Example: Design tool with formal background
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Applications of SCADE

Includes source code
developed in SCADE:

o Airbus A380, Airbus A340
e Boeing 787

e Dassault’s Falcon 7X

e Ariane 5

e M51

e Eurocopter

o /8 Helicopter

e Audi A6, A8

e PSA 407, PSA 607

e BMW, Honda Motocycles
e ... and many more




Application domain: Embedded controllers

e Controlling/affecting physical processes
— Sensors, actuators, control loop
— Human-machine interface

e Behvior of controllers: Cyclic

— Read sensor data —> Process —>
Instruct actuators —> Read sensor data...

— Time-driven, event-driven or polling

e Design approaches:
— Control-oriented design
e Discrete control: Binary signals (e.g. change operation mode)
e Finite-state automata (states, events, actions)
— Data-oriented design
e Continuous control: Signal processing (diff. equations)
o Data-flow network (processor components, data paths)



Application domain: Embedded controllers
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e Finite-state automata (states, events, actions)
— Data-oriented design

e Continuous control: Signal processing (diff. equations)
o Data-flow network (processor components, data paths)



Application domain: Embedded controllers
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Formalism: Safe state machine

e States, restricted state hierarchy
— No concurrent regions, transitions between hierarchy levels

o Restricted set of modeling elements
— E.g. no history state

e Deterministic behavior (with proper restrictions)




Formalism: Data-flow diagrams

Function blocks are elements of computation
Directed arcs denote the direction of data flow
Inputs are sampled periodically

Outputs are computed and validated cyclically
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Development of the SCADE language

e Formal language

— Basis: the synchronous Lustre language
(Univ. Grenoble, 1983)

— More that 20 years of preliminary research
o Parallel definition of the SCADE language and its
mathematically precise semantics

— Interpretation of a SCADE model is independent of the tools

e Safety in the main focus since the beginning

— The language was defined in cooperation with industrial
partners (later users) and approval authorities



Support of the design process

[Informal requirements] [ Matlab / Simulink model J
. ) Formal verification
Sln_wulat.mn SCADE SAT + computation
Animation St. Machine (Prover plug-in)
Data-flow n. P9

DO 178-B certified
code generator

[Embedded C [ ADA code}

Preserving semantics + certified code generator and compiler
— modul/unit testing is not necessary (Airbus: 50%)




The SCADE Suite tool
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SCADE model: different views on demand
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SCADE model: different views on demand

Textual
view

~ —

B1 node counter (init, incr : int;
reset : bool )
returns ( count : int );

let
1 count=init -> if reset then init
2 else pre(count) + incr;
3 tel;
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SCADE model: different views on demand
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reset :

bool )

returns ( count : int );

let

int;

count=init -> if reset then inig/
else pre(count) + incr;
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SCADE model: different views on demand

Textual
view
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Example: Textual component

init

counter count

incr

reset

Textual description of behavior:

node counter (init, incr : int; reset : bool)
returns (count : int);

let equa eq counter [,]

count = init -> if reset then init
else pre(count) + incr;

tel;



Example: Graphical component (block diagram)
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Equivalent textual description:

count = init -> i1f reset then init
else pre(count) + incr;



Example: State machine component

4 N
floor —— up
requested_floor elevator —— down
alarm \ j_ stop

State machine of the behavior (Moore):

requested_floor > floor

T
(requested_floor =
floor) or alarm

> floor
2:

S <o 7
requested_floor < floor -,



SCADE block library
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Analysis techniques: Simulation
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Analysis techniques: Formal theorem prover engine

o Definition of properties: Property component (property
node); output is either true or false

— Describes correct behavior, e.g.
Aircraft_Altitude < 200 and not Landing_Configuration implies Alarm
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Analysis techniques: Formal theorem prover engine

e Integration of property nodes into the design:
Inserted as observer components (observer nodes)
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Analysis techniques: Formal theorem prover engine

To be proven: Output of observer component is always true
— Proof: Exhaustive search, counterexample-generation (SAT)

JLCruiseControl.Regul DN

War 1

ER=] CuiccConiol
== Inputs
. » On true
. » O true
v Resume false
L e accel 1.0000000
. » brake 0.0000000
. v speed 31.000000
L Qutputs
[ Locals

-4 PPI Analysis Report

Proof Objectives

CruiseControl.Fegul OM

0
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Proof Objectives

CruiseControl.Requl_ON

Mode CruiseControl
Output Regul ON
Strategy Default Prove
Mapping

Group None

Resy Falsifiable
l scenanos/CruiseControl.Regul ON 50,555

| [Load Scenario]

Translation

time s

Proof time 0.150207 =
Total time 0.150207 s
Assertions none
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Analysis techniques: Model-based testing
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Compiler
Compiler Verification Kit
Verify the compilation chain and
the target environment
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Object

Code

" SW Verification |
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Requirement-based test cases
Model-based test coverage:
— Has every element of the model been
activated dynamically?
— Untested functions can be discovered
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Code generation: Based on the verified model

High-Level
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Object
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KCG: certified code generator

— DO-178B, IEC 61508, MISRA

— No need for unit/model tests in case of
generated code

External or manually written code:

— E.g. 3rd party software libraries
— Testing is still mandatory!
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Code generation: Based on the verified model
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o Compiler Verification Kit:
— Source code patterns

Requirement-based tests

Model Test Coverage
Assess how thoroughly the
model has been explored
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No low-level testing required
on generated code

— Execution platform
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SCADE Suite: The “certified software factory”
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