
Modeling in UPPAAL

Example and solution

dr. Tamás Bartha

BME Department of Control for
Transportation and Vehicle Systems



Contents

• This lecture presents a task (that is harder than a 
typical homework) and explains how to solve it

• Furthermore some useful modeling practices of 
UPPAAL are also presented:

– Generating and using random values

– Modeling atomic operations

– Modeling synchronous communication

• Using a global shared variable

• Using dedicated arrays of channels

– Reducing state space by removing temporary variables

– Using data structures and functions

– Writing and checking temporal logic expressions

2



Warmup

Solving a simple exercise

3



Warmup exercise

The exercise

• Rolling a dice

– n players, 1 referee

– Each player rolls a dice once

– They tell the result to the 

referee

– The referee

• Stores the results

• Finds the largest result(s)

• Announces the winner(s)

– Players count the number of 

their winning results

What do we have to solve?

• Generate random value

• Communication

– “Pass” values

– Broadcast communication

– Handling channel arrays

– Ordering of update sections

• Data structures

• Functions

• Concurrency and timing

• Model checking

4



Basic idea for the solution

5

Player

Referee



Solution: System and the player

Player:

Player(id_t pid)

int[0,wins] count = 0;

clock x;

System:

system Player, Referee;

const int players = 3;

const int wins = 10;

typedef int[0,players-1] id_t;

typedef int[0,6] dice_t;

struct {

id_t who;

dice_t what;

} roll;

id_t winner;

chan say;

broadcast chan announce;

6



Solution: Referee

Referee:

int [0,players] ans = 0;

dice_t rolls[id_t];

dice_t best = 0;

clock x;

void find_winner() {

int[0,players] i;

for (i = 0; i < players; i++) {

if (rolls[i] > best) { 

best = rolls[i];

winner = i;

}

}

best = 0;

}

void reset_rolls() {

int[0,players] i;

for (i = 0; i < players; i++) rolls[i] = 0;

}

7



Outlook: Arc expressions

• Selection

– Non-deterministic choice 
from the domain of a 
variable

• Guard

– Enabling condition 
(logical expression)

• Synchronization

– Synchronization on a 
channel between process 
“pairs”

• Update

– Expression evaluated 
during the transition 
(may have side effect)

8

• Evaluation order of expressions: 

Select » Sync » Guard » Update



• On each path, there is a player who wins all games

– There is always an “absolute winner”

– A<> exists (i : id_t) (Player(i).count == wins)

• Referee only decides if all players rolled

– This happens at least once:

• E<> Referee.Decision && forall (i : id_t) (Referee.rolls[i] > 0)

– This happens at least once on all paths:

• A<> Referee.Decision && forall (i : id_t) (Referee.rolls[i] > 0)

• The system has no deadlock

– There is no such state, which has no enabled (!) transition to 

another state

– A[] not deadlock

Let’s check the behavior!

9



Let’s check the behavior!

10



Let’s check the behavior!

11

Deadlock-freeness: error.

• Why?

• Win counters may overflow in 
the current model



It is possible to reach a state
where every player has sent
their result and the referee has 
noted them.

Let’s check the behavior!

12



Let’s check the behavior!

13

Lehetséges, hogy eljussunk
olyan állapotba, amelyben
minden játékos eljuttatta a 
bíróhoz a saját eredményét, és
azokat a bíró feljegyezte.

But there is a path where no 
such state is reachable!

• Why?

• Two causes: wrong use of 
concurrency and timing!



Wrong timing? Why?

• If we examine all possible paths 
(e.g. A‹›) then UPPAAL also 
checks the possibility of not 
leaving a state

• Solution:

– Introduce a clock variable

• Add invariant to state

• We can only stay in a state for at 
most 1 time units

• Don’t forget to initialize the clock 
variable!

14



Wrong concurrency? Why?

15

2nd player rolls 1st player rolls

1st player overwrites the shared variable 2nd player “sends” wrong one



Avoiding wrong concurrency

• The problem is that states Waiting and Rolled are 
concurrent and firings are non-deterministic

• Solution:
– Avoiding concurrency: introduce “committed” state

• We must leave a “committed” state instantly

16



Other constructs 
for simplification

• Using arrays of 
channels

• Applying operator “? :”

• Collecting results in a 
single state

• Using iterators

• Omitting reset state

17



Special constructs

• Using arrays of channels

– Receiving process monitors 

all channels “at once” using 

a Select construct

– Channel id can be used in 

the Update section!

• Using iterators

void reset_rolls() {

for (i : id_t) rolls[i] = 0;

}

void find_winner() {

for (i : id_t) {

if (rolls[i] > best) { 

best = rolls[i];

winner = i;

}

}

best = 0;

}

18



Other modeling advices, best practices

• Order of evaluating arc expressions: 

Select » Sync » Guard » Update

– On a synchronized arc, Update of the sender is evaluated before the 

Update of the receiver!

– Cannot test a global variable that was set by synchronized arc!

– Cannot “test” a variable in Sync with a Guard!

• Checking the behavior of functions is difficult. Debugging is 

not possible. Try to develop the model in small steps and 

check its behavior often with simulation and verification!

19



Other modeling advices, best practices

• When verifying properties such as A‹› q, clock variables 

must be used to avoid the trivial counterexample.

– Do not forget the semantics of “leads to” p --› q: A[] (p imply A‹› q)

• Do not forget to initialize clock variables!

• The model checker of UPPAAL cannot handle deadlocks 

when using channel or automata level priorities. Such 

modeling constructs should be avoided.

20



Solving an exercise

Using our knowledge so far

21



The exercise

• Modeling tasks and threads in a simple operating 
systems

– Tasks are executed in fixed length periods

– At the beginning of each period, tasks decide (non-
deterministically) if they “apply” for running or if they 
decline running in that period

– Each task requires a given percentage of CPU

– Finite number of threads, one task per thread

– At the end of a period, tasks are stopped and the 
operating system returns to its initial state

– The process above is repeated

22



The system contains three main components

• Tasks

– Affinity: probability of the task 
“applying to run”

– Demand: the task requires 
(10*Demand) percent of CPU

– Priority: priority level of the 
task

Tasks

Scheduler

CPU

23

– The total CPU requirement must be at most 100% for the 
tasks that are selected for running

– Within this limit, tasks have to be selected based on their 
priority



The system contains three main components

• Scheduler

– Selects running tasks from those 
that “applied to run”

– There is a limited number of 
threads that can run tasks

– Each task is allocated to a 
separate thread

– No more tasks can be running 
than the number of threads

• CPU

– Resource needed to run tasks

– Two states: active, inactive

– Tasks can run in active state

– A preemptive interrupt can occur 
in active state

Tasks

Scheduler

CPU

24

Threads



Basic operation of the system

• The tasks
– Generate a random number p between 0 and 10 when 

leaving their initial state

– This is compared to their Affinity parameter: if 
p ≥ Affinity, then they apply for running, otherwise they 
decline to run and become inactive

• The scheduler
– Stores applications and declines

– Processes applications: orders the tasks descending by 
priority and CPU requirement, while observing the limits

– Assigns the selected tasks to threads and stores this 
assignment in a global data structure

25



Let’s start modeling!

• Task

– Ready: initial state

– Decision: decides on running

– Idle: declined, inactive

– Allowed: selected for running

– Running: runs

• Scheduler

– Init: initial state

– Collect: collecting applications 
and declines

– Forbid: notifies rejected tasks

– Allow: notifies selected tasks

– Waiting: waiting to end period

26



First problem: Modeling random choice

• Simple solution

– Does it work? Yes, 
because UPPAAL chooses 
randomly from enabled 
transitions

– Is it what we want? No, 
because probabilities 
should be proportional 
to the affinities

• Correct solution

– Generate random value 
using Select construct of 
UPPAAL

27



Modeling random choice

28

A declaration of 
variablename : type in the 
Select section will result in 
a random value in the 
variable when taking the 
transition.

This variable can only be 
used in other expressions 
of the same transition!

The generated value is stored in a 
local variable so that it can be 
used in the proceeding steps.

The purpose of the Committed 
state is that the two operations 
should not be interrupted.



Declarations

Global

typedef int[0,10] percent;

const int Levels = 3;
typedef int[0,Levels-1] p_level;

const int Tasks = 5;
typedef int[0,Tasks-1] t_id;
t_id current_t;

typedef struct {
percent affinity;
percent demand;
p_level pri;

} task_t;

// affinity, demand, priority
const task_t task[Tasks] = {
…,
};

Local (Task)

clock x;

meta bool split = false;

percent threshold;

29



How does counting applications work?

30

• We are staying in state Collect until each task either applied 
or declined

• Applied tasks are stored in a local array

• Functions sort_tasks(), select_tasks() are selecting tasks 
when entering state Forbid



Collecting applications and declines

Task Scheduler

31

Modeling synchronous 
communication with global 
variable.

It is guaranteed that the 
Update of the sender is 
executed first!



Modeling synchronous communication / 2

Task Scheduler

32

Modeling synchronous
communication using channel 
arrays.

Can only be used for 
variables with small domain!



Why should we reset temporary variables?

33

• Temporary variable

– A set of trajectories for
each value

– Multiplies the size of the state 
space

– Can be reduced by resetting
the variable

• Interleaving

– Transitions of asynchronous 
automata in different orders

– Same result on different paths

– Can be reduced by synchronization 
and committed states



Outlook: Behavior of two automata

Direct product, interleaving, synchronization

34



Behavior of asynchronous automata: Interleaving

• System of two 
(independent) automata

• States of the automata:

A = {m1, m2}, B = {s1, s2}

• (Direct) product: state 
space of the system

• Set of states:

C = A  B

C = {m1s1, m1s2 , m2s1 , m2s2}

m1 m2

s1 s2

m1s1 m2s1

m1s2 m2s2

A

B

C

35



Example: Alternative paths

T1 T2

x=1 y=1

g=g+2 g=g*2

(x,y,g)

(0,0,0)

(0,1,0)(1,0,0)

(1,0,2)

(1,1,2)

(0,1,0)

(1,1,0)

(1,1,4) (1,1,2)

(1,1,0)

x=1 y=1

x=1y=1

g=g+2 g=g*2

y=1
g=g+2

x=1
g=g*2

g=g*2 g=g+2
Local variables: x and y

Global variable: g

36



Synchronizations and guards simplify the model

• Synchronization: taking the 
transitions at the same time

• E.g. “A and B takes the 
transition at the same time 
if their state index is the 
same”

• Guards: disable certain 
transitions

• E.g. “B can only take the 
transition if A is in state m2”

m1s1 m2s1

m1s2 m2s2

C”

m1s1 m2s1

m1s2 m2s2

C’

37



Example: Pedestrian light with button

38

R,NP R,P

G,NP G,P

• Synchronization 
(press!, press?)

• Guard 
(is_r == true)



Let’s get back to our exercise

39

• Applied tasks are stored in a local array

• Functions sort_tasks(), select_tasks() are selecting tasks 
when entering state Forbid

– Ordering tasks decreasing by their priority and CPU 
requirement, while observing the limits



Selecting and rejecting tasks

• sort_tasks()

– Uses a 2D array for 
ordering:
typedef struct {

int[0,Tasks] length;

t_id task[Tasks];

} buffer_t; 

buffer_t buffer[Levels];

• select_tasks()

– Collects selected tasks 
decreasing by priority until 
a limit is reached

– Let the parameters be:

// affinity, demand, priority
const task_t task[Tasks] = {
{0, 2, 0},
{3, 3, 1},
{3, 4, 1},
{3, 1, 1},
{3, 5, 2}
};

– Example applicants: 0, 2, 3, 4

– Example order:

buffer[0] = [0]

buffer[1] = [2, 3]

buffer[2] = [4]

– Selected: 0, 2, 3

– Rejected: 4

40



Ordering tasks based on CPU requirement

void insert_at(int[0,Tasks] pos, t_id tid) {
int i;
for (i = buffer.length; i > pos; i--) {
buffer.task[i] = buffer.task[i - 1];

}
buffer.task[pos] = tid;
buffer.length++;

}

void sort_tasks() {
int i, j, pri, pos;
for (i = 0; i < applied; i++) {
pri = task[applicant[i]].pri;
for (j = 0, pos = -1; j < buffer[pri].length && pos < 0; j++) {
if (task[applicant[i]].demand > task[buffer[pri].task[j]].demand)
pos = j;

}
insert_at(pri, pos < 0 ? buffer[pri].length : pos, applicant[i]);
applicant[i] = 0;

}
}

41



Selecting tasks while observing limits

void select_tasks() {

int i, pri;

percent p = 0;

rejected = 0;

thread.num = 0;

for (pri = 0; pri < Levels; pri++) {

for (i = 0; i < buffer[pri].length; i++) {

if (p + task[buffer[pri].task[i]].demand <= 10 && 

thread.num < Threads) {

thread.task[thread.num++] = buffer[pri].task[i];

p = p + task[buffer[pri].task[i]].demand;

}

else applicant[rejected++] = buffer[pri].task[i];

buffer[pri].task[i] = 0;

}

buffer[pri].length = 0;

}

}

42



Notification about selection and rejection

Task Scheduler

43

Selected and rejected tasks are 
notified individually on separate 
channels.

Temporary variables are reseted.



The model already works (without a CPU)

44

Scheduler

Task



Intermediate checking

• We already have a functional system

– It is recommended to check this intermediate system

• Some requirements:

1. The system contains no deadlocks.

2. It is possible that a task is rejected by the scheduler.

3. When selecting task 4, not all threads can be occupied.

4. It is possible that all threads are occupied.

5. It is not possible that a task is running but no thread is occupied.

45



Extending the model with a CPU

• Starting signal is sent by the scheduler on a 
broadcast channel. After this:
– Tasks selected to run change to running state,

– The scheduler changes to idle state until the end signal,

– The CPU changes to active state, threads and tasks 
running are stored in a global data structure.

• The CPU sends an end signal when leaving active 
state. After this:
– The CPU changes to inactive state,

– The scheduler changes to initial state, the list of running 
threads and tasks is cleared,

– Tasks also change to their initial state.

46



Starting and stopping with CPU

const int Threads = 4;

typedef struct {

int[0,Threads] num;

t_id task[Threads];

} thread_t;

thread_t thread;

chan apply, decline;

urgent chan allow[Tasks], forbid[Tasks];

chan suspend[Tasks];

broadcast chan start, end;

void reset_threads() {

while (thread.num > 0) 

thread.task[thread.num-- - 1] = 0;

}

47



Let’s make the model more advanced: Interrupts!

• An interrupt can occur in the active state of the CPU

– Certain tasks can be interrupted (preemptive)

– CPU requirement of the interrupt determines which tasks will be 
interrupted

– At least as many tasks must be suspended (starting with the lowest 
priorities), such that enough CPU capacity will be available (the CPU 
requirements of the interrupt and the remaining tasks must be at 
most 100%)

• The CPU selects the tasks to be suspended

• It also notifies the suspended tasks

• These tasks change to suspended state

– After the interrupt

• The CPU notifies the previously interrupted tasks

• These tasks change to running state

• The CPU also changes to running state

48



Modeling interrupt

• Tasks are suspended by function backup_threads(), and 
restored by function restore_threads()

• Tasks are notified individually on separate channels about 
suspending and restoring

49



Selecting tasks for suspending

void backup_threads() {

int i, p;

t_id tid;

for (i = 0, p = 0; i < thread.num; i++) 

p += task[thread.task[i]].demand;

buffer.length = 0;

for (i = 0; i < thread.num; i++) {

if (p + i_demand > 10) {

tid = thread.task[thread.num - i - 1];

buffer.task[buffer.length++] = tid;

thread.task[thread.num - i - 1] = 0;

p -= task[tid].demand;

}

}

thread.num -= buffer.length;

}

50



Even more advanced: Overdue tasks

• When tasks are suspended for too long, they will 
be overdue and they cannot be completed in the 
current period

• Such overdue tasks will try to continue running in 
the next period

• This is modeled by changing to the state where 
they apply for running (after the end signal)

– (i.e., they skip the random choice of applying or 
declining)

51



Extending the model of a task with overdue

52

Overdue tasks must also receive 
messages on channels!

A value of 10 ensures application.



We must introduce time limits

• A task has the following time limits:

– Clocks of the selected tasks, the 

scheduler and the CPU start at the 

same time

– The CPU can be active for at most 4 

time units

– An interrupt can occur between the 

1st and 2nd time units

– The interrupt must last at most until 

the 3rd time unit

– Suspended tasks become overdue 

after the 2nd time unit

53



Time limits in the model

54

Task

CPU



We are done!

55

Task

Scheduler

CPU



Requirements to be verified

1. The model is deadlock free.

2. It is possible that an applied task has to be rejected.

3. It is possible that all threads are busy, i.e., maximal number of tasks 
are running.

4. If a task is running, the number of busy threads in the global data 
structure is greater than 0.

5. It is possible that the CPU suspends more than 2 threads due to an 
interrupt.

6. There is a path where no task is suspended in all of the periods, but it 
is not possible for all paths, i.e., there is at least one path where at 
least one task is suspended at least once.

7. It is not possible that a task is in suspended state after the 3rd time 
unit.

8. If a task is suspended, it may be completed eventually. 

56



Temporal expressions to be verified

57

1.

2.

3.

4.

5.

6.

7.

8.


