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Recall: Dynamic properties

• Example: Model of a workflow
(tasks + activities + resources)

• Properties analyzed

– Does the system halt? Deadlock

– Can certain activities be performed? Liveness

– Do tasks overwhelm? Boundedness

– Can we return to the initial state? Reversibility

– Is there a processing loop? Home state

– Can activities be stopped? Persistence

– Is there an activity lacking resources? Fairness

• Problem: Exploring a large state space
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Recall: Analysis methods

Depth of the analysis:

• Simulation

• Full exploration of the state space

– Analysis of reachability graph:

Dynamic (behavioral) properties

– Model checking

• Analysis of the net structure

– Static analysis: 

Structural properties

– Invariant analysis

Traverse single trajectiories

Traverse all trajectories
from a given initial state
(exhaustive traversal)

Properties independent 
from the initial state
(hold for every initial state)
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Main idea of structural analysis

• Can we state something without traversing / 
exploring the state space?

– Based only on the structure (places, transitions, arcs)

– Analysis independent from the initial state

– In certain cases only approximate results!

• Approximate analysis is safe if it covers the real 
behavior

– If no counterexample is found for the examined property 
(erroneous behavior): the property holds

– If a counterexample is found: it may be spurious:
It has to be verified with simulation and if it is spurious
a new search has to be started
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Structural properties

• Structural boundedness

• Controllability

• Conservativeness

– Place invariant

(P-invariant)

• Structural liveness

• Repetitiveness

• Consistence

– Transition invariant

(T-invariant)

Depending on the definition, the property must hold for

• either for all bounded initial marking,

• or some existing bounded initial marking

Properties of Petri nets independent from the initial state:
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Recall: Describing the structure

• Weighted incidence matrix: W = [w(t, p)]
• Dimension: t  p = |T |  |P |
• w(t, p): Change in the number of tokens on p when t fires
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Recall: Describing the structure
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t1 t2 t3

p1 2 0 -1

p2 1 1 -1

p3 -1 -1 1

WT =

p1 p2 p3

t1 2 1 -1

t2 0 1 -1

t3 -1 -1 1

W =

wins loses start

playing

working

tokens

p1

p2

p3

t1 t2 t3
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Introducing the state equation

• Dynamics of Petri nets: change in the marking

– Changes can be described by equations

• Precondition (for unambiguousness): pure Petri net

– No transition exists that is both the input and output 

transition of the same place:

– This subsumes: No “self-loop”

• Marking does not change after firing

(0 element in the incidence matrix)

• But has a role in enabling the transition

:t T t t     
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Firing sequence

• Firing sequence:

• Reachability of a state (marking): 

• Enabledness of a firing sequence:

– Transition ti,j has enough tokens on input places p  ti,j
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State equation

• Change in the marking:

– When firing an enabled transition tj
• w–(p, tj) tokens removed from each input place p  tj

• w+(p, tj ) tokens are produced in each output place p  tj 

– When firing an enabled firing sequence :

• Marking changes by accumulating the firings:

• Firing count vector: number of occurrences for each 

transition in the firing sequence

T T T
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Deriving the state equation
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State equation and reachability

• The firing count vector contains less information, 

than the firing sequence
– The order of firing is lost by only giving (0,2,2)T!

– A non fireable sequence can be obtained from the state equation for a 

given M0

wins loses start

playing

working

tokens

p1
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p3

t1 t2 t3

2

t2

t3
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Example: State equation and reachability

• State equation:

• Firing count vector can be calculated 
to reach (1,1,0)T from (0,1,0)T:

t1 t2 t3

p1 2 0 -1

p2 1 1 -1

p3 -1 -1 1

WT =

T T T T(1,1,0) (0,1,0) (1,0,1)  W

0 0

T

j j TM M M M W    
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playing

working

tokens

p1

p2

p3

t1 t2 t3

2

     
1

T, : ,
j j j j ji i i i it p t m p w p t e



        W
• Firing count vector: (1,0,1)T

• But neither t1, nor t3 is enabled under the initial marking (0,1,0)!
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Transition and place invariants



Definition: Transition invariant (T-invariant)

The firing count vector T is a T-invariant, if its 
firing does not change the marking:

– Cycle in the state space:

– The firing sequence T can be fired from state Mi if

– Note: for each firing sequence  an initial marking M0

exists, from which  can be fired

• E.g.                   , the marking can have initially “as many” 
tokens, that the tokens produced by  are not needed

T 0T W
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Example T-invariant

T-invariant:
marking does not change 
after firing t1 – t2

Not a T-invariant:
firing sequence t3 – t1 – t2
cannot be repeated
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Set of T-invariants

Solutions of the homogeneous, linear system

of equations

– Multiples of a solution are also solutions

• If fireable, the loop can be traversed multiple times

– Sum of solutions is also a solution

• If fireable, multiple loops can be combined

– Linear combination of solutions is also a solution

A basis can be found for the solutions

– Minimal set that can produce each solution

T 0T W
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Minimal T-invariant

• Notation: basis of a firing sequence  is sup():

– Set of transitions T’ = {ti |i > 0} occurring in the 

sequence 

• T-invariant T is minimal

– If no T-invariant exists having a basis that is a proper 

subset of the basis of T or

– if the subsets are equal, its firing counts are lower

   1 T 1 1 1: 0 sup( ) sup( )T T T T T T          W
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Definition: Place invariant (P-invariant)

• A set of places marked by the non-negative weight 

vector P , where the weighted sum of tokens is 

constant:

• Number of tokens in a subset of places is constant 

(e.g. resources are not lost or introduced)
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Example P-invariant

P-invariant for p1, p2, p3: Not a P-invariant:
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Applications of invariants

• Applications of T-invariants

– For a process model: cyclical behavior

– Dynamic properties

• Cyclically fireable  reversibility, home state

• Can be fired later  liveness, deadlock freedom

• Applications of P-invariants

– For a process model: constant resources

– Dynamic properties

• Tokens are not lost  liveness, deadlock freedom

• Tokens are not produced  boundedness
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Calculating invariants



• For a P-invariant:  𝐖 ∙ 𝜇𝑃 = 0

𝐖 ∙ 0, 1, 1 T = 0

• For a T-invariant:  𝐖T ∙ 𝜎𝑇 = 0

𝐖T ∙ 1, 1, 2 T = 0

Does the example 
have invariants? p1 p2 p3

t1 2 1 -1

t2 0 1 -1

t3 -1 -1 1

W =

wins loses start

playing

working

tokens

p1

p2

p3

t1 t2 t3

2
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t1 t2 t3

p1 2 0 -1

p2 1 1 -1

p3 -1 -1 1

WT =



Example: Processor data transmission

• Processor

– waiting (idle)

– asking for bus grant

– placing address to bus

– placing data to bus

• Bus(es)

– Idle (not used)

– busy (processor/periphery)

• Petri net

– n = 4 transitions

– m = 6 places
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P-invariants: Calculate by hand!

Four P-invariants can be found
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Example: Incidence matrices

p1 p2 p3 p4 p5 p6

1 0 0 0 0 0 t1

0 1 0 0 1 0 t2

0 0 1 0 0 0 t3

0 0 0 1 0 1 t4

W– =

p1 p2 p3 p4 p5 p6

0 1 0 0 0 0 t1

0 0 1 0 0 1 t2

0 0 0 1 0 0 t3

1 0 0 0 1 0 t4

W+ =
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Example: Incidence matrices

p1 p2 p3 p4 p5 p6

-1 1 0 0 0 0 t1

0 -1 1 0 -1 1 t2

0 0 -1 1 0 0 t3

1 0 0 -1 1 -1 t4

W = W+-W- =
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Example: Incidence matrices

t1 t2 t3 t4

-1 0 0 1 p1

1 -1 0 0 p2

0 1 -1 0 p3

0 0 1 -1 p4

0 -1 0 1 p5

0 1 0 -1 p6

WT =
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Martinez-Silva algorithm: Initialization

i  1

Ti  { t  T }

A  WT, D  1n // n = |P|

Qi  [D | A]  // identity matrix and incidence matrix

Lp  the pth row of Qi

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

1 0 0 0 0 0 -1 0 0 1 p1

0 1 0 0 0 0 1 -1 0 0 p2

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

Q1 =T1 = { t1, t2, t3, t4 }
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Martinez-Silva algorithm: Loop

while Ai ≠ 0

if tj  Ti // choose a column not yet examined

Ti+1  Ti \ { tj }

Ldelete  

Qi+1  Qi

for all u, v : Ai(u, j) ≠ 0  Ai(v, j) ≠ 0 
u, v  +: u Ai(u, j) + v Ai(v, j) = 0

add row u Lu+v Lv to Qi+1

Ldelete  Ldelete  { Lu, Lv }

end for

delete rows in Ldelete from Qi+1

i  i + 1

end while
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Find pairs of nonzero values in the jth column, whose 
weighted sum with given positive weights equals to 0



Martinez-Silva algorithm: Step 1/1

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

1 0 0 0 0 0 -1 0 0 1 p1

0 1 0 0 0 0 1 -1 0 0 p2

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

Q1 =
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Martinez-Silva algorithm: Step 1/2

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

1 0 0 0 0 0 -1 0 0 1 p1

0 1 0 0 0 0 1 -1 0 0 p2

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

Q1 =

1 0 0 0 0 0 -1 0 0 1 p1

0 1 0 0 0 0 1 -1 0 0 p2

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

1 1 0 0 0 0 0 -1 0 1 p1+2

Q1
’ =
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Martinez-Silva algorithm: Subresult 1

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

1 1 0 0 0 0 0 -1 0 1 p1+2

Q1
” =
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Martinez-Silva algorithm: Step 2/1, 2/2

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

1 1 0 0 0 0 0 -1 0 1 p1+2

Q2 =

0 0 1 0 0 0 0 1 -1 0 p3

0 0 0 1 0 0 0 0 1 -1 p4

0 0 0 0 1 0 0 -1 0 1 p5

0 0 0 0 0 1 0 1 0 -1 p6

1 1 0 0 0 0 0 -1 0 1 p1+2

1 1 1 0 0 0 0 0 -1 1 p1+2+3

0 0 1 0 1 0 0 0 -1 1 p3+5

1 1 0 0 0 1 0 0 0 0 p1+2+6

0 0 0 0 1 1 0 0 0 0 p5+6

Q2
’ =
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Martinez-Silva algorithm: Subresult 2

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

0 0 0 1 0 0 0 0 1 -1 p4

1 1 1 0 0 0 0 0 -1 1 p1+2+3

0 0 1 0 1 0 0 0 -1 1 p3+5

1 1 0 0 0 1 0 0 0 0 p1+2+6

0 0 0 0 1 1 0 0 0 0 p5+6

Q2
” =
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Martinez-Silva algorithm: Step 3/1, 3/2

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

0 0 0 1 0 0 0 0 1 -1 p4

1 1 1 0 0 0 0 0 -1 1 p1+2+3

0 0 1 0 1 0 0 0 -1 1 p3+5

1 1 0 0 0 1 0 0 0 0 p1+2+6

0 0 0 0 1 1 0 0 0 0 p5+6

Q3 =

0 0 0 1 0 0 0 0 1 -1 p4

1 1 1 0 0 0 0 0 -1 1 p1+2+3

0 0 1 0 1 0 0 0 -1 1 p3+5

1 1 0 0 0 1 0 0 0 0 p1+2+6

0 0 0 0 1 1 0 0 0 0 p5+6

1 1 1 1 0 0 0 0 0 0 p1+2+3+4

0 0 1 1 1 0 0 0 0 0 p3+4+5

Q3
’ =
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Martinez-Silva algorithm: Final results

• Invariants:

– Coefficients in the rows of matrix Dm in 

the final matrix Qm= [Dm|0]

• Resulting P-invariants:

1. m(p1)+m(p2)+m(p6) = 1

2. m(p5)+m(p6) = 1

3. m(p1)+m(p2)+m(p3)+m(p4) = 1

4. m(p3)+m(p4)+m(p5) = 1

• Sum of tokens can be determined

from the initial marking

e1 e2 e3 e4 e5 e6 t1 t2 t3 t4

1 1 0 0 0 1 0 0 0 0 p1+2+6

0 0 0 0 1 1 0 0 0 0 p5+6

1 1 1 1 0 0 0 0 0 0 p1+2+3+4

0 0 1 1 1 0 0 0 0 0 p3+4+5

Q3
” =
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Example: Calculating 
T-invariants

t1

p1

p2

t4

p3

p4

p5

t2

t3

t5

2

2

3

2

2
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Structural properties of Petri nets



Structural liveness, structural boundedness

• A Petri net N is structurally live, 

if there exists a live initial marking M0 for N

– A Petri net is live, if it is L4-live, 

i.e., each transition tT is L4-live

• A transition is L4-live: can be fired at least once in some firing 

sequence from any reachable state

• A Petri net N is structurally bounded, 

if it is bounded for all bounded initial markings M0
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Controllability

• A Petri net N is completely controllable, 

if for all bounded initial marking M0

any marking is reachable from any other marking,

i.e.,

0, : , ( , ) ( , ) ( , )i j i j i j j iM M M M R N M M R N M M R N M     
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Conservativeness

• A Petri net N is conservative, if there exists a 

positive integer weight p for every place pP in 

every bounded M0 and M  R(N, M0) such that:

– Example: For each initial marking, each place in each 

reachable marking is part of a P-invariant

• Partially conservative, if the above only holds for 

some places.

– Example: For each initial marking, some places in each 

reachable marking is part of a P-invariants
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Repetitiveness

• A Petri net N is repetitive, if an initial marking

M0 and a firing sequence  from M0 exists, such 

that every transition t  T occurs infinitely

often in .

– Example: An initial marking exists with a returning firing 

sequence (loop) containing every transition

• Partially repetitive, if the above only holds for 

some transitions.

– Example: An initial marking exists with a returning firing 

sequence (loop) containing some transitions
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Consistency

• A Petri net N is consistent, if an initial marking M0

and a firing sequence  from M0 to M0 exists, such 

that every transition t  T occurs at least once in .

• Partially consistent, if the above only holds for some 

transitions.
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Structural B-fairness

• Two transitions are structurally B-fair, if for all

initial markings M0 the two transitions are B-fair

– Two transitions are B-fair: One of them can fire only a 

bounded number of times without firing the other

• A Petri net N is structurally B-fair, if for all initial 

markings M0 the net is B-fair

– A Petri net (N, M0) is B-fair, if any two transitions are in 

a B-fair relationship

– Structural B-fair relation B-fair relation
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B-fair, but not structurally B-fair net

B-fair M0 Not B-fair M0
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Conditions for the properties*

Property Necessary and sufficient condition

SB Structurally bounded

CN Conservative

PCN Partially conservative

RP Repetitive

PRP Partially repetitive

CS Consistent

PCS Partially consistent

T0, 0 (vagy 0, 0)   


     W W

T0, 0 (vagy , 0)   


    W W

0, 0 


  W

T0, 0   W

T0, 0 


  W

T0, 0 (vagy , 0)   


    W W

T0, 0 


  W
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Other properties*

If … Then …

N structurally bounded and 
structurally live

N is conservative and consistent.

A non-live M0 exists for N. 
N is not consistent.

(N, M0) is not bounded with live M0. 
N is not consistent.

A non-live M0 exists for structurally 
bounded N. N is not consistent.

N is not structurally bounded.
N not conservative.

T0, 0 


  W

0, 0 


  W

T0, 0 


  W

0, 0 


  W
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