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Our goal

Formal model
KS, LTS, TA

Formalized requirements
LTL, CTL

Model checker

OK Counterexample

t f

Informal or
semi-formal design

Informal
requirements
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Recap: linear temporal logic LTL

Elements of LTL:

• Atomic propositions (elements of AP): P, Q, ...

• Boolean connectives: , , , 
: conjunction, : disjunction, : negation , : implication

• Temporal connectives: X, F, G, U:

P
F P

P P P P P
G P

P
X P

P P P P Q
P U Q
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Recap: branching time temporal logic CTL*

Elements of CTL*:

• Path quantifiers:

 A: for All paths
starting from the current state

 E: there Exists a path
starting from the current state

• Path-specific operators (as in LTL):

 X p, F p, G p, p U q

s

s
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Recap: branching time temporal logic CTL

Elements of CTL:

Composite operators over states

• EX p: there exists a path where p holds in the next state

• EF p: there exists a path where p holds in the future

• EG p: there exists a path where p holds globally

• E(p U q): there exists a path where p holds until q 
eventually holds

• AX p: for all paths p holds in the next state

• AF p: for all paths p holds in the future

• AG p: for all paths p holds globally

• A(p U q): for all paths p holds until q eventually holds
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Overview

Mechanics of model checking

• Techniques for model checking
 LTL: Semantic tableau

 CTL: Labeling

Why is this useful?

• Possibilities, determining boundaries
 Discovering boundaries (e.g. size of verifiable models)

 Efficient implementation (1069000 states? – next lecture)

• Interesting applications (later)
 Automatic test case generation

 Synthesis of runtime monitors
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LTL Model Checking using
Semantic Tableau
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LTL model checking

Kripke structure M LTL formula p

Model checker
M, |= p ?

OK Counterexample

t f

If no path is given
then checking of all paths from the initial state
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Introuduction:
Semantic Tableau for Propositional Logic

Problem: satisfiability in propositional logic

• Idea: decomposition of the formula to a tree (the tableau)

 Nodes: formulas to satisfy

 Adding edges: decomposition rules based on the semantics of connectives

Branching: more than one ways to satisfy a formula

• Before decomposition: negation normal form (NNF): 

negation only appears on atoms

 de Morgan’s law:  (pq)=(p)(q),    (pq)=(p)(q)

• Decomposition rules for PL:

p  q

p, q

p  q

p q
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Introduction:
Semantic Tableau for Propositional Logic

When to stop decomposing?

• Terminating a branch: 

 Only literals left

 Each literal has to be satisfied by assigning values to variables

• After terminating a branch:

 Contradiction: opposite literals

• E.g. p, p is contradicting, no possible satisfying assignment

 Successful branch: no contradiction

• E.g.: for p, q: p  true, q  false

• This assignment is a model of the original formula

• Each successful branch corresponds to a satisfying 
assignment
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Introduction: An example tableau for PL

• Original formula: (p  q)   (p  p)

• Pushing  inwards: (p  q)  (p  p)

• Tableau construction:

(p  q)  (p  p)

p  p

p q p, p

p  q

p  false q  false contradiction
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Generalizing tableau construction to LTL

• Model checking: searches for a counterexample, thus

The tableau is constructed for the negated formula!

 The negated formula is transformed to NNF

 If there exists a successful (not contradicting) branch,
it induces a counterexample!

 If all branches are contradicting, then the original property holds!

• Decomposition rules for temporal connectives
 Novelty: Decomposition is performed based on the model

 Notation: s |- p denotes that we evaluate p starting from state s

• Handling literals: 
 s |- P holds iff PL(s)

 s |- P holds iff PL(s)

• Temporal operators:
 Rules for X and U are sufficient (others can be derived)
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Decomposition for operator X

For model:

s |- X p

s1 |- p s2 |- p sn |- p…

s1 s2 sn

s

…

Direct contradiction,
if s has no successors

For a given state s, when does Xp hold?
Iff for a successor state p holds.
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Decomposition for operator U

• We use: p U q = q  (p  X (p U q))

• When can we terminate?
 Contradiction:

• Atomic propositions contradict each other
• Operator X – the path terminates without encountering q
• Cycle of p states without encountering q

 Successful branches:
• Atomic propositions can be satisfied
• Cycle without contradiction

s |- p,   s1 |- p U q … s |- p,   sn |- p U q

s |- p U q

s |- q s |- p,   s |- X(p U q) s1 s2 sn

s

…s1 s2 sn

s

…

Needs extra attetnion:
finite path,

infinite p path
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A special operator: R

• NNF for operator U:
(p U q) = ?

 We introduce the dual of operator U: R (Release)

(p U q) = (p) R (q)

 We use: p R q = q  (p  X (p R q))

• The tableau for operator R:

s |- p R q

s |- q, s |- p s |- q,   s |- X(p R q)

s |- q,   s1 |- p R q … s |- q,   sn |- p R q
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An example

• Traffic light (KS)

• Is it true that if initially Green holds, then 
eventually Red will hold?

 The formula to check: Green  F Red

s2s1 s3 s4

s5

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

• Based on the model, can we construct a counterexample?
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The tableau for the property

• Negation of the formula:  s1 |– (Green  F Red)

• NNF (based on P  Q = P  Q):

(Green  F Red) = Green  F Red = Green  G (Red)

• Tableau construction:

S1 is labeled 
Green

s1 |- Green  G(Red)

s1 |- Green, s1 |- G(Red)

s1 |- G(Red)Simplification:
s1 |- Green
removed



s5 |- G(Red)
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The tableau for the property (cont.)
s1 is not 

labeled Red
s1 |- G(Red)

s1 |- Red, XG(Red)

s1 |- XG(Red)

s2 |- G(Red)

s1 is 
followed by 
s2 and s5

s2 |- Red, XG(Red)

s2 |- XG(Red)

s3 |- G(Red)

s3 |- Red, XG(Red)

s5 |- Red, XG(Red)

s5 |- XG(Red)

Contradicting 
branch,

s3 is labeled 
Red

s2 is not 
labeled Red

Cycles without contradiction
s1, s5, …

s1, s2, s5, …

s2 is 
followed by 
s3 and s5
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The results of model checking

• The results of tableau for the negated formula:

 A contradicting branch (here the property holds)

 Two cycles without contradiction: counterexamples

• Conclusions:

 There are executions where the negated property holds:
Cycle 1:  s1,  s2,  s5,  …
Cycle 2:  s1,  s5,  …

• The original formula Green  F Red thus fails

 Counterexamples can be shown
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Semantic tableau (summary)

p formula

p formula

M=(S,R,L)

Decomposition
rules

tableau for p

Are all branches
contradictory? Counterexample

f
p holds

t

Non-trivial
steps



Tableau construction rules (summary)
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p  q

p, q

p  q

p q

s |- X p

s1 |- p s2 |- p sn |- p…

s1 s2 sn

s

…s1 s2 sn

s

…

s |- p,   s1 |- p U q … s |- p,   sn |- p U q

s |- p U q

s |- q s |- p,   s |- X(p U q)

s |- p R q

s |- q, s |- p s |- q,   s |- X(p R q)

s |- q,   s1 |- p R q … s |- q,   sn |- p R q

s1 s2 sn

s

…s1 s2 sn

s

…

s1 s2 sn

s

…s1 s2 sn

s

…
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CTL Model Checking
Based on Labeling
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CTL model checking

Kripke structure M CTL formula p

Model checker
M,s |= p ?

OK Counterexample

t f
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Idea: Labeling of states

• Global model checking:

 Notation: Sat(p) denotes the set of states where CTL 
formula p holds  

 Labeling: we label these states by p

 This way sSat(p) can be easily evaluated
for a given state s (in particular for initial states): 
by checking whether it’s labeled p

• The labeling, that is, Sat(p), is computed 
incrementally

 We start from the labeling function L, and then expand it

 The end of the iteration: fixed point reached
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CTL model checking with state labeling

• Labeling of states: where the formula holds

• Labeling with complex formulas?

 Decomposition of the formula based on its structure, 
and computing Sat() for subformulas (from the inside outwards):

AF ( P  E (Q U R))

• Algorithm based on the decomposition of the formula:

 Base case: KS is labeled by atomic propositions

 Continuation: labeling with more complex formulas

 Rules: if we have established labels p and q
then we can establish where we have labels
p,   pq,   EX p,   AX p,   E(p U q),   A(p U q)
This way we progress outwards from the inside of a complex formula
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Rules: Atomic propositions and Boolean connectives

• P holds in a state s iff PL(s)
 Here, P is already a label of s

• P holds in a state s iff PL(s)
 These states can be labeled P

• pq holds in a state s where p and q holds
 A state can be labeled pq iff it is already labeled p and q

• Temporal operators: EX, AX, E( U ), A( U ) 
 More complex labeling rules
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Rules: AX, EX

• EX p holds in a state s iff it has a successor where p holds
 A state can be labeled EX p iff it has a successor labeled p

• AX p holds in a state s iff for all its p holds
 A state can be labeled AX p iff all its successors are labeled p

.

s
p

s
p

EX p

s
p

p

p
s

AX p
p

p

p
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Rules: E(p U q)

• Where does E(p U q) hold?

 We use: E(p U q) = q  (p  EX E(p U q))

 “Recursive” formula

• So when can a state s be labeled E(p U q)?

 if s is labeled q, or

 if s is labeled p and there is at least one succeeding state (EX) 
that is already labeled E(p U q)

• An iteration arises:

 States labeled q are the states where label E(p U q) first appears

 We consider the predecessors of these states: 
If it is labeled p, we can add label E(p U q)

 This way we traverse those paths backwards that lead to states 
labeled q through states labeled p
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Labeling by E(P U Q)

• We iterate until a 
fixpoint is reached

{P,Q}

PPP

Kripke structure with 
initial labeling

{P,Q}

PPP

E(P U Q)First step: Q

{P,Q}

PPP

E(P U Q)

E(P U Q)

Second step: 
“P EX”

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

Third step:
“P EX”
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Rules: A(p U q)

• Where does A(p U q) hold?

 We use: A(p U q) = q  (p  AX A(p U q))

 “Recursive” formula

• So when can a state s be labeled A(p U q)?

 if s is labeled q, or

 if s is labeled p and all succeeding states (AX) are already labeled 
A(p U q)

• An iteration arises:

 States labeled q are the states where label A(p U q) first appears

 We consider the predecessors of these states: 
If it is labeled p, and all its successors are labeled A(p U q), we can 
add label A(p U q)

This way we covered all operators defined in the syntax.
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An additional rule: AF p

• Where does AF p hold?

 We use: AF p = p  AX AF p

 “Recursive” formula

• So when can a state s be labeled AF p?

 if s is labeled p, or

 all its successors (AX) are labeled AF p

• An iteration arises:

 States labeled p are the states where label AF p first 
appears

 We consider the predecessors of these states: 
If all its successors are AF p, we can add label AF p

 This way we traverse those paths backwards that lead to 
a state labeled p
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Iteration using set operations

• We expand the labeling using operations on sets
 Initial set: states already labeled by subformulas

 Expanding the labeling:
• E(p U q): “At least one successor is labeled …”

• A(p U q): “All successors are labeled …”

 This way we can label preceding states

• How can we define the set of preceding states?
 Based on set of already labeled states Z: 

preE(Z) = {sS | there exists s’ such that (s,s’)R and s’Z}

preA(Z) = {sS | for all s’ such that (s,s’)R we have s’Z}

• Example: E(P U Q):
 Initial set: Z0    = {s | QL(s)}

 Expansion: Zi+1= Zi (preE(Zi)  {s | PL(s)})

 End of the iteration: if Zi+1= Zi (fixedpoint)

Predecessors of

already labeled states
labeled P

Labeled so far

At least one 

successor is 

labeled

All successors 

are labeled
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CTL model checking – summary

• Global model checking:

 Labeling of states by (sub)formulas that hold in the state

• Labeling by increasingly complex formulas

 Starting from atomic formulas to more complex formulas, from the 
inside outwards

 Using the labeling obtained in the previous iteration
based on rules derived from operator semantics

• EX, AX: Examining and labeling predecessors

• E(p U q), A(p U q): Incremental labeling

 Initial set:

• State sets determined by the innermost formulas (p, q)

• Iteration: based on semantics (applied to predecessors)

 End of iteration: no more labels can be added to the labeling
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Example

• Decomposition of formulas:

AF ( P  E (Q U R)) Q and R are labels 

in KS

Incremental labeling: E(. U .)

at the end of the iteration, label

E(Q U R)

The intersection of states labeled P

and E(Q U R)

(treating E(Q U R) as atomic):

We add the label PE(Q U R)

Incremental labeling: based on AF

(treating PE(Q U R) as atomic):

We add the label AF(PE(Q U R)).

This can be evaluated on the initial state.



Exercise

• A traffic light has three aspects:
red, yellow and green. 

 Initially all aspects are off.

 After turning the light on, the red aspect is on.

 From this, there are two ways to proceed:
red-yellow (both are on), and
green.

 Red-yellow is followed by green, and green is followed 
by red again. From this, the behavior is the same as 
before.

• Check whether the following formula holds for the 
initial state of the model: E((¬red) U (EX green))

35
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Summary

• LTL model checking

 Tableau construction

• Propositional logic: contradictory and successful branches

• LTL: searching for a counterexample (witness for negated 
formula)

• CTL model checking

 Iterative labeling

• Incremental labeling with increasingly complex formulas
(global model checking)

• Set operations

How can these algorithms be implemented efficiently?
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LTL model checking: 
Automata theoretic approach

(Supplementary)
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Automata for finite words

• A=(, S, S0, , F) where 

  is the alphabet, S are states, S0 are initial states

  is the transition relation, : S    2S

 F is the set of accepting states

• A run of the automaton:

 For a sequence of symbols from the alphabet
– a word w=(a0, a1, a2, … an) –
a sequence of states r=(s0, s1, s2, … sn)

 r is an accepting run iff snF

 Word w is accepted iff there exists an accepting run

• L(A)={ w * | w is accepted }
the language accepted by the automaton
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Automata on infinite words

• Application: continuously operating systems

 No final state – can not be checked for acceptance

• Büchi acceptance condition:
 For a word w=(a0, a1, a2, … )

a sequence of states r=(s0, s1, s2, … )

 lim(r) = {s | s occurs infinitely many times,
that is, there is no j such that k>j: ssk}

 A run is accepting iff lim(r)  F  0

 A word w is accepted iff there exists an accepting run 
over it
(an accepting state is encountered infinitely many times)

• L(A)={w * | w accepted}
the language accepted by the automaton
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Automata theoretic approach

• For a state s of KS: L(s) is a symbol of alphabet 2AP

E.g. {Red, Yellow} is a symbol of the alphabet

• A path =(s0, s1, s2, … sn) induces a word

(L(s0), L(s1), L(s2), … L(sn))

• We construct two automata:
 Based on Kripke structure M=(S,R,L) an automaton AM

can be constructed that accepts exactly those words that 
correspond to paths of M.

 Based on formula p an automaton Ap can be constructed 
that accepts exactly those words that characterize paths 
for which p holds
Tableau construction rules can be used: what must hold 
in the current state, and what for the successor states
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Model checking using automata

• Model checking problem: L(AM)L(Ap), i.e., is the model’s 
language part of the property’s language?

 If so then M |= p

• Reformulating the problem:

 Checking emptiness of intersection of languages: 
L(AM)L(Ap)

c=0,   here L(Ap)
c is the complement of the language

 Is the language accepted by the synchronous product automaton 
AM Ap

c, induced by the model automaton AM and the complement 
automaton of the property Ap

c , empty?

• If so then M, |= p

• The accepted language is empty iff there is no reachable accepting 
state

• Continuously operating systems

 Automata on infinite words; 
Büchi acceptance condition: searching for loops

L(Ap)
L(AM)
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Automata theoretic model checking

p formulaM=(S,R,L)

AMAp
c automaton

Accepted language
empty? Counterexample

f
p holds

t

Ap
c automatonAM automaton
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“On-the-fly” model checking

• Idea: 

 During construction of automaton Ap the synchronous 
product can be constructed

• Construction of synchronous product automaton

 Directed by the property to verify:
as the states of the automaton Ap are established,
the states of AM has to be “looked up”

 The generation of the full state space is not necessary

• E.g. when deriving from a higher level formalism


