.g. change operation mode)

• Finite-state automata (states, events, actions)

– Data-oriented design

• Continuous control: Signal processing (diff. equations)

• Data-flow network (processor components, data paths)

Application domain: Embedded controllers

• Controlling/affecting physical processes
– Sensors, actuators, control loop

– Human-machine interface

• Behvior of controllers: Cyclic
– Read sensor data –> Process –>

Instruct actuators –> Read sensor data…

– Time-driven, event-driven or polling

• Design approaches:
– Control-oriented design

• Discrete control: Binary signals (e.g. change operation mode)

• Finite-state automata (states, events, actions)

– Data-oriented design

• Continuous control: Signal processing (diff. equations)

• Data-flow network (processor components, data paths)

Application domain: Embedded controllers

• Controlling/affecting physical processes
– Sensors, actuators, control loop

– Human-machine interface

• Behvior of controllers: Cyclic
– Read sensor data –> Process –>

Instruct actuators –> Read sensor data…

– Time-driven, event-driven or polling

• Design approaches:
– Control-oriented design

• Discrete control: Binary signals (e.g. change operation mode)

• Finite-state automata (states, events, actions)

– Data-oriented design

• Continuous control: Signal processing (diff. equations)

• Data-flow network (processor components, data paths)

*-

+

X

pre sin

0.U

+

pre

cos

1.

S

pre

Formalism: Safe state machine

• States, restricted state hierarchy
– No concurrent regions, transitions between hierarchy levels

• Restricted set of modeling elements
– E.g. no history state

• Deterministic behavior (with proper restrictions)

Formalism: Data-flow diagrams

• Function blocks are elements of computation

• Directed arcs denote the direction of data flow

• Inputs are sampled periodically

• Outputs are computed and validated cyclically

Development of the SCADE language

• Formal language

– Basis: the synchronous Lustre language

(Univ. Grenoble, 1983)

– More that 20 years of preliminary research

• Parallel definition of the SCADE language and its

mathematically precise semantics

– Interpretation of a SCADE model is independent of the tools

• Safety in the main focus since the beginning

– The language was defined in cooperation with industrial

partners (later users) and approval authorities

Support of the design process

SCADE

St. Machine

Data-flow n.

Embedded C / ADA code

Formal verification

SAT + computation

(Prover plug-in)

DO 178-B certified

code generator

Preserving semantics + certified code generator and compiler

 modul/unit testing is not necessary (Airbus: 50%)

Simulation

Animation

Informal requirements Matlab / Simulink model

The SCADE Suite tool

• Graphical editor

– Data-flow diagrams

– Safe state machines

• Static analysis

• Simulation

– Interactive and batch mode

– Testing / debug functions

• Formal verification

– Checking of properties

• Code generation

– Ada & C

– Qualified C: DO-178B Level A
or MISRA conformance

SCADE model: different views on demand

B1

B2

B3

B

A

B

B1

B2

B3

C

C1

C2

Hierarchical
view

SCADE model: different views on demand

B1

B2

B3

B

A

B

B1

B2

B3

C

C1

C2

Hierarchical
view

node counter (init, incr : int;

reset : bool)

returns (count : int);

let

count=init -> if reset then init

else pre(count) + incr;

tel;

B1

Textual
view

SCADE model: different views on demand

B1

B2

B3

B

A

B

B1

B2

B3

C

C1

C2

Hierarchical
view

Take off

On ground
1:cond1

1:cond3

2:cond2

1:cond1

B3

Flight

1:cond4

Flight

1:cond5

node counter (init, incr : int;

reset : bool)

returns (count : int);

let

count=init -> if reset then init

else pre(count) + incr;

tel;

B1

State machine
view

Textual
view

SCADE model: different views on demand

node counter (init, incr : int;

reset : bool)

returns (count : int);

let

count=init -> if reset then init

else pre(count) + incr;

tel;

B1

B1

B2

B3

B

A

B

B1

B2

B3

C

C1

C2

Hierarchical
view

Op

1
Op2

Op3Op3

B2

Take off

On ground
1:cond1

1:cond3

2:cond2

1:cond1

B3

Flight

1:cond4

Flight

1:cond5

State machine
view

Net view

Textual
view

Example: Textual component

Textual description of behavior:

node counter (init, incr : int; reset : bool)

returns (count : int);

let equa eq_counter [,]

count = init -> if reset then init

else pre(count) + incr;

tel;

init

incr

reset

counter count

Example: Graphical component (block diagram)

Equivalent textual description:
count = init -> if reset then init

else pre(count) + incr;

reset

init

count

+
+incr

PRE

Example: State machine component

State machine of the behavior (Moore):

floor

requested_floor

alarm

up

down

stop

elevator

floor

requested_floor

alarm

up

down

stop

elevator

up

stop

down

2:
requested_floor

> floor1 :
(requested_floor =

floor) or alarm

3:
requested_floor > floor

2:
requested_floor < floor

1:
alarm

2:
(requested_floor = floor) or alarm

1:
requested_floor < floor

SCADE block library

Analysis techniques: Simulation

Analysis techniques: Formal theorem prover engine

• Definition of properties: Property component (property

node); output is either true or false

– Describes correct behavior, e.g.

Aircraft_Altitude < 200 and not Landing_Configuration implies Alarm

Analysis techniques: Formal theorem prover engine

• Integration of property nodes into the design:

Inserted as observer components (observer nodes)

Analysis techniques: Formal theorem prover engine

To be proven: Output of observer component is always true

– Proof: Exhaustive search, counterexample-generation (SAT)

Analysis techniques: Model-based testing

• Requirement-based test cases

• Model-based test coverage:

– Has every element of the model been
activated dynamically?

– Untested functions can be discovered

Code generation: Based on the verified model

• KCG: certified code generator

– DO-178B, IEC 61508, MISRA

– No need for unit/model tests in case of
generated code

• External or manually written code:

– E.g. 3rd party software libraries

– Testing is still mandatory!

Code generation: Based on the verified model

• Compiler Verification Kit:

– Source code patterns

– Test cases for compiled code patterns
(all must pass)

• To be verified:

– (Own) compiler

– Execution platform

Compare manual and SCADE verification

SCADE Suite: The “certified software factory”

Debugging &
Simulation

Configuration
Management

Model Coverage
Analysis

Formal Verification

Automatic
Design

Documentation

Architecture
Design
Capture

Algorithm
Design
Capture

Project

Management

Verification

&

Validation

System Requirements

Textual Requirements Management

Code Generation

Certified
Software Factory

Certified
Software Factory

SCADE
Gateway for
Rhapsody

Simulink
Gateway

Simulator

Design
Verifier

Model
Reporter Editor

KCG

DOORS™
Link

Model Test
Coverage

SCCI
Gateway

IEC 61508 Certified

for all SIL levels

Object Code
Verification

Compiler
Verification Kit

Pre-qualified for

compilers

INTEGRITY
Wrapper

Integration
On Target

