Structural properties of Petri nets, calculating invariants

dr. Tamás Bartha

dr. István Majzik

dr. András Pataricza

BME Department of Measurement and Information Systems

Recall: Dynamic properties

- Example: Model of a workflow (tasks + activities + resources)
- Properties analyzed
 - Does the system halt?
 - Can certain activities be performed?
 - Do tasks overwhelm?
 - Can we return to the initial state?
 - Is there a processing loop?
 - Can activities be stopped?
 - Is there an activity lacking resources?
- Problem: Exploring a large state space

Deadlock

Liveness

Boundedness

Reversibility

Home state

Persistence

Fairness

Recall: Analysis methods

Depth of the analysis:

Simulation

- Traverse single trajectiories
- Full exploration of the state space
 - Analysis of reachability graph:
 Dynamic (behavioral) properties

Traverse all trajectories from a given initial state (exhaustive traversal)

- Model checking
- Analysis of the net structure
 - Static analysis:Structural properties
 - Invariant analysis

Properties independent from the initial state (hold for every initial state)

Main idea of structural analysis

- Can we state something without traversing / exploring the state space?
 - Based only on the structure (places, transitions, arcs)
 - Analysis independent from the initial state
 - In certain cases only approximate results!
- Approximate analysis is safe if it covers the real behavior
 - If no counterexample is found for the examined property (erroneous behavior): the property holds
 - If a counterexample is found: it may be spurious:
 It has to be verified with simulation and if it is spurious a new search has to be started

Structural properties

Properties of Petri nets independent from the initial state:

- Structural boundedness
- Controllability
- Conservativeness
 - Place invariant(P-invariant)

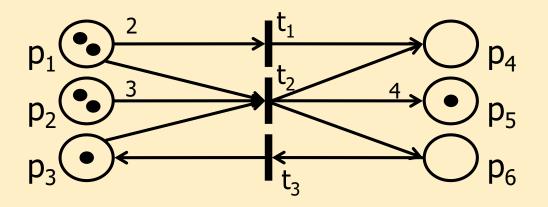
- Structural liveness
- Repetitiveness
- Consistence
 - Transition invariant (T-invariant)

Depending on the definition, the property must hold for

- either for all bounded initial marking,
- or some existing bounded initial marking

Recall: Describing the structure

- Weighted incidence matrix: $\mathbf{W} = [\mathbf{w}(t, p)]$
- Dimension: $\tau \times \pi = |T| \times |P|$
- w(t, p): Change in the number of tokens on p when t fires



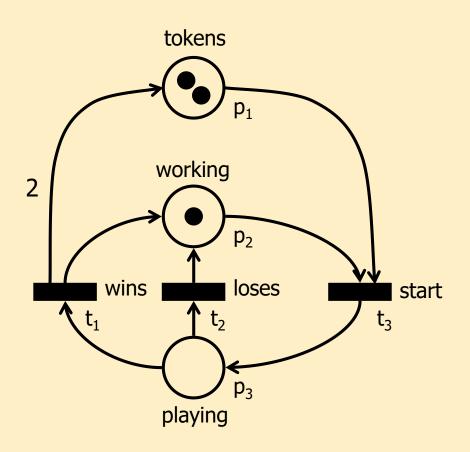
$$W = W^{+} - W^{-}$$

$$W^{+} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$W = \begin{bmatrix} -2 & 0 & 0 & 1 & 0 & 0 \\ -1 & -3 & -1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \begin{array}{c} t_1 \\ t_2 \\ t_3 \end{array}$$

$$W^{-} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Recall: Describing the structure

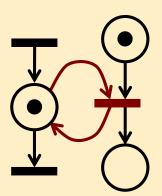


$$W = \begin{bmatrix} p_1 & p_2 & p_3 \\ t_1 & 2 & 1 & -1 \\ t_2 & 0 & 1 & -1 \\ t_3 & -1 & -1 & 1 \end{bmatrix}$$

$$\mathbf{W}^{\mathsf{T}} = \begin{array}{ccc} \mathbf{p_1} & \mathbf{t_2} & \mathbf{t_3} \\ \mathbf{p_1} & \mathbf{2} & \mathbf{0} & -\mathbf{1} \\ \mathbf{p_2} & \mathbf{1} & \mathbf{1} & -\mathbf{1} \\ \mathbf{p_3} & \mathbf{-1} & -\mathbf{1} & \mathbf{1} \end{array}$$

Introducing the state equation

- Dynamics of Petri nets: change in the marking
 - Changes can be described by equations
- Precondition (for unambiguousness): pure Petri net
 - − No transition exists that is both the input and output transition of the same place: $\forall t \in T : \bullet t \cap t \bullet = \emptyset$
 - This subsumes: No "self-loop"
 - Marking does not change after firing (0 element in the incidence matrix)
 - But has a role in enabling the transition



Firing sequence

Firing sequence:

$$\left| \vec{\sigma} = \left\langle M_{i_0} t_{i_1} M_{i_1} \dots t_{i_n} M_{i_n} \right\rangle = \left\langle t_{i_1} \dots t_{i_n} \right\rangle \right|$$

Reachability of a state (marking):

$$M_{i_0} \left[\vec{\sigma} > M_{i_n} \right]$$

- Enabledness of a firing sequence:
 - Transition $t_{i,j}$ has enough tokens on input places $p \in \bullet t_{i,j}$

$$\forall t_{i_j} \in \vec{\sigma}, \forall p \in \bullet t_{i_j} : M_{i_{j-1}}(p) \ge w^-(p, t_{i_j}) = \mathbf{W}^{-\mathsf{T}} \vec{e}_{i_j}$$

State equation

- Change in the marking:
 - When firing an enabled transition t_i
 - $w^-(p, t_j)$ tokens removed from each input place $p \in \bullet t_j$
 - $w^+(p, t_j)$ tokens are produced in each output place $p \in t_j$ •

$$M_{j} = M_{j-1} - \mathbf{W}^{-^{\mathrm{T}}} \vec{e}_{j} + \mathbf{W}^{+^{\mathrm{T}}} \vec{e}_{j} = M_{j-1} + \mathbf{W}^{\mathrm{T}} \vec{e}_{j}$$

- When firing an enabled firing sequence $\underline{\sigma}$:
 - Marking changes by accumulating the firings:

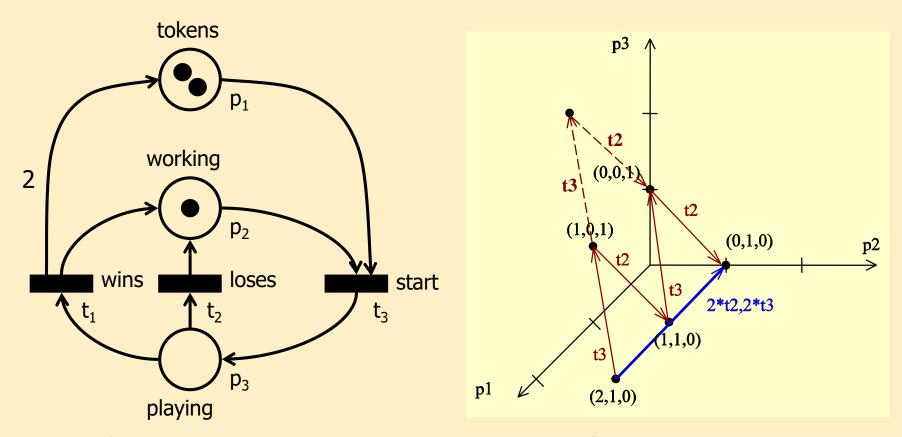
$$M_0 \left[\vec{\sigma} > M_j \rightarrow M_j = M_0 + \mathbf{W}^{\mathsf{T}} \vec{\sigma}_T \right]$$

 Firing count vector: number of occurrences for each transition in the firing sequence

Deriving the state equation

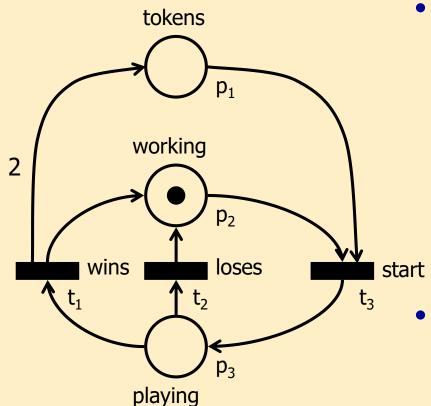
$$\begin{split} \boldsymbol{M}_{1} &= \boldsymbol{M}_{0} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{1}} \\ \boldsymbol{M}_{2} &= \boldsymbol{M}_{1} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{2}} = \boldsymbol{M}_{0} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{1}} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{2}} \\ &\cdots \\ \boldsymbol{M}_{n+1} &= \boldsymbol{M}_{n} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{n+1}} = \boldsymbol{M}_{0} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{1}} + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{2}} + \cdots + \mathbf{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{n+1}} \\ &\cdots \\ \boldsymbol{M}_{m} &= \boldsymbol{M}_{0} + \boldsymbol{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{1}} + \boldsymbol{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{2}} + \cdots + \boldsymbol{W}^{\mathrm{T}} \vec{\boldsymbol{e}}_{t_{m}} = \boldsymbol{M}_{0} + \boldsymbol{W}^{\mathrm{T}} \sum_{i=1}^{m} \vec{\boldsymbol{e}}_{t_{i}} \\ \boldsymbol{M}_{m} &= \boldsymbol{M}_{0} + \boldsymbol{W}^{\mathrm{T}} \vec{\boldsymbol{\sigma}}_{T} \Longrightarrow \boldsymbol{M}_{m} - \boldsymbol{M}_{0} = \boldsymbol{W}^{\mathrm{T}} \vec{\boldsymbol{\sigma}}_{T} \end{split}$$

State equation and reachability



- The firing count vector contains less information, than the firing sequence
 - The order of firing is lost by only giving $(0,2,2)^T$!
 - A non fireable sequence can be obtained from the state equation for a given M₀

Example: State equation and reachability



State equation:

$$M_0 \left[\vec{\sigma} > M_j \Longrightarrow M_j - M_0 = W^T \vec{\sigma}_T \right]$$

$$\mathbf{W}^{T} = \begin{array}{ccc} \mathbf{p_1} & \mathbf{t_2} & \mathbf{t_3} \\ \mathbf{p_1} & \mathbf{2} & \mathbf{0} & -\mathbf{1} \\ \mathbf{p_2} & \mathbf{1} & \mathbf{1} & -\mathbf{1} \\ \mathbf{p_3} & -\mathbf{1} & -\mathbf{1} & \mathbf{1} \end{array}$$

Firing count vector can be calculated to reach $(1,1,0)^T$ from $(0,1,0)^T$:

$$(1,1,0)^{\mathrm{T}} - (0,1,0)^{\mathrm{T}} = \mathbf{W}^{\mathrm{T}} \cdot (1,0,1)^{\mathrm{T}}$$

- Firing count vector: (1,0,1)^T
- But neither t₁, nor t₃ is enabled under the initial marking (0,1,0)!

Transition and place invariants

Definition: Transition invariant (T-invariant)

The firing count vector σ_T is a T-invariant, if its firing does not change the marking:

$$\mathbf{W}^{\mathrm{T}}\vec{\boldsymbol{\sigma}}_{T}=0$$

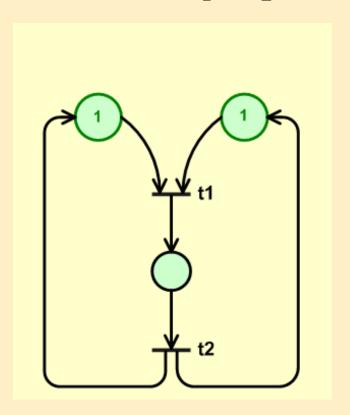
- Cycle in the state space: $M_i [\vec{\sigma}_T > M_i]$
- The firing sequence σ_T can be fired from state M_i if

$$\forall t_{i_j} \in \vec{\sigma}, \forall p \in \left\{ \bullet t_{i_j} \right\} : m_{i_{j-1}} \left(p \right) \ge w^{-} \left(p, t_{i_j} \right) = \mathbf{W}^{-\mathrm{T}} \cdot \vec{e}_{i_j}$$

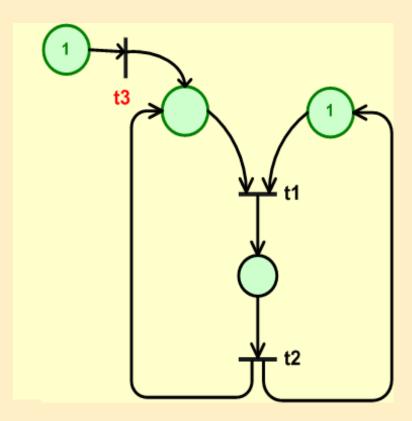
- Note: for each firing sequence σ an initial marking M_0 exists, from which σ can be fired
 - E.g. $M_0 \ge \mathbf{W}^{-\mathsf{T}} \vec{\sigma}$, the marking can have initially "as many" tokens, that the tokens produced by σ are not needed

Example T-invariant

T-invariant: marking does not change after firing t₁ – t₂



Not a T-invariant: firing sequence $t_3 - t_1 - t_2$ cannot be repeated



Set of T-invariants

$$\mathbf{W}^{\mathrm{T}}\vec{\boldsymbol{\sigma}}_{T}=0$$

Solutions of the homogeneous, linear system of equations

- Multiples of a solution are also solutions
 - If fireable, the loop can be traversed multiple times
- Sum of solutions is also a solution
 - If fireable, multiple loops can be combined
- Linear combination of solutions is also a solution

A basis can be found for the solutions

Minimal set that can produce each solution

Minimal T-invariant

- Notation: basis of a firing sequence σ is sup(σ):
 - Set of transitions $T' = \{t_i \mid \sigma_i > 0\}$ occurring in the sequence σ
- T-invariant σ_T is minimal
 - If no T-invariant exists having a basis that is a proper subset of the basis of σ_T or
 - if the subsets are equal, its firing counts are lower

$$\forall \sigma_T^1 : \mathbf{W}^T \sigma_T^1 = 0 \Rightarrow (\sigma_T^1 \ge \sigma_T) \lor (\sup(\sigma_T) \nsubseteq \sup(\sigma_T^1))$$

Definition: Place invariant (P-invariant)

• A set of places marked by the non-negative weight vector μ_P , where the weighted sum of tokens is constant: $\vec{\mu}_P^{\rm T} M = {\rm constant}$

 Number of tokens in a subset of places is constant (e.g. resources are not lost or introduced)

$$M = M_0 + \mathbf{W}^{\mathsf{T}} \vec{\sigma}$$

$$\underline{\vec{\mu}_P^{\mathsf{T}} M} = \vec{\mu}_P^{\mathsf{T}} M_0 + \vec{\mu}_P^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \vec{\sigma}$$

$$\vec{\mu}_P^{\mathsf{T}} M = \vec{\mu}_P^{\mathsf{T}} M_0 = \text{constant}$$

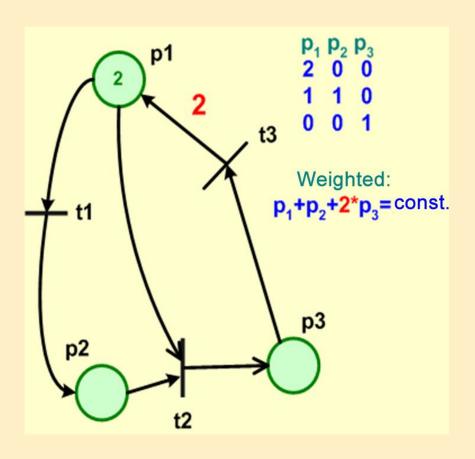
$$\vec{\mu}_P^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \vec{\sigma} = 0 \Rightarrow \vec{\mu}_P^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \equiv 0$$

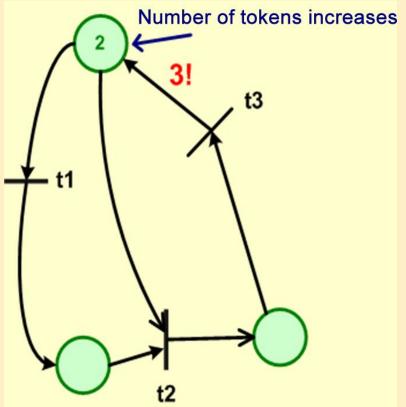
$$\mathbf{W}\vec{\mu}_P = 0$$

Example P-invariant

P-invariant for p_1 , p_2 , p_3 :

Not a P-invariant:



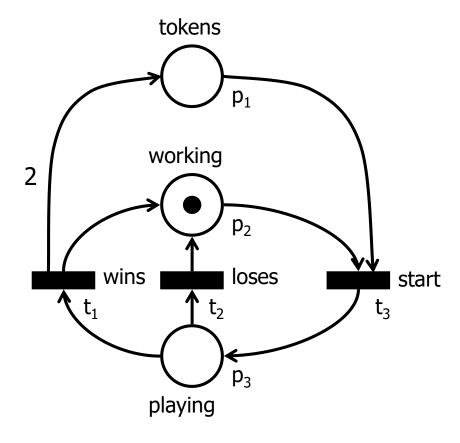


Applications of invariants

- Applications of T-invariants
 - For a process model: cyclical behavior
 - Dynamic properties
 - Cyclically fireable → reversibility, home state
 - Can be fired later → liveness, deadlock freedom
- Applications of P-invariants
 - For a process model: constant resources
 - Dynamic properties
 - Tokens are not lost → liveness, deadlock freedom
 - Tokens are not produced → boundedness

Calculating invariants

Does the example have invariants?



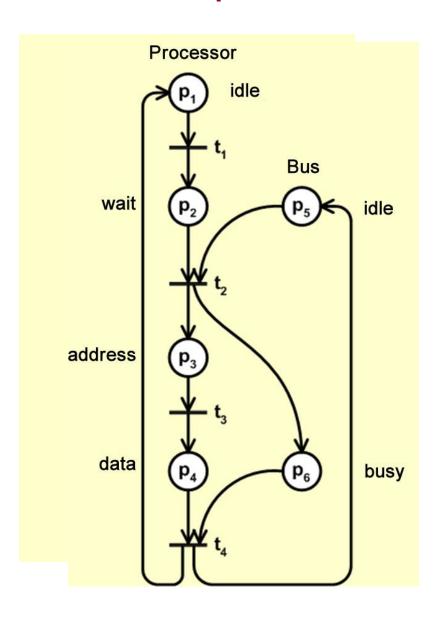
• For a P-invariant: $\mathbf{W} \cdot \mu_P = \mathbf{0}$

$$\mathbf{W} = \begin{array}{c|cccc} \mathbf{p_1} & \mathbf{p_2} & \mathbf{p_3} \\ \mathbf{t_1} & \mathbf{2} & \mathbf{1} & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} & -\mathbf{1} & \mathbf{1} \\ \mathbf{t_3} & -\mathbf{1} & -\mathbf{1} & \mathbf{1} \end{array}$$

$$\mathbf{W} \cdot (0, 1, 1)^{T} = \mathbf{0}$$

• For a T-invariant: $\mathbf{W}^{\mathrm{T}} \cdot \sigma_T = \mathbf{0}$

Example: Processor data transmission



Processor

- waiting (idle)
- asking for bus grant
- placing address to bus
- placing data to bus

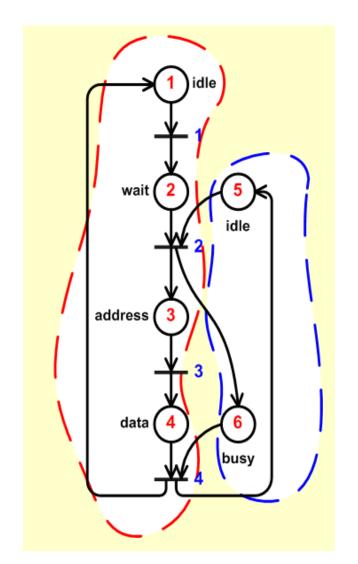
Bus(es)

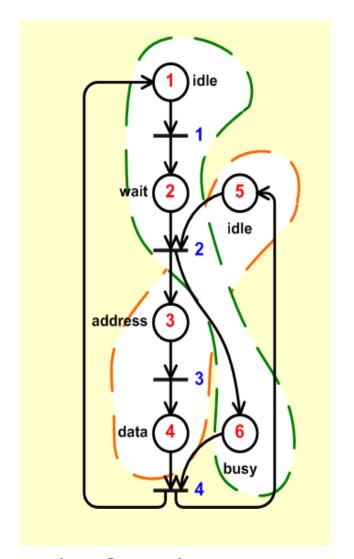
- Idle (not used)
- busy (processor/periphery)

Petri net

- n = 4 transitions
- -m=6 places

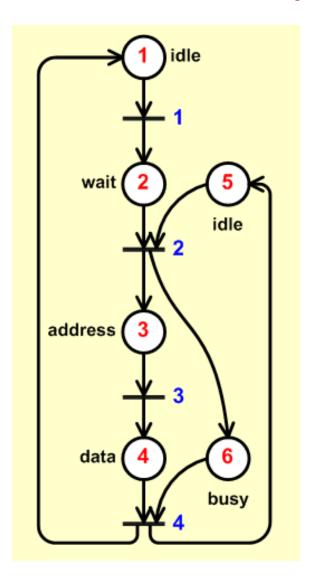
P-invariants: Calculate by hand!





Four P-invariants can be found

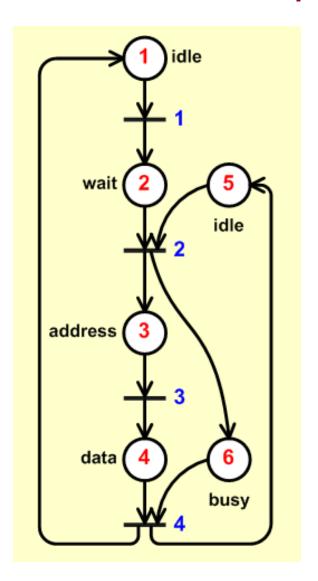
Example: Incidence matrices



$$W^{-} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ 1 & 0 & 0 & 0 & 0 & 0 & t_1 \\ 0 & 1 & 0 & 0 & 1 & 0 & t_2 \\ 0 & 0 & 1 & 0 & 0 & 0 & t_3 \\ 0 & 0 & 0 & 1 & 0 & 1 & t_4 \end{bmatrix}$$

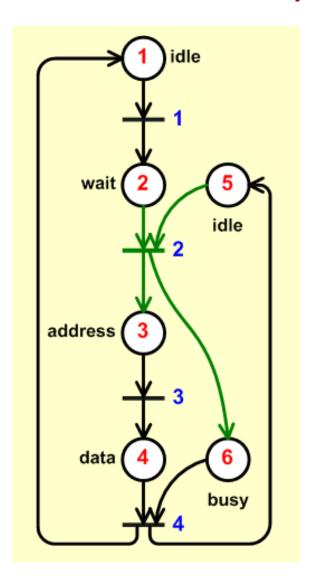
$$W^{+} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ 0 & 1 & 0 & 0 & 0 & 0 & t_1 \\ 0 & 0 & 1 & 0 & 0 & 1 & t_2 \\ 0 & 0 & 0 & 1 & 0 & 0 & t_3 \\ 1 & 0 & 0 & 0 & 1 & 0 & t_4 \end{bmatrix}$$

Example: Incidence matrices



$$W = W^{+}-W^{-} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ -1 & 1 & 0 & 0 & 0 & 0 & t_1 \\ 0 & -1 & 1 & 0 & -1 & 1 & t_2 \\ 0 & 0 & -1 & 1 & 0 & 0 & t_3 \\ 1 & 0 & 0 & -1 & 1 & -1 & t_4 \end{bmatrix}$$

Example: Incidence matrices



$$\mathbf{W}^{\top} = \begin{bmatrix} \mathbf{t_1} & \mathbf{t_2} & \mathbf{t_3} & \mathbf{t_4} \\ -1 & 0 & 0 & 1 & \mathbf{p_1} \\ 1 & -1 & 0 & 0 & \mathbf{p_2} \\ 0 & 1 & -1 & 0 & \mathbf{p_3} \\ 0 & 0 & 1 & -1 & \mathbf{p_4} \\ 0 & -1 & 0 & 1 & \mathbf{p_5} \\ 0 & 1 & 0 & -1 & \mathbf{p_6} \end{bmatrix}$$

Martinez-Silva algorithm: Initialization

```
i \leftarrow 1
T_i \leftarrow \{ t \in T \}
\mathbf{A} \leftarrow \mathbf{W}^\mathsf{T}, \mathbf{D} \leftarrow \mathbf{1}_n \ // \ n = |P|
\mathbf{Q}_i \leftarrow [\mathbf{D} \mid \mathbf{A}] \ // \ \text{identity matrix and incidence matrix}
\mathcal{L}_p \leftarrow \text{the } p \text{th row of } \mathbf{Q}_i
```

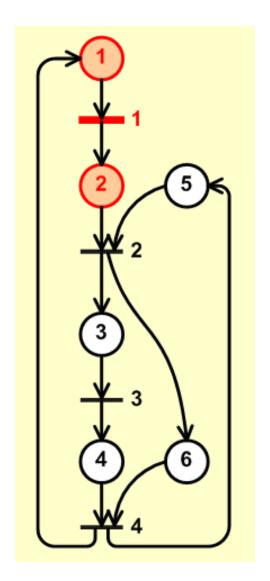
$$T_{1} = \{ t_{1}, t_{2}, t_{3}, t_{4} \}$$

$$\mathbf{Q_{1}} = \begin{bmatrix} \mathbf{e_{1}} & \mathbf{e_{2}} & \mathbf{e_{3}} & \mathbf{e_{4}} & \mathbf{e_{5}} & \mathbf{e_{6}} & \mathbf{t_{1}} & \mathbf{t_{2}} & \mathbf{t_{3}} & \mathbf{t_{4}} \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & \mathbf{p_{1}} \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & \mathbf{p_{2}} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & \mathbf{p_{3}} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & \mathbf{p_{4}} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & \mathbf{p_{5}} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 & \mathbf{p_{5}} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & \mathbf{p_{6}} \end{bmatrix}$$

Martinez-Silva algorithm: Loop

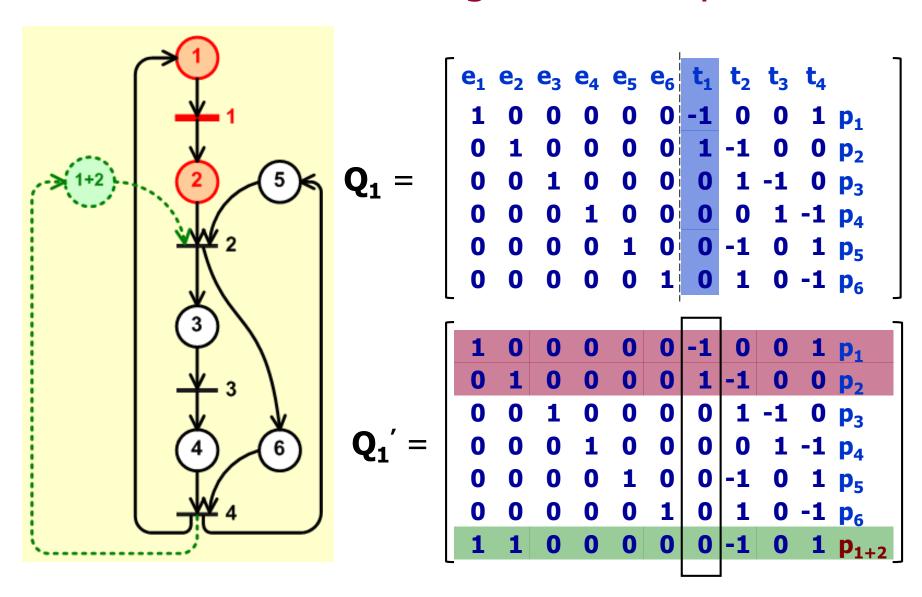
```
while A_i \neq 0
      if t_i \in T_i // choose a column not yet examined
      T_{i+1} \leftarrow T_i \setminus \{ t_i \}
                                             Find pairs of nonzero values in the jth column, whose
      \mathsf{L}_{\mathsf{delete}} \leftarrow \varnothing
                                               weighted sum with given positive weights equals to 0
      \mathbf{Q}_{i+1} \leftarrow \mathbf{Q}_i
      for all u, v : A_i(u, j) \neq 0 \land A_i(v, j) \neq 0 \land
                           \exists \lambda_u, \lambda_v \in \infty^+: \lambda_u A_i(u, j) + \lambda_v A_i(v, j) = 0
             add row \lambda_{i}, L_{i}+\lambda_{i}, L_{i} to \mathbf{Q}_{i+1}
             L_{\text{delete}} \leftarrow L_{\text{delete}} \cup \{ L_{\prime\prime\prime} L_{\nu} \}
      end for
      delete rows in L_{delete} from Q_{i+1}
      i \leftarrow i + 1
end while
```

Martinez-Silva algorithm: Step 1/1

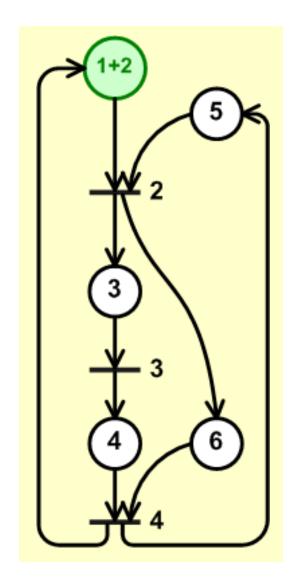


$$\mathbf{Q_1} = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} & \mathbf{e_4} & \mathbf{e_5} & \mathbf{e_6} & \mathbf{t_1} & \mathbf{t_2} & \mathbf{t_3} & \mathbf{t_4} \\ 1 & 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{-1} & 0 & 0 & \mathbf{1} & \mathbf{p_1} \\ 0 & 1 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{-1} & 0 & \mathbf{0} & \mathbf{p_2} \\ 0 & 0 & 1 & 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{-1} & \mathbf{0} & \mathbf{p_3} \\ 0 & 0 & 0 & 1 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{-1} & \mathbf{0} & \mathbf{p_3} \\ 0 & 0 & 0 & 0 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{-1} & \mathbf{p_4} \\ 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{p_5} \\ 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{-1} & \mathbf{p_6} \end{bmatrix}$$

Martinez-Silva algorithm: Step 1/2

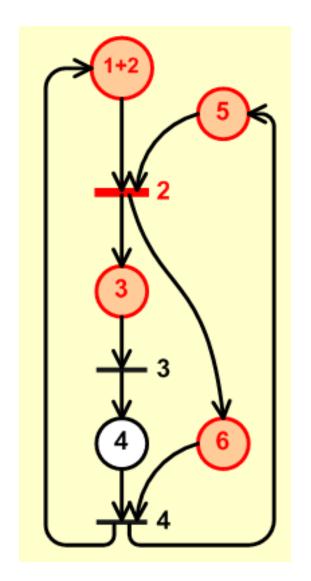


Martinez-Silva algorithm: Subresult 1

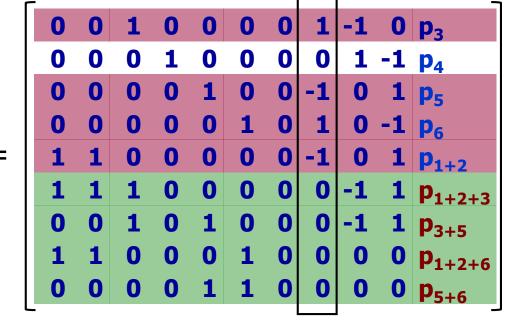


$$\mathbf{Q_1}'' = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} & \mathbf{e_4} & \mathbf{e_5} & \mathbf{e_6} & \mathbf{t_1} & \mathbf{t_2} & \mathbf{t_3} & \mathbf{t_4} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & \mathbf{p_3} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & \mathbf{p_4} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & \mathbf{p_5} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & \mathbf{p_6} \\ \hline \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -1 & \mathbf{0} & \mathbf{1} & \mathbf{p_{1+2}} \end{bmatrix}$$

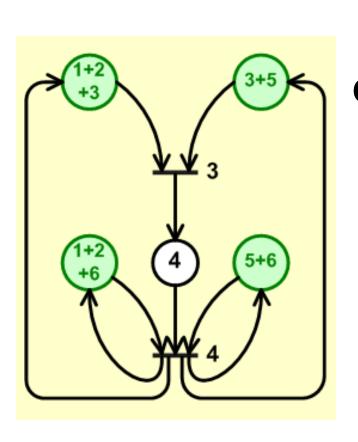
Martinez-Silva algorithm: Step 2/1, 2/2

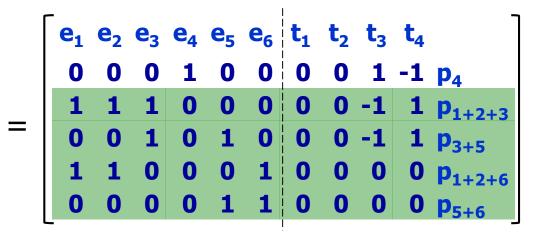


$$\mathbf{Q_2} = \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} & \mathbf{e_4} & \mathbf{e_5} & \mathbf{e_6} & \mathbf{t_1} & \mathbf{t_2} & \mathbf{t_3} & \mathbf{t_4} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & \mathbf{p_3} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & \mathbf{p_4} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & \mathbf{p_5} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & \mathbf{p_6} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & \mathbf{p_{1+2}} \end{bmatrix}$$

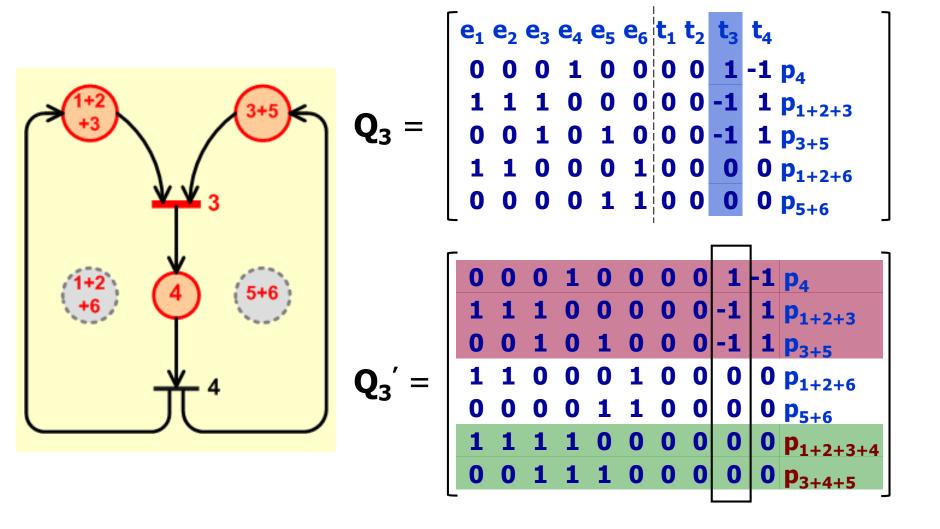


Martinez-Silva algorithm: Subresult 2

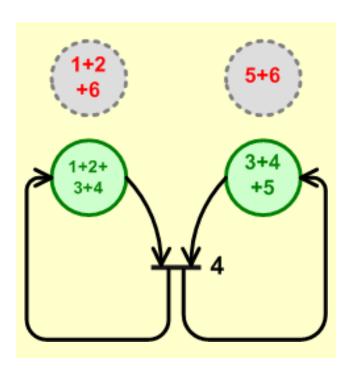




Martinez-Silva algorithm: Step 3/1, 3/2



Martinez-Silva algorithm: Final results



Invariants:

- Coefficients in the rows of matrix D_m in the final matrix $Q_m = [D_m|0]$

Resulting P-invariants:

1.
$$m(p_1)+m(p_2)+m(p_6)=1$$

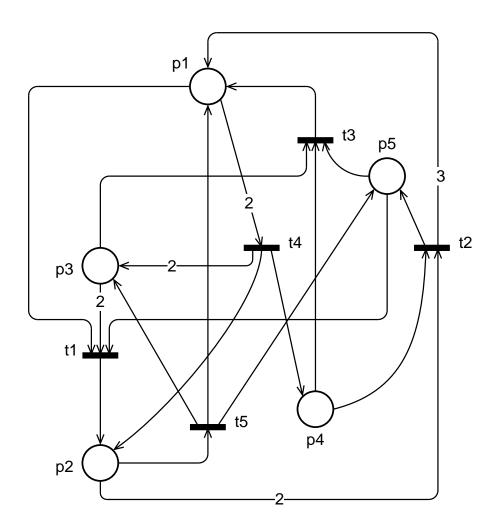
2.
$$m(p_5)+m(p_6)=1$$

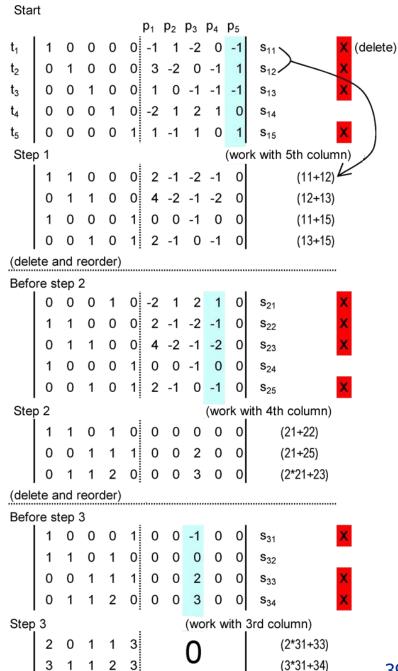
3.
$$m(p_1)+m(p_2)+m(p_3)+m(p_4)=1$$

4.
$$m(p_3)+m(p_4)+m(p_5)=1$$

 Sum of tokens can be determined from the initial marking

Example: Calculating T-invariants





Structural properties of Petri nets

Structural liveness, structural boundedness

- A Petri net N is structurally live, if there exists a live initial marking M_0 for N
 - A Petri net is live, if it is L4-live, i.e., each transition $t \in T$ is L4-live
 - A transition is L4-live: can be fired at least once in some firing sequence from any reachable state
- A Petri net N is structurally bounded, if it is bounded for all bounded initial markings M_0

Controllability

A Petri net N is completely controllable,
if for all bounded initial marking M₀
any marking is reachable from any other marking,
i.e.,

$$\forall M_i, M_j : M_i, M_j \in R(N, M_0) \Rightarrow M_i \in R(N, M_j) \land M_j \in R(N, M_i)$$

Conservativeness

• A Petri net N is conservative, if there exists a positive integer weight μ_p for every place $p \in P$ in every bounded M_0 and $M \in R(N, M_0)$ such that:

$$M \vec{\mu} = M_0 \vec{\mu} =$$
 constant

- Example: For each initial marking, each place in each reachable marking is part of a P-invariant
- Partially conservative, if the above only holds for some places.
 - Example: For each initial marking, some places in each reachable marking is part of a P-invariants

Repetitiveness

- A Petri net N is repetitive, if an initial marking M_0 and a firing sequence σ from M_0 exists, such that every transition $t \in T$ occurs infinitely often in σ .
 - Example: An initial marking exists with a returning firing sequence (loop) containing every transition
- Partially repetitive, if the above only holds for some transitions.
 - Example: An initial marking exists with a returning firing sequence (loop) containing some transitions

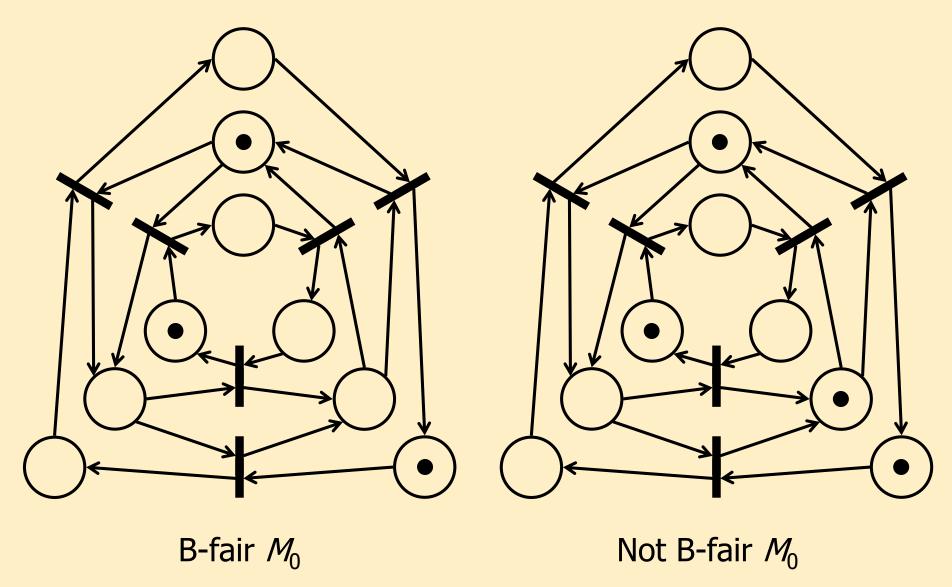
Consistency

- A Petri net N is consistent, if an initial marking M_0 and a firing sequence σ from M_0 to M_0 exists, such that every transition $t \in T$ occurs at least once in σ .
- Partially consistent, if the above only holds for some transitions.

Structural B-fairness

- Two transitions are structurally B-fair, if for all initial markings M_0 the two transitions are B-fair
 - Two transitions are B-fair: One of them can fire only a bounded number of times without firing the other
- A Petri net N is structurally B-fair, if for all initial markings M_0 the net is B-fair
 - A Petri net (N, M_0) is B-fair, if any two transitions are in a B-fair relationship
 - Structural B-fair relation
 B-fair relation

B-fair, but not structurally B-fair net



Conditions for the properties*

	Property	Necessary and sufficient condition
SB	Structurally bounded	$\exists \vec{\mu} > 0, \mathbf{W} \vec{\mu} \le 0 \text{ (or } \vec{\sigma} > 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \ge 0)$
CN	Conservative	$\exists \vec{\mu} > 0, \mathbf{W}\vec{\mu} = 0 (\text{or } \vec{\mathcal{A}}\vec{\sigma}, \mathbf{W}^{\mathrm{T}}\vec{\sigma} \geq 0)$
PCN	Partially conservative	$\exists \vec{\mu} \geq 0, \mathbf{W} \vec{\mu} = 0$
RP	Repetitive	$\exists \vec{\sigma} > 0, \mathbf{W}^{T} \vec{\sigma} \ge 0$
PRP	Partially repetitive	$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \geq 0$
CS	Consistent	$\exists \vec{\sigma} > 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} = 0 (\text{or } \not\exists \vec{\mu}, \mathbf{W} \vec{\mu} \geq 0)$
PCS	Partially consistent	$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} = 0$

Other properties*

If	Then
N structurally bounded and structurally live	N is conservative and consistent.
$\exists \vec{\mu} \geq 0, \mathbf{W} \vec{\mu} \leq 0$	A non-live M_0 exists for N . N is not consistent.
$\exists \vec{\mu} \geq 0, \mathbf{W} \vec{\mu} \geq 0$	(N, M_0) is not bounded with live M_0 . N is not consistent.
$\exists \vec{\sigma} \ge 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \le 0$	A non-live M_0 exists for structurally bounded N . N is not consistent.
$\exists \vec{\sigma} \ge 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \ge 0$	N is not structurally bounded.N not conservative.